

Secretaria de Educación Publica

Tecnológico Nacional de México

Instituto Tecnológico de Veracruz División de Estudios de Posgrado e Investigación

ESTUDIO DEL FUNCIONAMIENTO DE MOTORES DE COMBUSTIÓN INTERNA USANDO MEZCLAS DE BIO-COMBUSTIBLES Y COMBUSTIBLES FÓSILES

Tesis para obtener el grado de

MAESTRO EN EFICIECIA ENERGETICA Y ENERGIAS RENOVABLES

Presenta

Ing. Jorge Armando Larrea Ordoñez

Director:

Co-Director: Dr. Juan Carlos Prince Avelino

Dr. Mario Díaz González

H. Veracruz, Ver. a 26 de noviembre de 2020

Í	ŗ	1(b	ic	20	e	
	•				-	-	•

Índice de figurasVI
Índice de tablasXI
IntroducciónXIV
Capítulo I: Marco metodológico1
1.1. Problemática
1.2. Objetivos
1.2.1. Objetivo General
1.2.2. Objetivos Específicos
1.3. Justificación4
1.4. Hipótesis5
Capítulo II: Marco Conceptual6
2.1. Combustión7
2.2. Llamas7
2.1.1. Llamas premezcladas7
2.1.2. Llamas de difusión7
2.3. Ignición
2.3.1. Encendido por chispa (SI) en un motor de combustión interna8
2.3.2. Encendido por compresión (DI) en un motor de combustión interna 8
2.3.3. Encendido por compresión de carga homogénea (HCCI)
2.4. Combustibles para los motores de combustión interna
2.4.1. Mezclas alcohol-gasolina para motores SI 11
2.4.2. Mezclas alcohol-diésel para motores CI 12
2.4.3. N-butanol 12
2.5. Motor de combustión de cuatro tiempos12
2.6. El ciclo Otto aire estándar 15
2.6.1. El ciclo Otto aire estándar (tablas de aire) 17
2.6.2. El ciclo Otto aire estándar de aire frio (gases ideales)
2.6.3. Efecto de la relación de compresión en el rendimiento

2.7. Análisis de gases y cálculo de temperatura de combustión	20
2.7.1. Sistemas de reacción	21
2.7.2. Entalpia de combustión	21
2.7.3. Temperatura de combustión	22
2.8. Ejemplo del ciclo Otto con aire estándar	23
2.9. Ejemplo del ciclo Otto con gases ideales	29
2.10. Ciclo diésel de aire estándar	32
2.10.1. Ciclo diésel de aire estándar (tablas)	33
2.10.2. Análisis de ciclo diésel estándar de aire frio (gases ideales)	35
2.10.3. Efecto de la relación de compresión en el rendimiento	35
Capítulo III: Estado del arte	36
3.1. Motores de combustión interna	37
3.2. Motores de encendido por chispa (SI)	37
3.3. Motores de encendido por compresión (CI)	39
3.4. Motores de combustión a baja temperatura (LTC)	40
3.5. Software Diesel-RK	41
Capitulo IV: Modelo de simulación de Diesel-RK	43
Capitulo IV: Modelo de simulación de Diesel-RK 4.1. Geometría del motor	43 44
 Capitulo IV: Modelo de simulación de Diesel-RK 4.1. Geometría del motor 4.1.1. Rendimiento del motor 	43 44 46
 Capitulo IV: Modelo de simulación de Diesel-RK 4.1. Geometría del motor 4.1.1. Rendimiento del motor 4.1.2. Presión media efectiva. 	43 44 46 47
 Capitulo IV: Modelo de simulación de Diesel-RK 4.1. Geometría del motor 4.1.1. Rendimiento del motor 4.1.2. Presión media efectiva 4.1.3. Eficiencia volumétrica 	43 44 46 47 48
 Capitulo IV: Modelo de simulación de Diesel-RK 4.1. Geometría del motor 4.1.1. Rendimiento del motor 4.1.2. Presión media efectiva 4.1.3. Eficiencia volumétrica 4.1.4. Consumo especifico de combustible 	43 44 46 47 48 48
 Capitulo IV: Modelo de simulación de Diesel-RK 4.1. Geometría del motor 4.1.1. Rendimiento del motor 4.1.2. Presión media efectiva 4.1.3. Eficiencia volumétrica 4.1.4. Consumo especifico de combustible 4.2. Balance de masa y energía en sistemas de combustión 	43 44 46 47 48 48 48 49
 Capitulo IV: Modelo de simulación de Diesel-RK 4.1. Geometría del motor 4.1.1. Rendimiento del motor 4.1.2. Presión media efectiva 4.1.3. Eficiencia volumétrica 4.1.4. Consumo especifico de combustible 4.2. Balance de masa y energía en sistemas de combustión 4.2.1. Conservación de masa 	43 44 46 47 48 48 48 49 50
 Capitulo IV: Modelo de simulación de Diesel-RK 4.1. Geometría del motor 4.1.1. Rendimiento del motor 4.1.2. Presión media efectiva 4.1.3. Eficiencia volumétrica 4.1.4. Consumo especifico de combustible 4.2. Balance de masa y energía en sistemas de combustión 4.2.1. Conservación de masa 4.2.2. Conservación de especies 	43 44 46 47 48 48 48 49 50 50
 Capitulo IV: Modelo de simulación de Diesel-RK 4.1. Geometría del motor 4.1.1. Rendimiento del motor 4.1.2. Presión media efectiva 4.1.3. Eficiencia volumétrica 4.1.4. Consumo especifico de combustible 4.2. Balance de masa y energía en sistemas de combustión 4.2.1. Conservación de masa 4.2.2. Conservación de especies 4.2.3. Conservación de energía 	43 44 46 46 47 48 48 48 49 50 50 51
 Capitulo IV: Modelo de simulación de Diesel-RK 4.1. Geometría del motor 4.1.1. Rendimiento del motor 4.1.2. Presión media efectiva 4.1.3. Eficiencia volumétrica 4.1.4. Consumo especifico de combustible 4.2. Balance de masa y energía en sistemas de combustión 4.2.1. Conservación de masa 4.2.2. Conservación de especies 4.2.3. Conservación de energía 4.3. Modelo de fricción 	43 44 46 46 47 48 48 48 49 50 50 51 52
 Capitulo IV: Modelo de simulación de Diesel-RK 4.1. Geometría del motor 4.1.1. Rendimiento del motor 4.1.2. Presión media efectiva 4.1.3. Eficiencia volumétrica 4.1.4. Consumo especifico de combustible 4.2. Balance de masa y energía en sistemas de combustión 4.2.1. Conservación de masa 4.2.2. Conservación de especies 4.2.3. Conservación de energía 4.3.1. Modelo de fricción 4.3.1. Modelo de fricción de McAulay 	43 44 46 46 47 48 48 49 50 50 51 52 52
 Capitulo IV: Modelo de simulación de Diesel-RK 4.1. Geometría del motor 4.1.1. Rendimiento del motor 4.1.2. Presión media efectiva 4.1.3. Eficiencia volumétrica 4.1.4. Consumo especifico de combustible 4.2. Balance de masa y energía en sistemas de combustión 4.2.1. Conservación de masa 4.2.2. Conservación de especies 4.2.3. Conservación de energía 4.3.1. Modelo de fricción 4.3.1. Modelo de fricción de McAulay 4.3.2. Modelo de fricción de Chen y Flynn 	43 44 46 46 47 48 48 49 50 50 50 51 52 52
 Capitulo IV: Modelo de simulación de Diesel-RK 4.1. Geometría del motor 4.1.1. Rendimiento del motor 4.1.2. Presión media efectiva 4.1.3. Eficiencia volumétrica 4.1.4. Consumo especifico de combustible 4.2. Balance de masa y energía en sistemas de combustión 4.2.1. Conservación de masa 4.2.2. Conservación de especies 4.2.3. Conservación de energía 4.3.1. Modelo de fricción 4.3.2. Modelo de fricción de Chen y Flynn 4.3.3. Modelo de fricción de Diesel-RK 	43 44 46 46 47 48 48 49 50 50 50 51 52 52 52 52
 Capitulo IV: Modelo de simulación de Diesel-RK 4.1. Geometría del motor	43 44 46 47 48 48 49 50 50 50 51 52 52 52 52 52 52

4.6. Formación de hollín y partículas	. 60
4.7. Modelo de combustión de pulverización de combustible diésel	. 61

Capítulo V: Aprendizaje del software "Diesel-RK"	66
5.1. Simulación del motor SI	67
5.1.1. Apertura del software e introducción de datos del motor	67
5.1.2. Corrida de la simulación del motor SI	73
5.1.3. Resultados del motor SI	75
5.1.4. Diagramas del motor SI	78
5.2. Simulación del motor CI	83
5.2.1. Simulación y resultados del motor CI	85
5.2.2. Diagramas del motor CI	88
5.2.3. Simulación de inyección del motor CI	90
5.3. Comparación de emisiones contaminantes de los motores SI y CI	92
Capítulo VI Desarrollo de la metodología	94
6.1. Estructura de la metodología	95
6.2. Recopilación de información de los motores (SI, CI y HCCI), y simulaci con combustibles fósiles	ión 95
6.2.1. Información para el análisis de un motor de combustión interna	95
6.3. Simulación de los motores con combustibles fósiles	96
6.4. Simulación de los motores (SI, CI y HCCI) con mezclas de combustible fósil con bio-combustibles	s 97
6.5. Propiedades del combustible (mezclas)	97
6.5.1. Fracciones másicas	97
6.5.2. Peso molecular	98
6.5.3. Poder calorífico	98
6.5.4. Propiedades de la mezcla de 50% etanol y 50% metanol	98
Capítulo VII Aplicación de la metodología	100
7.1. Descripción del caso de estudio	101
7.2. Recopilación de información de los motores (SI, CI y HCCI), y simulacio con combustibles fósiles	ón 101
7.2.1. Motor SI	101

7.2.2. Motor CI	103
7.2.3. Motor HCCI	105
7.3. Simulación de los motores (SI, CI y HCCI) con mezclas de combustible fósil con bio-combustibles	es 107
7.3.1. Simulación del motor SI con mezclas	107
7.3.2. Simulación del motor CI con mezclas	111
7.3.3. Simulación del motor HCCI con mezclas	116
Conclusiones	120
Referencias	121
Apéndice A: Tablas termodinámicas	126

Índice de Figuras.

Figura 1.1: Ciclo neutro del bióxido de carbono (CO ₂)4
Figura 2.1: Proceso de combustión dentro de un motor HCCI
Figura 2.2: Diagrama Conceptual de motores de combustión interna en un mapa phi-Temperatura9
Figura 2.3: Nomenclatura para motores alternativos de pistón-cilindro
Figura 2.4: Diagrama de presión-volumen para un motor de combustión interna alternativo
Figura 2.5 Diagramas p – V y T – s del ciclo Otto estándar de aire
Figura 2.6 Ciclo Otto y ciclo del motor en diagrama p – V 16
Figura 2.7 Eficiencia térmica del ciclo Otto aire estándar frío, k=1.4
Figura 2.8: Diagramas p-V y T-s del motor SI con el método de tablas del aire 28
Figura 2.9: Diagramas p-V y T-s del motor SI con el método de gases ideales. 31
Figura 2.10: Diagramas p–V y T–s del ciclo diésel de aire estándar
Figura 2.11: Eficiencia térmica del aire frío estándar ciclo diésel, k 1.4
Figura 4.1: Geometría del motor 45
Figura 4.2: Velocidad inicial de formación de NO, fracción de masa por segundo (para [NO] / [NO], <1), en función de la temperatura para diferentes proporciones de equivalencia (ϕ) y una presión de 15 atm
Figura 4.3: (a) simplifica el rociado y las variaciones de los parámetros de evolución del rociado I, I_m, U y U_m como funciones del tiempo para un motor diésel de velocidad media (b)
Figura 4.4: Variación de D_s en función del diámetro de la boquilla d_n 64
Figura 4.5: Forma del rocío de combustible y el flujo cercano a la pared en la cámara de combustión del flujo de aire con turbulencia
Figura 5.1: Ventana de inicio del software68
Figura 5.2: Selección del tipo de motor y tipo de encendido
Figura 5.3: Diseño del motor y tipo de enfriamiento
Figura 5.4: Valores internos del motor y relación de compresión70
Figura 5.5: Parámetros del medio ambiente y aplicación del motor71
Figura 5.6: súper-cargado o turbo-cargado71
Figura 5.7: Ventana principal del software72
Figura 5.8. Modo de operación del motor SI

Figura 5.9: Empezando la simulación de motor SI, el software cuenta con tres tipos de simulación (ICE simulation, Scanning, Optimizing)	. 73
Figura 5.10: Corriendo la simulación	. 74
Figura 5.11: Simulación realizada	. 74
Figura 5.12: Problemas en la simulación	. 75
Figura 5.13: Ventana para ver diagramas 1D	. 78
Figura 5.14: Cantidad de diagramas posibles de mostrar, el uso de esto dependerá del usuario	. 78
Figura 5.15: Zonas de diagramas 1D	. 79
Figura 5.16: In-cylinder Parameters	. 79
Figura 5.17: Cómo dibujar un diagrama 1D	. 80
Figura 5.18: Cambiando el argumento en el eje X	. 80
Figura 5.19 Diagrama p-V del motor SI a 5600 rpm, por Diesel-RK	81
Figura 5.20. Diagrama p-V del motor SI a 5600 rpm, por OriginPro	. 81
Figura 5.21. Corriendo la simulación a 5600 rpm y 2800 rpm	82
Figura 5.22. Diagrama de potencia del motor a 2800 y 5600 rpm	82
Figura 5.23. Diagrama del torque del motor a 2800 y 5600 rpm	. 83
Figura 5.24. Modo de operación del motor CI	. 84
Figura 5.25. Diagrama p-V del motor CI, por Diesel-RK	. 88
Figura 5.26 Diagrama p-V del motor CI, por OriginPro 8	. 88
Figura 5.27. Diagrama de potencia del motor a 1500 y 2050 rpm	. 89
Figura 5.28. Diagrama del torque del motor a 1500 y 2050 rpm	. 89
Figura 5.29. Hacer visualización de inyección	90
Figura 5.30. Ventana de visualización de inyección	90
Figura 5.31. Visualización de inyección del motor CI	91
Figura 6.1: Diagrama de bloques de la metodología	95
Figura 7.1. Diagrama p-V del motor SI	102
Figura 7.2. Diagrama p-V del motor CI	104
Figura 7.3: Secuencia de inyección y combustión en la cámara de combustión del motor CI	104
Figura 7.4. Potencia del motor HCCI a diferentes revoluciones (rpm) usando diésel como combustible	106
Figura 7.5: Potencia del motor SI con respecto a la mezcla utilizada	108
Figura 7.6: Torque del motor SI con respecto a la mezcla utilizada	108

Figura 7.7: Temperatura de combustión del motor SI con respecto a la mezcla utilizada109
Figura 7.8: Presión media efectiva (bmep y imep) del motor SI con respecto a la mezcla utilizada109
Figura 7.9: Consumo específico del combustible y la masa de combustible por ciclo del motor SI con respecto a la mezcla utilizada110
Figura 7.10: Los óxidos nítricos del motor SI con respecto a la mezcla utilizada
Figura 7.11: Eficiencia termodinámica del motor SI con respecto a la mezcla utilizada111
Figura 7.12: Potencia indicada del motor CI con respecto a la mezcla utilizada
Figura 7.13: Torque indicada del motor CI con respecto a la mezcla utilizada113
Figura 7.14: Temperatura de combustión del motor CI con respecto a la mezcla utilizada113
Figura 7.15: Presión media efectiva (bmep y imep) del motor CI con respecto a la mezcla utilizada114
Figura 7.16: Consumo específico del combustible y la masa de combustible por ciclo del motor CI con respecto a la mezcla utilizada114
Figura 7.17: Los óxidos nítricos y dióxido de carbono del motor CI con respecto a la mezcla utilizada115
Figura 7.18: Eficiencia termodinámica del motor CI con respecto a la mezcla utilizada115
Figura 7.19: Potencia del motor HCCI con respecto a la mezcla utilizada116
Figura 7.20: Torque del motor HCCI con respecto a la mezcla utilizada117
Figura 7.21: Temperatura de combustión del motor HCCI con respecto a la mezcla utilizada117
Figura 7.22: Consumo específico del combustible y la masa de combustible por ciclo del motor HCCI con respecto a la mezcla utilizada118
Figura 7.23: Óxidos nítricos y dióxido de carbono del motor HCCI con respecto a la mezcla utilizada118
Figura 7.24: Eficiencia termodinámica del motor HCCI con respecto a la mezcla utilizada119

Índice de Tablas.

Tabla 2.1 Comparación de los modos de combustión tradicionales concombustión HCCI10
Tabla 2.2: Especificaciones del motor SI del manual de fabricante
Tabla 2.3: Energía interna u_1 y volumen relativo v_{r1} del estado 124
Tabla 2.4 Interpolación para determinar T_2 y u_2 del estado 224
Tabla 2.5 Procedimiento iterativo para determinar la temperatura de combustión
Tabla 2.6: Energía interna u_3 y volumen relativo v_{r3} del estado 326
Tabla 2.7 Interpolación para determinar T_4 y u_4 del estado 425
Tabla 5.1 Especificaciones del motor Chevy 1.6L
Tabla 5.2 Parámetros internos del motor SI 76
Tabla 5.3 Especificaciones del motor Jetta TDI 1.9L 83
Tabla 5.4 Parámetros internos del motor CI 85
Tabla 5.5 Descripción de las curvas de asignación de combustible
Tabla 5.6 Descripción de las curvas de inyección y relación de calor 92
Tabla 5.7 Emisiones contaminantes de los motores SI y CI
Tabla 6.1 Masa molar de las especies y peso molecular del combustible(mezcla)
Tabla 6.2 Fracciones másicas del combustible (mezcla)
Tabla. 7.1 Especificaciones del motor SI 102
Tabla 7.2 Resultados del motor SI usando gasolina como combustible102
Tabla. 7.3. Especificaciones del motor CI 103
Tabla 7.4. Resultados del motor CI usando Diesel como combustible103
Tabla 7.5. Especificaciones del motor HCCI105
Tabla 7.6 Resultados del motor HCCI usando Diesel como combustible106
Tabla 7.7: Fracciones másicas, masa molecular (M) y poder calorífico inferior (LHV) para diferentes mezclas de gasolina (G) con, metanol (M), Etanol (E) y Dimetil Eter (DME)107
Tabla 7.8: Fracciones másicas, masa molecular (M) y poder calorífico inferior (LHV) para diferentes mezclas de diésel (G) con, metanol (M), Etanol (E) y Dimetil Eter (DME)112
Tabla 7.9 Comparación de algunas mezclas con combustibles fósiles, con los resultados obtenidos de los motores (SI, CI y HCCI

Dedicatoria

A mi pareja por motivarme para estudiar un posgrado, le agradezco por el apoyo para poder permitirme realizar esta investigación ya que ella contribuyo con información para el desarrollo del trabajo, de igual manera le agradezco por acompañarme en todas las noches que estuve trabajando en las simulaciones de los motores de combustión interna.

A mis padres por el apoyo que siempre me han brindado toda la vida, a mi padre por todo lo que me ha enseñado de motores de combustión interna, lo cual aplique para esta investigación, a mi madre por los consejos y por guiarme siempre por el camino correcto.

Agradecimientos

Al **Consejo Nacional de Ciencia y Tecnología (CONACYT)**, por el apoyo económico recibido durante mis estudios de Maestría, haciendo posible el desarrollo de este trabajo.

Al **Tecnológico Nacional de México campus Veracruz** por la excelente calidad educativa y los magníficos profesores con los que cuenta para su área de posgrados, gracias por permitirme el uso de las instalaciones para el desarrollo del proyecto.

Al **Dr. Mario Diaz González** por aceptar ser el director de mi proyecto, confiar en mí, paciencia y disposición, por ser un excelente profesor, y una magnifica persona.

Al **Dr. Guillermo Efrén Ovando Chacón y Dr. Abelardo Rodríguez León** por brindarme apoyo para el desarrollo del proyecto, por la disposición y por ser un ejemplo como personas y profesores.

Al **Dr. Juan Carlos Prince Avelino** por ser un gran apoyo en el desarrollo de la tesis de mi proyecto, por brindarme su conocimiento, por toda la disposición, paciencia, por ser un excelente profesor, mentor y una magnifica persona, por ser siempre un ejemplo a seguir y no desistir a pesar de los inconvenientes que se presentaran.

AL profesor **Andrey Kuleshov y a su grupo de apoyo**, por permitir utilizar su software Diesel-RK, el cual es una gran herramienta para el estudio de motores de combustión interna.

Resumen

En el presente estudio se simularon motores de combustión interna, con diferentes tipos de encendido, como el encendido por chispa (SI), encendido por compresión (CI) y encendido por combustión a baja temperatura (LTC), por ejemplo el encendido por compresión de carga homogénea (HCCI). Los motores SI y CI son motores reales en el mercado automotriz, mientras que el motor HCCI es un prototipo estudiado por diversos investigadores.

En el segundo capítulo de este trabajo de investigación se definirán conceptos básicos del funcionamiento de los motores de combustión interna, así como el cálculo de los ciclos termodinámicos simples (Ciclo Otto para el SI y ciclo Diesel para CI), ésto con la finalidad de comparar resultados con un software especializado en motores de combustión interna, conocido como Diesel-RK el cual se basa en la primera ley de la termodinámica, definido en el capítulo 4.

Los motores SI y CI se simularon con su combustible fósil correspondiente para el aprendizaje y explicación de Diesel-RK lo que se muestra en el capítulo 5; posteriormente los motores SI y CI fueron simulados utilizando mezclas de combustible fósil (gasolina o diésel) con bio-combustibles (Etanol, Metanol o Dimetil-Eter). La eficiencia energética, potencia, torque y emisiones contaminantes de cada mezcla son comparados con los resultados del combustible 100% fósil correspondiente. De igual manera el motor tipo HCCI se simuló en dos partes, primero usando combustibles fósiles puros (gasolina o diésel), para analizar su eficiencia energética, potencia, torque y sus emisiones contaminantes, finalizando con la simulación del motor tipo HCCI utilizando mezclas de combustibles fósiles con bio-combustibles (Etanol, Metanol y Dimetil-Eter), y así poder comparar resultados.

Los resultados de las simulaciones muestran que el uso de biocombustibles no afecta la eficiencia energética, potencia ni torque, sin embargo, reduce las emisiones contaminantes. El mezclar combustibles fósiles con biocombustibles en los motores SI, hace que la temperatura de combustión disminuya, esto beneficia en estos motores, ya que son conocidos por ser de alta temperatura y alto nivel de NOx, por lo que, al disminuir la temperatura de combustión, el NOx disminuyó hasta un 13.5% en el motor SI de este trabajo.

El consumo específico del combustible (SFC), tiende a incrementar conforme se sustituye el combustible fósil por un biocombustible, esto se debe a que el poder calorífico de los biocombustibles es inferior al de los combustibles fósiles; en este trabajo el SFC aumenta un 12.9, 5 y 2.5% en los tres tipos de encendido SI, CI y HCCI respectivamente.

Abstract

In the present study, internal combustion engines were simulated, with different types of ignition, such as spark ignition (SI), compression ignition (CI) and low temperature combustion ignition (LTC), for example homogeneous charge compression ignition (HCCI). The SI and CI engines are real engines in the automotive market, while the HCCI engine is a prototype studied by various researchers.

In the second chapter of this research work, basic concepts of the operation of internal combustion engines will be defined, as well as the calculation of simple thermodynamic cycles (Otto cycle for SI and Diesel cycle for CI), this in order to compare results with a specialized software for internal combustion engines, known as Diesel-RK which is based on the first law of thermodynamics, defined in chapter 4.

The SI and CI engines were simulated with their corresponding fossil fuel for the learning and explanation of Diesel-RK, which is shown in chapter 5; subsequently the SI and CI engines were simulated using mixtures of fossil fuel (gasoline or diesel) with biofuels (Ethanol, Methanol or Dimethyl-Ether). The energy efficiency, power, torque and polluting emissions of each mixture are compared with the results of the corresponding 100% fossil fuel. In the same way, the HCCI type engine was simulated in two parts, first using pure fossil fuels (gasoline or diesel), to analyze its energy efficiency, power, torque and its polluting emissions, ending with the simulation of the HCCI type engine using mixtures of fossil fuels with bio-fuels (Ethanol, Methanol and Dimethyl-Ether), and thus be able to compare results.

The results of the simulations show that the use of biofuels does not affect energy efficiency, power or torque, however, it reduces polluting emissions. Mixing fossil fuels with biofuels in SI engines causes the combustion temperature to decrease, this benefits these engines, since they are known to be of high temperature and high NOx level, therefore, by decreasing the combustion temperature, NOx decreased as much as 13.5% in the SI engine of this job.

Specific fuel consumption (SFC) tends to increase as the fossil fuel is replaced by a biofuel, this is because the heating value of biofuels is lower than that of fossil fuels; in this work, the SFC increases 12.9, 5 and 2.5% in the three types of ignition SI, CI and HCCI respectively.

Introducción

Los motores de combustión interna (internal combustion engine, por sus siglas en inglés, ICE) son las principales fuentes de energía en vehículos de transporte, barcos marinos, equipos de construcción y maquinarias agrícolas, entre otros (Reitz, 2013). Estos motores consumen grandes cantidades de combustibles fósiles para producir energía y emiten gases venenosos o dañinos, que incluyen monóxido de carbono (CO), hidrocarburos no quemados (HC), óxidos de nitrógeno (NOx), partículas de hollín (PM) y dióxido de carbono (CO₂).

En las últimas dos décadas, investigaciones a nivel mundial en las industrias del motor y del automóvil se han dedicado a encontrar una mayor eficiencia del combustible y menores emisiones, así como el desarrollo de combustibles alternativos renovables debido a la cantidad finita de combustibles fósiles (Prince, 2018-2).

Es por eso que la investigación de motores abarca tanto motores de encendido por chispa (SI), encendido por compresión (CI) y encendido por combustión a baja temperatura (LTC). Incluso, se han realizado mejoras en la eficiencia energética, que tienen un gran impacto positivo en la economía y la contaminación (Reitz, 2013). Por lo cual las industrias del motor y del automóvil se han dedicado a encontrar una mayor eficiencia de la combustión y menores emisiones, así como el desarrollo de combustibles alternativos renovables (bio-combustibles) (Bergthorson et al 2015).

Los combustibles fósiles son cuatro: petróleo, carbón, gas natural y gas licuado del petróleo. Se han formado a partir de la acumulación de grandes cantidades de restos orgánicos provenientes de plantas y de animales. Al no ser energía renovable, no se consideran como energía de la biomasa.

Los biocombustibles de primera generación se producen a partir de aceites o azúcares comestibles provenientes de plantas como maíz, caña de azúcar, girasol o soja. Los de segunda generación se obtienen con materias primas no aprovechables para alimentación humana, como residuos forestales y agrícolas, que tienen elevado contenido de celulosa y lignina, principales componentes de las paredes celulares de las plantas. Los de tercera generación provienen de organismos que pueden producir su propio alimento a partir de energía solar y CO₂, entre ellos algas, que se pueden cultivar en reactores fotoquímicos o en piletones al aire libre (*Ramos,* 2016).

Los bio-combustibles de primera generación pueden generan un ciclo neutro del CO_2 a diferencia de los combustibles fósiles tradicionales (gasolina y diésel) que no generan un ciclo neutro del CO_2 . Estos bio-combustibles compiten con la producción de alimentos, lo que tiende a incrementar el precio de los mismos. Los biocombustibles de segunda y tercera generación también ofrecen un ciclo neutro de CO_2 sin el inconveniente de la primera generación, es por eso que en esta

investigación se van a utilizar los biocombustibles de segunda y tercera generación (Prince, 2018-3).

Los motores combustión a baja temperatura (LTC) funcionan con poco combustible, lo que produce relaciones de calor específicas más altas y, por lo tanto, una mayor cantidad de trabajo (Reitz, 2013). Entre los motores LTC, se encuentra el motor de ignición por compresión de carga homogénea (HCCI, por sus siglas en inglés: Homogenoeus Charge Compression Ignition) (Bergthorson *2015).* El concepto inicial de la combustión HCCI se basa en una combinación de las ventajas de los motores de encendido por chispa (SI) y encendido por compresión (CI), evitando al mismo tiempo sus desventajas (Prince, 2018-2).

Se han realizado diversas investigaciones en motores de combustión interna anteriormente mencionados (SI, CI, HCCI) aplicando mezclas de biocombustibles con combustibles fósiles. El etanol se ha utilizado como un aditivo de la gasolina para mejorar el octanaje en los motores (SI). El etanol aumenta de forma sinérgica el octanaje de una mezcla con iso-octano, de modo que el índice de octano de una mezcla con 20%(etanol) a 80%(octano) puede exceder al del etanol puro (Foong, 2014). Se han utilizado mezclas de etanol y diésel, por lo general solo hasta un máximo del 15% debido a problemas de solubilidad a bajas temperaturas, y en general muestran reducciones en las emisiones de óxido de azufre y hollín, sin cambios en emisiones de NOx y CO, y aumentos en las emisiones de hidrocarburos no quemados (Hansen, 2005).

Capítulo I: Marco metodológico.

1.1. Problemática

En diversas partes del mundo se están realizando análisis en ICE, entre las más destacadas se encuentra el centro de investigación ERC (Engine Research Center, University of Wisconsin-Madison, USA), donde sus actividades de investigación incluyen diversas formas de combustión. Muchas investigaciones recientes en el ERC y en otros lugares se han centrado en mejorar la comprensión de la ignición. La compresión depende en gran medida de la composición química del combustible. Dicha mezcla elaborada correctamente mejora la eficiencia energética de la combustión en la ignición por chispa y en motores de encendido por compresión (Reitz, 2013).

Se desea analizar diversos modelos, para comprobar la eficiencia energética, potencia, torque y las emisiones producidas por los motores de combustión interna (IC) conocidos (gasolina y diésel), de igual manera con los motores de carga homogénea de encendido por compresión (HCCI). Para ello se realizarán simulaciones en el software Diesel-RK, el cual nos permitirá comparar la eficiencia energética, potencia, torque y emisiones contaminantes de los motores utilizando solo hidrocarburos (gasolina y diésel). De igual manera realizar las mismas simulaciones con mezclas de combustibles fósiles con bio-combustibles. Estas simulaciones se realizan para verificar si se logra obtener un beneficio al utilizar mezclas de bio-combustibles con combustibles fósiles en los motores de combustibles fósil a bio-combustibles pasa por un proceso más suave en el cual se pueda ir aprovechando la infraestructura de motores que existen, y a su vez reduciendo el consumo de combustibles fósiles para aumentar el consumo de bio-combustibles.

La versatilidad del simulador computacional para los motores combustión interna (como por ejemplo el denominado Diesel-RK) permite realizar una serie de simulaciones, donde se pueden modificar los parámetros del diseño del modelo, por ello la intensión de este estudio es analizar sistemas de combustión interna.

1.2.Objetivos

1.2.1. Objetivo general

Caracterizar mediante un simulador computacional la combustión de mezclas de combustibles fósiles con bio-combustibles (energías renovables), en diferentes sistemas de combustión interna, estudiando la eficiencia energética, potencia, torque y generación de contaminantes.

1.2.2. Objetivos específicos

- Modelar y simular en el software Diesel-RK, motores de encendido por chispa (SI) y encendido por compresión (CI), para el análisis de eficiencia energética, potencia, torque y generación de contaminantes usando combustibles fósiles (gasolina (SI) o diésel (CI)).
- Modelar y simular en el software Diesel-RK, motores de encendido por chispa (SI) y encendido por compresión (CI), para el análisis de eficiencia energética, potencia, torque y generación de contaminantes usando mezclas de combustibles fósiles con bio-combustibles (Etanol, Metanol y Dimetil Eter).
- 3. Modelar y simular en el software Diesel-RK, motores tipo HCCI, para el análisis de eficiencia energética, potencia, torque y generación de contaminantes usando combustibles fósiles (gasolina o Diesel).
- 4. Modelar y simular en el software Diesel-RK, motores tipo HCCI, para el análisis de eficiencia energética, potencia, torque y generación de contaminantes usando mezclas de combustibles fósiles con bio-combustibles (Etanol, Metanol y Dimetil Eter).

1.3. Justificación

La investigación de ICE es un tema de gran interés tecnológico. Por lo general existen dos vertientes principales al realizar investigaciones de motores, la eficiencia energética y las emisiones contaminantes. Estos dos temas son de suma importancia debido a las repercusiones energéticas y ambientales.

El estudio se realizará con el fin de comprobar el funcionamiento de diversos sistemas de combustión interna, así como las emisiones contaminantes. Este funcionamiento es importante debido al aumento en la demanda de petróleo, que aunado a la preocupación de disminuir los efectos de los niveles de dióxido de carbono atmosférico (CO₂). Esto despierta un creciente interés en el uso de combustibles sustentables para reducir estas emisiones (Fargione, 2008). Específicamente estos bio-combustibles de segunda generación son producidos a partir de bio-masa (madera, residuos vegetales y plantas no comestibles), qué ofrecen un equilibrio de CO₂ aún más favorable, (Prince, 2018-1), ver figura 1.1.

Figura 1.1 Ciclo neutro del bióxido de carbono (CO₂): El CO₂, producido durante la combustión de un bio-combustible, es absorbido en la fotosíntesis de la bio-masa que produce al bio-combustible (Prince, 2018-1).

En la actualidad existen nuevos conceptos enfocados en la combustión, tales como los motores de ignición por compresión de carga homogénea (HCCI), que se han propuesto para lograr una combustión limpia y de alta eficiencia, (Prince 2018-3) de igual manera utilizando bio-combustibles.

Entre los bio-combustibles de mayor interés, se encuentra el etanol y n-butanol, ambos pueden ser producidos a partir de bio-masa y recientemente han recibido interés como combustibles alternativos para uso en motores de automóviles (Treviño, 2018).

La utilización de mezclas de combustibles fósil con bio-combustibles ayudará a una transición más paulatina a motores libres de CO₂.

1.4. Hipótesis

Es posible encontrar una mezcla de bio-combustible con combustible fósil para utilizarla en un simulador computacional, simulando un motor de combustión interna, para obtener una eficiencia energética, potencia y torque igual o por encima de lo estándar a la de un motor con puro combustible fósil y principalmente reducir los gases contaminantes. Esto con la finalidad de demostrar la efectividad de usar bio-combustibles.

Capítulo II: Marco conceptual.

En este apartado se dan a conocer conceptos, así como ejemplos de cálculos de combustión interna de manera manual que podrán ser corroborados con el software Diesel-RK, en el capítulo 5.

2.1. Combustión

La combustión es un proceso de oxidación y generalmente es exotérmica (es decir, libera la energía química (o enlace) contenida en un combustible como energía térmica). Los procesos de combustión más comunes que se encuentran en la ingeniería son aquellos que convierten un combustible hidrocarburo (que puede variar desde hidrógeno puro hasta carbono casi puro, por ejemplo, carbón) en dióxido de carbono y agua (productos). La mayoría de los procesos de combustión requieren al menos dos componentes en los reactivos, generalmente un combustible y un oxidante (generalmente aire, aunque se pueden usar otros oxidantes en circunstancias especiales) (Glassman, 1986). Hay tres parámetros que tienen una fuerte influencia en la combustión: temperatura, turbulencia y tiempo. Al diseñar sistemas de combustión, se debe prestar atención a la optimización de estos parámetros para garantizar que se logren los resultados deseados. En los motores alternativos, el tiempo disponible para la combustión está limitado por el ciclo de funcionamiento del motor y a menudo, es necesario aumentar la turbulencia para contrarrestar este efecto (Glassman, 1986).

En una clasificación general de los fenómenos de combustión se tienen: llamas, ignición y explosiones.

2.2. Llamas

Una llama es una propagación auto-sostenida en una combustión localizada en una zona de velocidad subsónica (Fargione et al. 2008). Es la región donde se produce la descomposición inicial de las moléculas de combustible. Hay dos tipos diferentes de llamas: llamas premezcladas y llamas de difusión (Glassman, 1986).

2.2.1. Llamas premezcladas

Las llamas premezcladas se producen en cualquier mezcla homogénea donde el combustible y el oxidante se mezclan antes de la reacción. La reacción exotérmica es rápida, a presión constante (Glassman, 1986). Las llamas premezcladas laminares tienen una velocidad de combustión única para una mezcla aire combustible y pueden progresar como procesos de deflagración o detonación. (Turns, 2000). Este tipo de combustión se produce en motores a gasolina.

2.2.2. Llamas de difusión

En estas llamas, el combustible y el oxidante se separan, la reacción es controlada por la velocidad a la que el combustible y el aire reaccionan mientras se mezclan. (Turns, 2000). Este tipo de combustión se produce en motores diésel, cuando el combustible inyectado tiene que mezclarse con el aire en la cámara antes de que se produzca la combustión (Glassman, 1986).

2.3. Ignición

Reacción entre sustancias que permite que una mezcla empiece a arder al acercarse a una fuente de calor. La ignición ocurre cuando el calor que emite una reacción llega a ser suficiente como para sostener la reacción química. (Glassman, 1986).

El proceso de ignición (encendido) es extremadamente importante en el motor de encendido por chispa, ya que tiene que ser iniciado por una fuente externa de energía, generalmente una bujía. Se puede demostrar que la energía mínima para el encendido, se basa en el suministro de energía, en el volumen de la mezcla en la región de la brecha de la chispa. En otras palabras, se requiere mucha más energía cuando la velocidad de la llama laminar es baja. (Glassman, 1986).

2.3.1. Encendido por chispa (SI) en un motor de combustión interna

En un motor de encendido por chispa con inyección de combustible, la gasolina se inyecta dentro del colector de admisión (puerto) para entrar por la válvula de admisión, de manera que el combustible se vaporice y se mezcle con el aire dentro del cilindro del motor (Zhao, 1999). Una chispa enciende la mezcla en el momento deseado dentro del ciclo de movimiento del pistón, y llama se convierte en una llama premezclada turbulenta a alta temperatura que se propaga a través de la carga del motor de aire-combustible bien mezclada.

2.3.2. Encendido por compresión (CI) en un motor de combustión interna

En un motor de encendido por compresión, el diésel se inyecta después de que el aire se comprime a altas temperaturas y presiones, por lo que no existe riesgo de que el motor se golpee debido a la ignición automática. Esto permite que estos motores empleen relaciones de compresión más altas, que conducen a una mayor eficiencia que los motores de encendido por chispa (gasolina).

El combustible se rocía en el cilindro desde múltiples inyectores, el combustible debe vaporizarse y mezclarse eficazmente con el aire antes de quemarse para reducir las emisiones de hollín, pero también debe quemarse lo suficientemente rápido para evitar las emisiones de hidrocarburos sin quemar. Los motores Cl normalmente producen altos niveles de emisiones de hollín (PM) debido a las zonas de combustión ricas en combustible que resultan de las llamas no premezcladas y parcialmente premezcladas que se producen en la combustión con rociado de diésel (Tree, 2007).

2.3.2. Encendido por compresión de carga homogénea (HCCI)

Estos motores también conocidos como autoignición controlada (CAI, por sus siglas en inglés, controlled auto ignition), es un modo de combustión diferente del modo de encendido convencional. La combustión en motores HCCI se caracteriza por la combustión espontánea por autoignición de una mezcla diluida. Combina las características de la mezcla premezclada de motores SI convencionales y el encendido por compresión de los motores CI convencionales. (Prince, 2018-3). Además, los modos de combustión de baja temperatura se presentan como posibilidades para el uso en motores de encendido por compresión, ver Figura 2.1.

Figura 2.1 Proceso de combustión dentro de un motor HCCI (Prince, 2018-3).

Estos motores utilizan combustibles flexibles y pueden funcionar con bajo grado de combustible siempre y cuando se llegue al punto de ignición del combustible, lográndose temperaturas más bajas para disminuir la generación de contaminantes de óxidos de nitrógeno (NOx), ver Figura 2.2 (Bergthorson, 2015, Prince, 2018-3).

Figura 2.2 Diagrama Conceptual de motores de combustión interna en un mapa phi-Temperatura. La combustión a baja temperatura (LTC) es de gran interés para el diseño de motores de combustión más eficientes y limpios (Prince, 2018-3).

Como se muestra en la Fig. 2.2, la combustión por chispa se produce en una región de alta temperatura cercana a una relación de equivalencia de 1, donde se produce una alta formación de NOx. La combustión del diésel comienza en relaciones de equivalencia altas donde ocurre la formación de hollín y las transiciones hacia la combustión a alta temperatura donde ocurre la formación de NOx. La combustión de HCCI se produce en proporciones de equivalencia más pobres y cuando una dilución de carga suficiente permite temperaturas más bajas, el HCCI evita las regiones de alta formación de hollín y NOx (Prince, 2018-3).

El principal objetivo de la combustión HCCI es la combinación de las ventajas de los motores SI y CI, y la prevención de desventajas (Prince, 2018-3). Un motor convencional de SI emplea un combustible que se mezcla (aire/combustible) y luego se somete a compresión, la carga del motor se controla al ajustar la mezcla y se enciende por la chispa. Eso presenta emisiones extremadamente bajas de hollín. En contraste, un motor CI tradicional emplea una mezcla heterogénea (aire/combustible). Se inyecta combustible en la cámara de combustión cerca del punto muerto superior (PMS), que luego se enciende automáticamente después de un corto tiempo de atraso. Por lo tanto, la alta relación de compresión genera una mayor eficiencia energética; sin embargo, las desventajas de este método son los altos niveles de NOx y Hollín (Bergthorson, 2015, Prince, 2018-3).

La combustión HCCI da temperaturas de combustión más bajas, lo que reduce las pérdidas de calor en las paredes del cilindro del motor y, por lo tanto, mejora la eficiencia del motor y el kilometraje del vehículo (Prince, 2018-3). Una limitación al rendimiento del motor HCCI es el hecho de que la combustión se vuelve inestable bajo condiciones de alta carga, debido a la rápida subida de la presión, que resulta en ruido del motor, golpes y daños potenciales del mismo, además que la autoignición es difícil de controlar bajo condiciones de baja carga debido a bajas concentraciones de combustible.

	Motor de gasolina inyección indirecta	Motor Diésel	Motor HCCI
Lugar de formación de la mezcla	Conducto de admisión	Cámara de combustión o en la pre-cámara	Conducto de admisión
Distribución de la mezcla en el cilindro:	Homogénea	Estratificada: rica en torno al punto de inyección, pobre en el resto de la cámara	Homogénea
Proporción de la mezcla:	Estequiométrica (φ = 1)	Pobre ($\phi < 1$)	Pobre ($\phi < 1$)
Regulación de la carga	Cantidad de mezcla (válvula de mariposa)	Cantidad de combustible	Cantidad de combustible
Tipo de Encendido	Chispa	Auto-ignición	Auto-ignición
Presión de inyección	Baja	Muy alta	Baja
Relación de compresión	Entre 8-12 a 1	Entre 17-23 a 1	Entre 20-30 a 1

Tabla 2.1 - Comparación de los modos de combustión tradicionales con combustión HCCI (Prince, 2018-3).

2.4. Combustibles para los motores de combustión interna

Según lo indicado por MacLean y Lave (2003), el uso de gasolina o diésel en un motor de combustión interna probablemente seguirá siendo el sistema de propulsión de transporte terrestre más rentable para el futuro cercano. Los combustibles líquidos siguen siendo atractivos para el transporte debido a su alta densidad energética: una cucharadita de gasolina, diésel o combustible para aviones contiene energía química equivalente a la energía cinética de un vehículo de 1000 kg que se conduce a 100 km / h (Reitz, 2013).

Los primeros desarrollos en biocombustibles para aplicaciones de transporte se basaron en los procesos bien establecidos de conversión de azúcares de plantas en etanol a través de la fermentación, y la mejora de los aceites vegetales a través de la transesterificación. El etanol es un combustible de alto octanaje compatible con la mayoría de los motores de combustión interna de encendido por chispa, siempre y cuando se mezcle con gasolina a un nivel razonable (Bergthorson, 2015). El alto nivel de interés en el etanol como biocombustible fue motivado por la aparentemente fácil fusión con la infraestructura existente y el costo relativamente bajo de producir el combustible debido a una industria de producción de alcohol existente y probado.

De manera similar, el biodiesel ganó importancia para los motores CI, debido a su relativa facilidad de fabricación. El uso de aceites vegetales como combustible de transporte fue sugerido por el visionario Rudolf Diesel en los albores de nuestra actual sociedad impulsada por motores de combustión interna (Diesel, 1912).

Como ya se vio los bio-combustibles pueden ser utilizados para motores, sin embargo, hasta el momento las pruebas se han hecho con mezclas de estos con gasolina o diésel, y a continuación se ven algunos detalles de estos.

2.4.1. Mezclas alcohol-gasolina para motores SI

El etanol se ha utilizado como un aditivo de la gasolina para mejorar el octanaje en los motores (SI). El etanol aumenta de forma sinérgica el octanaje de una mezcla con iso-octano, de modo que el índice de octano de una mezcla con 20%(etanol) a 80%(octano) puede exceder al del etanol puro, pero disminuye de manera opuesta el octanaje de una mezcla con tolueno, de manera que el efecto del etanol en un combustible de gasolina específico depende de la composición de los alcanos ramificados y los aromáticos en el combustible (Foong, 2014). Los biocombustibles oxigenados suelen ser solventes, por lo tanto, pueden ser corrosivos para el motor y los materiales de manejo de combustible, especialmente los tubos de plástico o de goma, las carcasas de la bomba y algunas piezas metálicas (Agarwal, 2007, Bergthorson, 2015). El principal problema con el uso del etanol como combustible de transporte proviene de su bajo poder calorífico; contiene solo alrededor de dos tercios de la energía de un volumen similar de gasolina u otro combustible de hidrocarburo. El mayor octanaje del etanol en comparación con la gasolina puede

permitir el uso de motores con mayor relación de compresión, lo que puede llevar a mayores eficiencias de combustible (Bergthorson, 2015).

2.4.2. Mezclas alcohol-diésel para motores CI

Los combustibles oxigenados más pequeños, como los alcoholes (por ejemplo, etanol o butanol), no son aplicables como combustibles diésel alternativos en forma pura debido a su alto índice de octano, que corresponde a un bajo índice de cetano, por lo general menos de 10. Las pobres propiedades de ignición de estos combustibles retrasan la ignición y dan como resultado mayores emisiones de hidrocarburos sin quemar (Bergthorson, 2015). Se han utilizado mezclas de etanol y diésel, por lo general solo hasta un máximo del 15% debido a problemas de solubilidad a bajas temperaturas, y en general muestran reducciones en las emisiones de óxido de azufre y hollín, sin cambios en emisiones de NOx y CO, y aumentos en las emisiones de cCO en las mezclas de etanol parcialmente premezcladas que en las de los hidrocarburos (Bergthorson, 2015).

2.4.3. N-butanol

En comparación con la gasolina, el butanol podría ahorrar entre un 39 y 56% de energía fósil, reduciendo al mismo tiempo las emisiones de gases de efecto invernadero en un 48%. El butanol tiene una relación aire-combustible muy parecido a la gasolina, lo que permite el uso de un mayor porcentaje de butanol en su mezcla con la gasolina que el etanol sin afectar el almacenamiento de combustible y la economía de combustible de los automóviles (Prince, 2018-1).

Existen diversos estudios donde se ha demostrado que una proporción errónea en el mezclado de bio-combustibles con gasolina pueden generar mayor contaminación que la gasolina convencional. Por lo que es importante establecer el rango de proporción en estas mezclas para no perjudicar eficiencias energéticas de motores de combustión interna y/o producción de contaminantes. Recientemente, el butanol ha recibido gran interés como combustible alternativo para su uso en motores de combustión interna y como posible compuesto de mezcla con gasolinas o diésel (Prince, 2018-1).

2.5. Motor de combustión de cuatro tiempos

El fluido de trabajo más disponible es el aire, este es un gas sobrecalentado en condiciones normales de funcionamiento. Esto da como resultado una serie de ciclos en los que la energía se recibe y se rechaza a temperatura variable. Estos ciclos se pueden usar para examinar el rendimiento de los motores de combustión interna (Winterbone, 2015). Existen dos tipos principales de motores, el motor de encendido por chispa (SI) y el encendido por compresión (CI). En un motor de encendido por chispa, una bujía enciende una mezcla de combustible y aire. En un motor de encendido por compresión, el aire se comprime a una presión y

temperatura lo suficientemente altas como para que la combustión ocurra espontáneamente cuando se inyecta combustible. Los motores SI tienen ventajas para aplicaciones que requieren una potencia de hasta 225 kW. Debido a que son relativamente livianos y de menor costo, los motores SI son particularmente adecuados para su uso en automóviles. Los motores CI se prefieren normalmente para aplicaciones cuando se requiere economía de combustible y cantidades relativamente grandes de potencia (camiones y autobuses pesados, locomotoras y barcos).

En la Fig. 2.3 se muestra el bosquejo de un motor de combustión interna, que consiste en un pistón que se mueve dentro de un cilindro equipado con dos válvulas (una válvula de admisión y una válvula de escape). El agujero del cilindro es su diámetro. La carrera es la distancia que el pistón se mueve en una dirección. Se dice que el pistón está en el punto muerto superior cuando se ha movido a una posición donde el volumen del cilindro es mínimo. Este volumen mínimo se conoce como el volumen libre.

Cuando el pistón se ha movido a la posición de volumen máximo del cilindro, el pistón está en el punto muerto inferior. El volumen barrido por el pistón a medida que se mueve desde el punto muerto superior a la posición del punto muerto inferior se denomina volumen de desplazamiento. La relación de compresión "r_c" se define como el volumen en el punto muerto inferior dividido por el volumen en el punto muerto superior. El movimiento alternativo del pistón se convierte en movimiento giratorio mediante un mecanismo de manivela (Moran, 2006).

Figura 2.3 Nomenclatura para motores alternativos de pistón-cilindro (Moran, 2006).

En un motor de combustión interna de cuatro tiempos, el pistón ejecuta cuatro tiempos distintos dentro del cilindro por cada dos revoluciones del cigüeñal. La Fig. 2.4 muestra un diagrama de presión-volumen (p-V) tal como se podría mostrar electrónicamente.

- 1. Con la válvula de admisión abierta, el pistón realiza una carrera de admisión para extraer una carga nueva en el cilindro. Para motores SI, la carga es una mezcla de aire/combustible. El aire solo es la carga en los motores CI.
- 2. Con ambas válvulas cerradas, el pistón sufre una carrera de compresión, elevando la temperatura y la presión de la carga. Esto requiere una entrada de trabajo del pistón al contenido del cilindro. Luego se inicia un proceso de combustión, que da como resultado una mezcla de gases a alta presión y alta temperatura. La bujía induce la combustión cerca del final de la carrera de compresión en los motores SI. En los motores CI la combustión se inicia inyectando combustible en el aire comprimido caliente, comenzando cerca del final de la carrera de la carrera de compresión y continuando a través de la primera parte de la expansión.
- Una carrera de potencia sigue a la carrera de compresión, durante la cual la mezcla de gases se expande y se trabaja en el pistón cuando regresa al punto muerto inferior.
- 4. El pistón ejecuta una carrera de escape en la que los gases quemados se purgan del cilindro a través de la válvula de escape abierta (Moran, 2006).

Figura 2.4 Diagrama de presión-volumen para un motor de combustión interna alternativo (Moran, 2006).

2.6 Ciclo Otto de aire estándar

El ciclo Otto de aire estándar se aproxima a los procesos de motores a gasolina o diésel (Winterbone, 2015) también conocido como ciclo ideal, que supone que la adición de calor ocurre instantáneamente mientras el pistón está en el punto muerto superior (Moran, 2006).

El ciclo Otto se muestra en los diagramas presión vs volumen (p-V) y temperatura vs entropía (T-s) de la Fig. 2.5. El ciclo consta de cuatro procesos internamente reversibles en serie (Moran, 2006).

- **Proceso 1–2** es una compresión isentrópica del aire a medida que el pistón se mueve desde el punto muerto inferior al punto muerto superior.
- Proceso 2–3 es una transferencia de calor de volumen constante al aire desde una fuente externa mientras el pistón está en el punto muerto superior. Este proceso está destinado a representar la ignición de la mezcla aire/combustible y la posterior combustión rápida.
- Proceso 3–4 es una expansión isentrópica (golpe de poder).
- **Proceso 4–1** completa el ciclo mediante un proceso de volumen constante en el que el calor se rechaza del aire mientras el pistón está en el punto muerto inferior.

Figura 2.5 Diagramas p-V y T-s del ciclo Otto de aire estándar.

El diagrama p-V real para un motor tiene esquinas redondeadas debido a que los procesos de combustión tienen lugar a un ritmo finito. El ciclo de Otto tiene esquinas agudas porque la "combustión" se enciende y apaga instantáneamente. Se puede ver en la Fig. 2.6 que el área del ciclo de Otto es mayor que la del ciclo real, y esto debe tenerse en cuenta al analizar los ciclos del motor: el ciclo real siempre producirá menos salida de trabajo que el ciclo de Otto (Winterbone, 2015).

Figura 2.6 Ciclo Otto y ciclo del motor en diagrama p-V (Winterbone, 2015).

El ciclo Otto estándar se compone de procesos internamente reversibles, las áreas en los diagramas T–s y p–V de la Fig. 2.5 pueden interpretarse como calor y trabajo, respectivamente. En el diagrama T–s, el área 2–3–a–b–2 representa el calor agregado por unidad de masa y el área 1–4–a–b–1 el calor rechazado por unidad de masa. En el diagrama p–V, el área 1–2–a–b–1 representa la entrada de trabajo por unidad de masa durante el proceso de compresión y el área 3–4–b–a–3 es el trabajo realizado por unidad de masa, en el proceso de expansión el área cerrada de cada figura se puede interpretar como la producción neta de trabajo, de manera equivalente, el calor neto agregado (Moran, 2006).

Un parámetro utilizado para describir el rendimiento de los motores de pistón alternativos es la presión media efectiva (*mep*). La presión media efectiva es la presión constante teórica, si actuara sobre el pistón durante la carrera de potencia, produciría el mismo trabajo neto que realmente se desarrolla en un ciclo. Para calcular la presión media efectiva se requiere el trabajo neto por ciclo y el volumen de desplazamiento como se muestra en la Ec. 2.1.

$$mep = \frac{W_{ciclo}}{V_1 - V_2} = \frac{W_{ciclo}}{V_1(1 - \frac{V_2}{V_1})}$$
(2.1)

Para dos motores de igual volumen de desplazamiento, el que tenga una presión media efectiva más alta produciría el mayor trabajo neto y, si los motores funcionan a la misma velocidad, mayor potencia.

2.6.1. El ciclo Otto aire estándar (tablas de aire)

El ciclo Otto de aire estándar consta de dos procesos, en los que hay trabajo, pero no hay transferencia de calor (procesos 1–2 y 3–4), y dos procesos en los que hay transferencia de calor, pero no hay trabajo (procesos 2–3 y 4–1). Las expresiones para estas transferencias de energía se obtienen al reducir el balance de energía del sistema cerrado (solo energía interna u), suponiendo que los cambios en la energía cinética y potencial puedan ser ignorados. Los resultados son:

$$\frac{w_{12}}{m} = u_2 - u_1 \qquad \frac{w_{34}}{m} = u_3 - u_4$$

$$\frac{Q_{23}}{m} = u_3 - u_2 \qquad \frac{Q_{41}}{m} = u_4 - u_1$$
(2.2)

En las Ecs. 2.2, se ha alejado de la convención de signos habitual para el calor y el trabajo. Por lo tanto, w_{12}/m , es un número positivo que representa la entrada de trabajo durante la compresión y Q_{41}/m es un número positivo que representa el calor rechazado en el proceso 4–1.

El trabajo neto del ciclo de aire estándar, es el trabajo de salida menos el trabajo de entrada, y se expresa como:

$$\frac{w_{ciclo}}{m} = \frac{W_{23}}{m} - \frac{w_{41}}{m} = (u_3 - u_2) - (u_4 - u_1)$$
(2.3)

La eficiencia energética es la relación entre el trabajo neto del ciclo (W_{cycle}) y el calor agregado (adición de calor).

$$\eta = \frac{(u_3 - u_2) - (u_4 - u_1)}{u_3 - u_2} = 1 - \frac{u_4 - u_1}{u_3 - u_2}$$
(2.4)

Cuando se requieren los datos de la tabla de aire, para realizar un análisis que involucra un ciclo Otto aire estándar, los valores de energía interna (*u*) específicos requeridos por las ecuaciones anteriores se puede obtener del apéndice: A Tablas termodinámicas, de la Tabla A-1 o A-2 según corresponda. Las siguientes relaciones están basadas en la función v_r , también conocida como volumen relativo, donde $v_{r1} = v_r(T_1)$, $v_{r2} = v_r(T_2)$, $v_{r3} = v_r(T_3)$, $v_{r4} = v_r(T_4)$, esto se aplica para los procesos isentrópicos 1–2 y 3–4.

$$v_{r2} = v_{r1} \left(\frac{V_2}{V_1}\right) = \frac{v_{r1}}{r}$$
(2.5)

$$v_{r4} = v_{r3} \left(\frac{V_4}{V_3} \right) = r v_{r3} \tag{2.6}$$

Donde r_c se denomina la relación de compresión, hay que tener en cuenta que $V_3 = V_2 y V_4 = V_1$, $r = \frac{V_1}{V_2} = \frac{V_4}{V_3}$.

2.6.2. Ciclo Otto estándar de aire frio (gases ideales).

Cuando el ciclo de Otto se analiza sobre una base estándar de aire frío o el uso de la ley de los gases ideales, las siguientes expresiones se basan en la ecuación $T_2/T_1 = (v_1/v_2)^{k-1}$, para los procesos isentrópicos en lugar de las Ecs. 2.5 y 2.6, respectivamente.

$$\frac{T_2}{T_1} = \left(\frac{v_1}{v_2}\right)^{k-1} = r^{k-1}$$
(2.7)

$$\frac{T_4}{T_3} = \left(\frac{\nu_3}{\nu_4}\right)^{k-1} = \frac{1}{r^{k-1}}$$
(2.8)

Donde k es la relación de calor específica, $k = \frac{c_p}{c_v}$

Las Ecs. 2.7 y 2.8 se utilizan para encontrar las temperaturas $T_2 y T_4$, ya que las temperaturas $T_1 y T_3$, corresponden a la temperatura del medio ambiente y a la temperatura combustión respectivamente. La Ec. 2.9 es conocida como le ecuación de los gases ideales, esta es la igualación de dos estados entre presión, temperatura y volumen como por ejemplo el estado 1 y 2.

$$\frac{p_{1\,V_1}}{T_1} = \frac{p_{2V_2}}{T_2} \tag{2.9}$$

El trabajo neto del ciclo de aire estándar de aire frio, es la salida de trabajo menos la entrada de trabajo, y se expresa como:

$$w_{ciclo} = m(W_{23} - w_{41}) = m(c_{\nu}[(T_3 - T_4) - (T_2 - T_1)])$$
(2.10)

2.6.3. Efecto de la relación de compresión en el rendimiento.

Al referirnos al diagrama T–s de la Fig. 2.5, podemos concluir que la eficiencia energética del ciclo Otto aumenta a medida que aumenta la relación de compresión. Un aumento en la relación de compresión cambia el ciclo de 1-2-3-4-1 a $1-2^{2}-3^{2}-3^{2}-1$

4–1. Como la temperatura promedio de la adición de calor es mayor en el ciclo y ambos ciclos tienen el mismo proceso de rechazo de calor, el ciclo $1-2^{2}-3^{2}-4-1$ tendría la mayor eficiencia energética. El aumento en la eficiencia energética con la relación de compresión, se ve reflejado simplemente por el siguiente desarrollo sobre una base estándar de aire frío. Para C_{v} constante, la Ec. 2.3 se convierte:

$$\eta = 1 - \frac{C_{\nu(T_4 - T_1)}}{C_{\nu(T_3 - T_2)}}$$
$$\eta = 1 - \frac{T_1}{T_2} \left(\frac{\frac{T_4}{T_1} - 1}{\frac{T_3}{T_2} - 1} \right)$$

de las Ecs. 2.7 y 2.8, $\frac{T_4}{T_3} = \frac{T_3}{T_2}$, entonces

$$\eta = 1 - \frac{T_1}{T_2}$$

finalmente, introduciendo la ecuación 2.7

$$\eta = 1 - \frac{1}{r^{k-1}} \tag{2.11}$$

La Ec 2.11 indica que la eficiencia energética del ciclo Otto de aire frio, está en función de la relación de compresión y k. Esta relación se muestra en la Fig. 2.7 para "k=1.4", que representa el aire ambiente.

Figura 2.7 Eficiencia térmica del ciclo Otto aire estándar frío, k=1.4 (Moran, 2006).

2.7. Análisis de gases y cálculo de temperatura de combustión.

Cuando ocurre una reacción química, los enlaces dentro de las moléculas de los reactivos se rompen, los átomos y los electrones se reorganizan para formar productos. En las reacciones de combustión, la oxidación rápida de los elementos combustibles del combustible produce la liberación de energía a medida que se forman los productos de combustión. Los tres elementos químicos principales en los combustibles más comunes son carbono, hidrógeno y azufre. El azufre suele ser un contribuyente relativamente poco importante para la energía liberada, pero puede ser una causa importante de problemas de contaminación y corrosión. La combustión se completa cuando todo el carbono presente en el combustible se quema en dióxido de azufre y todos los demás elementos combustibles se oxidan por completo. Cuando estas condiciones no se cumplen, la combustión es incompleta (Moran, 2006).

Las reacciones químicas de combustión, suelen ser presentadas como:

Reactivos — Productos

Cuando se trata de reacciones químicas, es necesario recordar que la masa se conserva, por lo que la masa de los productos es igual a la masa de los reactivos. La masa total de cada elemento químico debe ser la misma en ambos lados de la ecuación, aunque los elementos existan en diferentes compuestos químicos en los reactivos y productos como se indica en la Ec. 2.12. Sin embargo, el número de moles de productos puede diferir del número de moles de reactivos (Moran, 2006).

$$C_a H_b + \left(a + \frac{b}{4}\right)(O_2 + 3.76N_2) \rightarrow aCO_2 + \frac{b}{2}H_2O + \left(a + \frac{b}{4}\right)3.76N_2$$
 (2.12)

Con las idealizaciones anteriores, los balances de velocidad de masa y energía para el reactor de dos entradas y salida única, se pueden usar para obtener la siguiente ecuación por mol de combustible:

$$\frac{\dot{Q}_{cv}}{\dot{n}_{F}} - \frac{\dot{Q}_{cv}}{\dot{n}_{F}} = \left[a\bar{h}_{CO_{2}} + \frac{b}{2}\bar{h}_{H_{2}O} + \left(a + \frac{b}{4}\right)3.76\bar{h}_{N_{2}}\right] - \bar{h}_{F} - \left[\left(a + \frac{b}{4}\right)\bar{h}_{O_{2}} + \left(a + \frac{b}{4}\right)3.76\bar{h}_{N_{2}}\right]$$
(2.13a)

El primer término del lado derecho de la Ec. 2.13a, es la entalpía de los productos gaseosos de combustión existentes por mol de combustible. El tercer término del lado derecho de la Ec. 2.13a, es la entalpía del aire de combustión por mol de combustible. Estas entalpías de los productos de combustión y el aire se han evaluado agregando la contribución de cada componente presente en las

respectivas mezclas de gases ideales. El símbolo \bar{h}_F denota la entalpía molar del combustible. La Ec. 2.13a se puede expresar de manera más concisa como:

$$\frac{\dot{Q}_{cv}}{\dot{n}_F} - \frac{\dot{Q}_{cv}}{\dot{n}_F} = \bar{h}_P - \bar{h}_R = \bar{h}_{RP}$$
(2.13b)

2.7.1. Sistemas de reacción

Se puede establecer un valor en la entalpía para el estudio de los sistemas de reacción, arbitrariamente se asigna cero a la entalpía de los elementos estables, en un estado llamado estado de referencia estándar, definido por una temperatura de referencia; $T_{ref} = 298.15 \text{ K} (25^{\circ}\text{C}) \text{ y } p_{ref} = 1 \text{ atm. Solo a los elementos estables se les asigna un valor de entalpía cero en el estado estándar. El término estable significa que el elemento en particular está en una forma químicamente estable. Por ejemplo, en el estado estándar, las formas estables de hidrógeno, oxígeno y nitrógeno son H2, O2 y N2 y no las monoatómicas H, O y N (Moran, 2006).$

2.7.2. Entalpia de combustión

La entalpía de combustión \bar{h}_{RP} se define como la diferencia entre la entalpía específica de los productos (\bar{h}_P) y la entalpía específica de los reactivos (\bar{h}_R) como se muestra en la Ec. 2.14, cuando se produce la combustión completa a una temperatura y presión determinadas.

$$\bar{h}_{RP} = \sum_{P} n_e \bar{h}_e - \sum_{R} n_i \bar{h}_i = \sum_{P} n_e (\bar{h}_{\dot{f}} + \Delta \bar{h})_e - \sum_{R} n_i (\bar{h}_{\dot{f}} + \Delta \bar{h})_i$$
(2.14)

Donde (*i*) denota las corrientes de combustible y aire entrantes (reactivos), y (*e*) los productos de combustión que salen (productos). Los coeficientes (n_i) y (n_e) corresponden a los coeficientes respectivos de la ecuación de reacción, estos coeficientes dan los moles de reactivos y productos por mol de combustible, respectivamente. La entalpia de productos y reactivos ($\bar{h}_e \ y \ \bar{h}_i$) se denota por la entalpia de formación (\bar{h}_f), mas el cambio de entalpia entre el estado estándar (T_{ref} y p_{ref}) y el estado de interés (diferente del estándar). Aunque la Ec. 2.14 se han desarrollado con referencia a la reacción de la Ec, 2.12, se obtendrían ecuaciones con las mismas formas generales para otras reacciones de combustión.

El valor de calentamiento de un combustible es un número positivo igual a la magnitud de la entalpía de combustión. Hay dos valores de calefacción: el poder calorífico superior (HHV, higher heating value, por sus siglas en inglés) y el poder calorífico inferior (LHV, lower heating value, por sus siglas en inglés). El mayor valor se obtiene cuando toda el agua formada por la combustión es un líquido; el valor de bajo se obtiene cuando toda el agua formada por la combustión es un vapor. El poder calorífico superior excede el poder calorífico inferior por la energía que se requeriría para vaporizar el líquido formado. Los valores para el HHV y el LHV
también dependen de si el combustible es líquido o gaseoso, los valores de HHV y LHV se pueden observar en el apéndice A, en la Tabla A-3 o A-4.

2.7.3. Temperatura de combustión

La energía liberada en la combustión se transfiere solo de dos maneras: mediante la energía que acompaña a los productos de combustión existentes y mediante la transferencia de calor al entorno. Cuanto menor es la transferencia de calor, mayor es la energía que se lleva a cabo con los productos de combustión y, por lo tanto, mayor es la temperatura de los productos. La temperatura que alcanzarían los productos, se denomina temperatura de llama adiabática o temperatura de combustión adiabática (Moran, 2006).

La temperatura de la llama adiabática se puede determinar mediante el uso de los principios de conservación de masa y energía. La llama adiabática se determina suponiendo que el aire de combustión y los productos de la combustión forman mezclas de gases ideales. Luego, el balance de la tasa de energía por mol de combustible de la Ec. 2.13b, se reduce a la forma, $\overline{h}_P = \overline{h}_R$ es decir:

$$\sum_{P} n_e \bar{h}_e = \sum_{R} n_i \bar{h}_i \tag{2.15a}$$

Con esta expresión, la temperatura de la llama adiabática se puede determinar utilizando datos de la Tabla A-3. Cuando se usa la Ec. 2.14 con datos de la Tabla A-3 o A-4 para evaluar los términos de entalpía, la Ec. 2.15a toma la forma de:

$$\sum_{P} n_e (\Delta \bar{h})_e = \sum_{R} n_i (\Delta \bar{h})_i + \sum_{R} n_i \bar{h}_{\dot{f}l} - \sum_{P} n_e \bar{h}_{\dot{f}e}$$
(2.15b)

Los n^{s} se obtienen por mol de combustible a partir de la ecuación de reacción química equilibrada. Las entalpías de formación de los reactivos y productos se obtienen de la Tabla A-3 o A-4. La entalpía de los datos de combustión podría emplearse en situaciones en las que la entalpía de formación para el combustible no está disponible. Al conocer los estados de los reactivos a medida que ingresan para reaccionar, los términos $\Delta \bar{h}$ para los reactivos se pueden evaluar entre el estado estándar (T_{ref} y p_{ref}) y el estado de interés (diferente del estándar) con la Tabla A-5 o A-6 del apéndice A. Por lo tanto, todos los términos en el lado derecho de la Ec. 2.15b pueden ser evaluados. Los términos $(\Delta \bar{h})_e$ en el lado izquierdo explican los cambios en la entalpía de los productos de Tref a la temperatura de llama adiabática desconocida. Dado que la temperatura desconocida aparece en cada término de la suma en el lado izquierdo de la ecuación, la determinación de la temperatura de la llama adiabática requiere iteración: se asume una temperatura para los productos y se utiliza para evaluar el lado izquierdo de la Ec. 2.15b. El valor obtenido se compara con el valor determinado previamente para el lado derecho de la ecuación. El procedimiento continúa hasta que se alcanza un acuerdo satisfactorio.

2.8. Ejemplo del ciclo Otto con aire estándar

Como primer ejemplo para el ciclo Otto, se aplicará el método de aire estándar (tablas de aire) y después con gases ideales, esto se comparará con el software Diesel-RK para corroborar resultados (capitulo 5). El motor de combustión interna tipo SI, es de un vehículo Chevrolet (Chevy 2003) el cual cuenta con un motor tipo transversal de 1.6L (1600cc) de 4 cilindros en línea con 8 válvulas (2 por cilindro), con una relación de compresión de 9.4:1. El manual de fabricante dice que el motor entrega una potencia de 67.5 kW a 5600 rpm y un torque de 127 N-m a 2800 rpm (ver Tabla. 2.2).

Motor	Motor 1.6 PMFI 8V
Тіро	Transversal, Delantero.
Número de cilindros	4, en línea
Número de cojinetes de bancada	5
Orden de encendido	1-3-4-2
Diámetro interno del cilindro	79.0 mm
Carrera del embolo	81.5 mm
Relación de compresión	9.4:1
Cilindrada	1598 cm ³
Revoluciones de ralentí	900 – 1000 rpm
Potencia máxima neta	67.5 kW (92 hp) a 5600 rpm
Par motor (torque) máximo neto	127 N.m a 2800 rpm (13 kgf.m) (114lbf.in)

Tabla 2.2 Especificaciones del motor SI del manual de fabricante

Para el análisis del motor base al ciclo Otto, se requiere calcular los cuatro estados de los diagramas T-s y p-V.

Datos:

- Número de cilindros: 4
- Diámetro del cilindro: 79 mm
- Carrera: 81.5 mm
- Relación de compresión $r_c = 9.4:1$
- Volumen de la cámara de combustión: $\frac{\pi}{4}(D)^2(S) = \frac{\pi}{4}(7.9 \ cm)^2(8.15 \ cm) = 400 \ cm^3$
- Temperatura del ambiente T_1 : 300 K
- Presión Atmosférica: $p_1 = 1 atm = 1 bar$
- Combustible: Octanaje (Petrol): Temperatura de combustión (Calcular)

El análisis se puede comenzar observando los diagramas T-s y p-V de la Fig. 2.5, estos sirven para comprender el análisis de cada uno de los estados.

Estado 1:

Este es cuando la mezcla aire/gasolina entra a la cámara de combustión, normalmente a la temperatura ambiente T_1 (27°C = 300 K) y la presión atmosférica de 1 bar, con estos valores se logra conseguir en la Tabla A-1, la energía interna u_1 y el volumen relativo 1 (v_{r1}) a la temperatura de 300 K como se muestra en la Tabla 2.3.

Tabla 2.3: Energía interna u_1 y volumen relativo v_{r1} del estado 1.

Temperatura T K	Energía interna $u \frac{KJ}{Kg}$	Volumen relativo v_r
300	214.07	621.2

Estado 2:

Con el volumen relativo del estado 1 (v_{r1}) se puede calcular el volumen relativo del estado 2 (v_{r2}) con la Ec. 2.5.

$$v_{r2} = v_{r1} \left(\frac{V_2}{V_1}\right) = \frac{v_{r1}}{r}$$
$$v_{r2} = \frac{621.2}{9.4} = 66.08$$

Una vez encontrado el volumen relativo del estado 2 (v_{r2}) se puede volver a la Tabla A-1 para interpolar y poder encontrar la temperatura de compresión (T_2) y la energia interna (u_2) como se muestra en la Tabla 2.4.

Tabla 2.4 Interpolación para determinar T_2 y u_2 en el estado 2.

Temperatura T K	Energía interna $u KJ/Kg$	Volumen relativo v_r
710	520.23	67.07
714	523.31	66.08
720	528.14	64.53

Para calcular la presión de compresión (p_2) se puede acudir a la ley de los gases ideales, ecuación 2.9.

Ecuación de los gases ideales:

$$\frac{p_{1V_1}}{T_1} = \frac{p_{2V_2}}{T_2}$$

Despejando $p_{2:}$;

$$p_2 = (\frac{T_2}{T_1})(\frac{V_1}{V_2})(p_1)$$

Recordando que $\frac{V_1}{V_2} = r_c$, entonces;

$$p_2 = (\frac{T_2}{T_1})(r_c)(p_1)$$

Sustituyendo;

$$p_2 = \left(\frac{714K}{300K}\right)(9.4)(1 \ bar) = 22.5 \ bar$$

Estado 3:

De este se calcula la temperatura adiabática de combustión del combustible (octanaje) descrito en toda la sección 2.7. Para la combustión de octano líquido (C_8H_{18}) con la cantidad de aire correcto (balance estequiométrico) es la siguiente:

$$C_8H_{18}(l) + 12.5O_2 + 47N_2 \rightarrow 8CO_2 + 9H_2O(g) + 47N_2$$

Cuando los reactivos entran a 25°C, los términos $((\Delta \bar{h})_i)$ en el lado derecho desaparecen, y la ecuación 2.15b queda de la siguiente manera:

$$\sum_{P} n_{e} (\Delta \bar{h})_{e} = \sum_{R} n_{i} \bar{h}_{fi} - \sum_{P} n_{e} \bar{h}_{fe}$$

Introduciendo los coeficientes en la ecuación

$$8(\Delta \bar{h})_{CO_{2}} + 9(\Delta \bar{h})_{H_{2}O(g)} + 47(\Delta \bar{h})_{N_{2}}$$

$$= \left[\left(\bar{h}_{\dot{f}} \right)_{C_{8}H_{18}(l)} + 12.5(\bar{b}_{f})_{O_{2}} + 47(\bar{b}_{f})_{N_{2}} \right]$$

$$- \left[8(\bar{h}_{\dot{f}})_{CO_{2}} + 9(\bar{h}_{\dot{f}})_{H_{2}O(g)} + 47(\bar{b}_{f})_{N_{2}} \right]$$

El lado derecho de la ecuación anterior se puede evaluar con la entalpía de formación de la Tabla A-3.

Sustituyendo

$$\begin{split} 8(\Delta \bar{h})_{CO_2} + 9(\Delta \bar{h})_{H_2O(g)} + 47(\Delta \bar{h})_{N_2} \\ &= [-249910] - [8(-393520) + 9(-241820] \Big(\frac{KJ}{Kmol}\Big) \\ &= 5074630 \frac{KJ}{Kmol} \ combustible \end{split}$$

Cada término $(\Delta \bar{h})$ en el lado izquierdo de esta ecuación depende de la temperatura de los productos, (temperatura propuesta T_p). Esta temperatura puede determinarse mediante un procedimiento iterativo, este se realiza con la Tabla A-5.

$$8(\Delta \bar{h})_{CO_2} + 9(\Delta \bar{h})_{H_2O(g)} + 47(\Delta \bar{h})_{N_2} = 5,074,630 \frac{KJ}{Kmol} \text{ combustible}$$

La Tabla 2.5 ofrece un resumen del procedimiento iterativo para dos valores de prueba de T_p . Dado que la suma de las entalpías de los productos es igual a 5,074,630 kJ / kmol, el valor real de T_p está en el intervalo de 2350 a 2400 K. La interpolación entre estas temperaturas da T_p 2395 K.

$T_p \rightarrow$	2350 K	2400 K
Sustancia ↓	$n_e \big[\bar{h}(2350K) - \bar{h}(298K) \big]$	$n_e \big[\bar{h}(2400K) - \bar{h}(298K) \big]$
$m{8}(\Delta \overline{m{h}})_{co_2}$	8(122091 - 9364) = 901816 KJ/Kmol	8(125152 - 9364) = 926304 KJ/Kmol
$9(\Delta \overline{h})_{H_2O(g)}$	9(100846 - 9904) = 818478 KJ/Kmol	9(103508 – 9904) = 842436 KJ/Kmol
$47(\Delta \overline{h})_{N_2}$	47(77496 - 8669) = 3234869 KJ/Kmol	47(79320 – 8669) = 3320597 KJ/Kmol
$\sum_{P} n_{e} (\Delta \overline{h})_{e}$	4955163 KJ/Kmol	5089337 KJ/Kmol

Tabla 2.5 Procedimiento iterativo para determinar la temperatura de combustión.

La interpolación entre estas temperaturas da $T_p = 2395 K \approx 2400 K$.

 \therefore La temperatura para el estado 3 es de $T_3 = 2400 \text{ K}.$

Retomando el análisis del ciclo Otto, se acude a la Tabla A-1 para determinar la energía interna u_3 y el volumen relativo 3 (v_{r3}) a la temperatura de 2400 K, como se muestra en la Tabla 2.6.

Tabla 2.6: Energía interna u_3 y volumen relativo v_{r3} del estado 3.

Temperatura T K	Energía interna $u KJ/Kg$	Volumen relativo v _r
2400	1921.3	1.864

Para determinar la presión de combustión (p_3) de igual manera se utiliza la ley de los gases ideales, pero como es a volumen constante la Ec. 2.9 queda de la siguiente manera:

$$p_3 = \left(\frac{T_3}{T_2}\right)(p_2)$$

Sustituyendo:

$$p_3 = \left(\frac{2400K}{715K}\right)(22.5 \ bar) = 75.5 \ bar$$

Estado 4:

Con el volumen relativo 3 (v_{r3}) se puede calcular el volumen relativo 4 (v_{r4}) con la Ec. 2.4.

$$v_{r4} = v_{r3} \left(\frac{V_4}{V_3} \right) = r v_{r3}$$

 $v_{r4} = 9.4(1.864) = 17.52$

Una vez encontrado el volumen relativo 4 (v_{r4}) se puede volver a la Tabla A-1 para interpolar y poder encontrar la temperatura de escape (T_4) y la energia interna (u_4) de la misma, como se muestra en la Tabla 2.7.

Tabla 2.7 Interpolación pa	ara determinar T_A y u_A	del estado 4.
----------------------------	------------------------------	---------------

Temperatura T K	Energia interna $u KJ/Kg$	Volumen relativo v_r
1120	862.79	17.886
1128	869.62	17.52
1140	880.35	16.946

Presión de escape (p_4) y como $V_4 = V_1$, entonces;

$$p_4 = \left(\frac{T_4}{T_1}\right)(p_1)$$

$$p_4 = \left(\frac{1128K}{300K}\right)(1 \ bar) = 3.76 \ bar$$

Una vez que se encuentran los 4 puntos se puede interpretar los diagramas T-s y p-V de acuerdo al motor que se está analizando, como se muestra en la Fig. 2.8.

Para evaluar la presión media efectiva se requiere el trabajo neto por ciclo (W_{cycle}) utilizando la Ec. 2.3.

$$W_{ciclo} = m[(u_3 - u_4) - (u_2 - u_1)]$$

donde m es la masa del aire, evaluada a partir de la ecuación de estado de gas ideal de la siguiente manera:

$$m = \frac{p_1 V_1}{R T_1}$$

Figura 2.8: Diagramas p-V y T-s del motor SI con el método de tablas del aire

Sustituyendo y aplicando factores de conversión

$$m = \frac{(1 \ bar)(4x10^{-4}m^3)}{\left(0.287 \ \frac{KJ}{Kg - K}\right)(300 \ K)} \left[\frac{10^5 \frac{N}{m^2}}{1 \ bar}\right] \left[\frac{1 \ KJ}{10^3 N \ m}\right] = 4.645 x 10^{-4} Kg$$

Trabajo neto del ciclo:

$$W_{ciclo} = 4.645x10^{-4}Kg[(1921.3 - 869.62) - (523.31 - 214.07)] = 0.3448 \frac{KJ}{ciclo}$$
$$= 344.86 \frac{J}{ciclo}$$

Presión media efectiva, aplicando la ecuación 2.1.

$$mep = \frac{0.3448 \frac{KJ}{ciclo}}{(400 \ cm^3) \left(1 - \frac{1}{9.4}\right)} \left(\frac{10^6 \ cm^3}{1 \ m^3}\right) \left(\frac{10^3 \ N. \ m}{1 \ KJ}\right) \left(\frac{1 \ bar}{10^5 \ \frac{N}{m^2}}\right) = 9.64 \ bars$$

Potencia:

$$\dot{W} = (W_{ciclo})(\#cilindros)(ciclos/segundo)$$

Como en el manual de propietario del vehículo dice que la máxima potencia es a 5600 rpm, pero este valor es respectivo al giro del cigüeñal (crank angle) que equivale a dos giros del mismo por cada ciclo de Otto, entonces las revoluciones correspondientes son de 2800 rpm, el valor que se sustituye en ciclos por segundo es de $46.67^{ciclos}/_{seg}$.

Sustituyendo:

$$\dot{W} = \left(0.3448 \frac{KJ}{ciclo}\right) (4 \ cilindros) \left(46.67 \ ciclos/seg\right) = 64.37 \ Kw$$

La eficiencia energética aplicando la ecuación 2.4:

$$\eta = \frac{(u_3 - u_2) - (u_4 - u_1)}{u_3 - u_2}$$

Sustituyendo

$$\eta = \frac{(1921.3 - 869.62) - (523.31 - 214.07)}{1921.3 - 523.31} = 0.5310 = 53.1\%$$

2.9. Ejemplo del ciclo Otto con gases ideales

En esta sección se analizará el mismo motor SI, solo se utilizara el método aire estándar de aire frio (gases ideales). Para el análisis del motor, se requiere calcular los cuatro estados de los diagramas T-s y p-V, pero en esta ocasión no se van a utilizar las tablas.

Datos:

- Número de cilindros: 4
- Diámetro del cilindro: 79 mm
- Carrera: 81.5 mm
- Relación de compresión $r_c = 9.4:1$
- Volumen de la cámara de combustión: $\frac{\pi}{4}(D)^2(S) = \frac{\pi}{4}(7.9 \text{ cm})^2(8.15 \text{ cm}) = 400 \text{ cm}^3$
- Temperatura del ambiente T_1 : 300 K
- Presión Atmosférica: $p_1 = 1 atm = 1 bar$
- Combustible: Octanaje (Petrol): Temperatura de combustión ($T_3 = 2400$ K)

El análisis se puede comenzar observando los diagramas T-s y p-V de la Fig. 2.5, estos sirven para comprender el análisis de cada uno de los estados.

Estado 1:

Este es cuando la mezcla aire/gasolina entra a la cámara de combustión, normalmente a la temperatura ambiente T_1 (27°C = 300 K) y la presión atmosférica de 1 bar.

Estado 2:

Aplicando la Ec. 2.7 para encontrar la temperatura de compresión T_2 .

$$\frac{T_2}{T_1} = (\frac{v_1}{v_2})^{k-1} = r^{k-1}$$

Despejando T_2 y sustituyendo.

$$T_2 = r^{k-1}(T_1) = 9.4^{1.4-1}(300) = 735 K$$

Aplicando la ecuación de los gases ideales de la Ec. 2.9 encontramos la presión de compresión p_{2} .

$$\frac{p_{1\,V_1}}{T_1} = \frac{p_{2V_2}}{T_2}$$

Despejando p_2 ;

$$p_2 = (\frac{T_2}{T_1})(\frac{V_1}{V_2})(p_1)$$

Recordando que $\frac{V_1}{V_2} = r$, entonces;

$$p_2 = (\frac{T_2}{T_1})(r)(p_1)$$

Sustituyendo;

$$p_2 = \left(\frac{735K}{300K}\right)(9.4)(1 \ bar) = 23 \ bar$$

Estado 3:

La temperatura adiabática de combustión (T_3) se calcula en base a lo descrito en la sección 2.7, y en el ejemplo anterior se determinó que la temperatura de combustión es de 2400 k.

Para determinar la presión de combustión (p_3) de igual manera se utiliza la ley de los gases ideales, pero como es a volumen constante la Ec. 2.9 queda de la siguiente manera:

$$p_3 = \left(\frac{T_3}{T_2}\right)(p_2)$$

Sustituyendo:

$$p_3 = \left(\frac{2400K}{735K}\right)(23 \text{ bar}) = 75.1 \text{ bar}$$

Estado 4:

Aplicando la Ec. 2.8 para encontrar la temperatura de escape T_4 .

$$\frac{T_4}{T_3} = (\frac{v_3}{v_4})^{k-1} = \frac{1}{r^{k-1}}$$

Despejando T_4 y sustituyendo.

$$T_4 = \frac{1}{r^{k-1}} (T_3) = \frac{2400}{9.4^{1.4-1}} = 979.5 K$$

Presión de escape (p_4) y como $V_4 = V_1$, entonces;

$$p_4 = \left(\frac{T_4}{T_1}\right)(p_1)$$

$$p_4 = \left(\frac{980 \, K}{300 K}\right)(1 \, bar) = 3.26 \, bar$$

Una vez que se encuentran los 4 estados se puede interpretar los diagramas T-s y p-V de acuerdo al motor que se está analizando, como se muestra en la Fig. 2.9.

Figura 2.9 Diagramas p-V y T-s del motor SI con el método de gases ideales

Para evaluar la presión media efectiva se requiere el trabajo neto por ciclo (W_{cycle}) utilizando la Ec. 2.10.

$$w_{ciclo} = m(W_{23} - w_{41}) = m(c_{\nu}[(T_3 - T_4) - (T_2 - T_1)])$$

Donde m es la masa del aire, evaluada a partir de la ecuación de estado de gas ideal de la siguiente manera:

$$m = \frac{p_1 V_1}{R T_1}$$

Sustituyendo y aplicando factores de conversión

$$m = \frac{(1 \ bar)(4x10^{-4}m^3)}{\left(0.287 \ \frac{KJ}{Kg - K}\right)(300 \ K)} \left[\frac{10^5 \frac{N}{m^2}}{1 \ bar}\right] \left[\frac{1 \ KJ}{10^3 N \cdot m}\right] = 4.645 x 10^{-4} Kg$$

Trabajo neto del ciclo, sustituyendo la masa, las temperaturas de los estados y utilizando un volumen constante ($c_v=0.718 \frac{KJ}{Kg} \cdot K$) a la temperatura de 300 K:

$$w_{ciclo} = 4.645 \times 10^{-4} Kg \left(0.718 \ \frac{KJ}{Kg} \cdot K[(2400 - 980) - (735 - 300)] \right) = 0.3285 \ \frac{KJ}{ciclo}$$

Presión media efectiva, aplicando la ecuación 2.1.

$$mep = \frac{0.3285 \frac{KJ}{ciclo}}{(400 \ cm^3) \left(1 - \frac{1}{9.4}\right)} \left(\frac{10^6 \ cm^3}{1 \ m^3}\right) \left(\frac{10^3 \ N. \ m}{1 \ KJ}\right) \left(\frac{1 \ bar}{10^5 \ \frac{N}{m^2}} = 9.19 \ bars$$

Potencia:

$$\dot{W} = (W_{ciclo})(\#cilindros)(ciclos/segundo)$$

Como en el manual de propietario del vehículo dice que la máxima potencia es a 5600 rpm, pero este valor es respectivo al giro del cigüeñal (crank angle) que equivale a dos giros del mismo por cada ciclo de Otto, entonces las revoluciones correspondientes son de 2800 rpm, el valor que se sustituye en ciclos por segundo es de $46.67^{ciclos}/_{seg}$.

Sustituyendo:

$$\dot{W} = \left(0.3285 \frac{KL}{ciclo}\right) (4 \ cilindros) \left(46.67 \ ciclos/seg\right) = 61.32 \ Kw$$

Eficiencia energética aplicando la ecuación 2.11:

$$\eta = 1 - \frac{1}{r^{k-1}} = 1 - \frac{1}{9.4^{1.4-1}} = 0.5919 = 59.19\%$$

La eficiencia energética es mayor con el método de los gases ideales, en comparación con la de aire estándar (tablas), esto se debe a que el método de aire estándar es más preciso, ya que se utiliza la energía interna para cada etapa del ciclo Otto, sin embargo, ambos métodos no se acercan al real.

2.10. Ciclo Diésel de aire estándar

El ciclo Diésel de aire estándar es un ciclo ideal que supone que la adición de calor ocurre durante un proceso a presión constante que comienza con el pistón en el punto muerto superior. El ciclo Diésel se muestra en los diagramas p–v y T–s en la Fig. 2.10. El ciclo consta de cuatro procesos internamente reversibles en serie. El primer proceso (1-2) es el mismo que en el ciclo Otto: una compresión isentrópica.

Sin embargo, el calor no se transfiere al fluido de trabajo a un volumen constante como en el ciclo de Otto. En el ciclo Diésel, el calor se transfiere al fluido de trabajo a presión constante. El proceso 2–3 también constituye la primera parte del golpe de poder. La expansión isentrópica (3-4) es el resto del golpe de poder. Al igual que en el ciclo de Otto, el ciclo se completa con el proceso de volumen constante 4–1 en el que el calor se rechaza del aire mientras el pistón está en el punto muerto inferior. Este proceso reemplaza los procesos de escape y admisión del motor real (Moran, 2006).

Figura 2.10 Diagramas p–V y T–s del ciclo diésel de aire estándar (Moran, 2006).

Dado que el ciclo diésel estándar de aire se compone de procesos internamente reversibles, las áreas de los diagramas T–s y p–V de la Fig. 2.10 se pueden interpretar como calor y trabajo, respectivamente. En el diagrama T–s, el área 2–3– a–b–2 representa el calor agregado por unidad de masa y el área 1–4–a–b–1 es el calor rechazado por unidad de masa. En el diagrama p–V, el área 1–2–a–b–1 es la entrada de trabajo por unidad de masa durante el proceso de compresión. El área 2–3–4–b–a–2 es el trabajo realizado por unidad de masa a medida que el pistón se mueve desde el punto muerto superior al punto muerto inferior. El área cerrada de cada figura es la producción neta de trabajo, que es igual al calor neto agregado (Moran, 2006).

2.10.1 Análisis de ciclo Diesel de aire estándar (tablas).

En el ciclo Diesel, la adición de calor tiene lugar a presión constante. En consecuencia, el proceso 2–3 involucra tanto trabajo como calor. El trabajo está dado por la Ec. 2.16.

$$\frac{W_{23}}{m} = \int_{2}^{3} p \, dv = p_2(v_3 - v_2) \tag{2.16}$$

El calor agregado en el proceso 2–3 se puede encontrar aplicando el balance de energía del sistema cerrado

$$m(u_3 - u_2) = Q_{23} - W_{23}$$

Introduciendo la Ec. 2.16 y resolviendo para la transferencia de calor, donde se introduce la entalpía específica para simplificar la expresión.

$$\frac{Q_{23}}{m} = (u_3 - u_2) + p(v_3 - v_2) = (u_3 + pv_3) - (u_2 + pv_2) = h_3 - h_2$$
(2.17)

En el ciclo de Diesel, el calor rechazado es en el proceso 4–1 como en el ciclo Otto y viene dado por:

$$\frac{Q_{41}}{m} = u_4 - u_1$$

La eficiencia energética es la relación entre el trabajo neto del ciclo y el calor agregado.

$$\eta = \frac{W_{ciclo}/m}{Q_{23}/m} = 1 - \frac{Q_{41}/m}{Q_{23}/m} = 1 - \frac{u_4 - u_1}{h_3 - h_2}$$
(2.18)

La eficiencia energética de la Ec. 2.18 requiere el uso de las Tablas A-1 y A-2 a sus temperaturas correspondientes en los estados del ciclo. Para evaluar las temperaturas del ciclo se requiere la temperatura inicial T_1 y la relación de compresión r_c , la temperatura en el estado 2 se puede encontrar utilizando la siguiente relación isoentrópica y los datos de volumen relativo

$$v_{r2} = \frac{V_2}{V_2} \ v_{r1} = \frac{1}{r} v_{r1}$$

Para encontrar T_{3} , hay que tener en cuenta la ecuación de estado de gas ideal a presión constante ($p_{3} = p_2$) entonces la ecuación de estado es la siguiente

$$T_3 = \frac{V_3}{V_2} T_2 = r_c T_2 \tag{2.19}$$

donde $r_c = \frac{V_3}{V_2}$, llamado **cutoff ratio** (relación de corte). La relación de volumen para el proceso isentrópico 3-4 puede ser expresado de la siguiente manera

$$\frac{V_4}{V_3} = \frac{V_4}{V_2} \frac{V_2}{V_3} = \frac{V_1}{V_2} \frac{V_2}{V_3} = \frac{r_c}{r_{cutoff}}$$
(2.20)

Donde la relación de compresión r_c y la relación cutoff han sido introducidas por concisión.

Usando la Ec. 2.20 junto con el volumen relativo v_{r3} en T_3 , la temperatura T_4 puede determinarse por una interpolación, una vez que se encuentra el volumen relativo v_{r4} de la relación isoentrópica.

$$v_{r4} = \frac{V_4}{V_3} v_{r3} = \frac{r}{r_c} v_{r3}$$

2.10.2 Análisis de ciclo Diesel estándar de aire frio (gases ideales).

En un análisis estándar de aire frio, la expresión apropiada para evaluar T_2 proviene de igual manera que la del ciclo Otto estándar de aire frio, de la Ec. 2.7

$$\frac{T_2}{T_1} = (\frac{v_1}{v_2})^{k-1} = r^{k-1}$$

La temperatura T_4 se encuentra por la Ec. 4.21, esta es muy similar a la Ec.2.8.

$$\frac{T_4}{T_3} = (\frac{v_3}{v_4})^{k-1} = (\frac{r_c}{r})^{k-1}$$
(2.21)

2.10.3 Efecto de la relación de compresión en el rendimiento.

La eficiencia energética del ciclo Diesel mejora al aumentar la relación de compresión. Esto se puede determinar usando un análisis estándar de aire frío, la eficiencia energética del ciclo Diesel se puede expresar como se muestra en la Ec. 2.18

$$\eta = 1 - \frac{1}{r^{k-1}} \left[\frac{r_c^k - 1}{k(r_c - 1)} \right]$$
(2.22)

Esta relación se muestra en la Fig. 2.11, para k=1.4. La Ec 2.22 para el ciclo Diesel difiere de la Ec. 2.11 para el ciclo de Otto solo por el término entre paréntesis, que para $r_c > 1$ es mayor que la unidad. Por lo tanto, cuando la relación de compresión es la misma, la eficiencia energética del ciclo Diesel estándar de aire frío sería menor que la del ciclo Otto estándar de aire frío (Moran, 2006).

Figura 2.11: Eficiencia térmica del aire frío estándar ciclo diésel. k 1.4 (Moran. 2006).

De igual manera que el ciclo Otto, el ciclo Diesel puede aplicado para el análisis de un ICE tipo CI, pero por cuestión de espacio, no se observara en ese estudio.

Capítulo III: Estado del arte.

3.1 Motores de combustión interna.

El motor SI es el menos eficiente en combustible, debido a sus altas temperaturas de llamas que conducen considerables pérdidas de transferencia de calor en la pared, de igual manera debido a esas temperaturas también generan altas emisiones de NOx, pero las emisiones del tubo de escape son bajas, gracias al catalizador de 3 vías. El tipo de ignición por chispa aprovecha aproximadamente el 18% de un tanque de combustible. Se producen más pérdidas en la línea de transmisión, de modo que solo alrededor del 12% de la energía del tanque de combustible llega a las ruedas (Reitz, 2013). El motor CI tiene un 20-40% más de eficiencia de combustible que el motor SI. El proceso de combustión también es menos complejo, ya que no depende de la propagación de llamas. En cambio, se forma una llama de difusión y los límites de inflamabilidad determinan el grosor de la llama. La combustión se controla mediante la mezcla de combustible y aire, a menos que se usen altos niveles de EGR (Exhaust Gas Recirculation, por sus siglas en ingles), ya que, si esta presenta altas temperaturas, lo que conduce a un alto nivel de NOx. Además, debido a que la carga está estratificada, las regiones ricas en combustible pueden generar alta emisión de hollín (Reitz, 2013).

Los combustibles deben evolucionar para facilitar el encendido avanzado de nuevos motores (diésel y gasolina), así como las tecnologías emergentes de motores de combustión a baja temperatura (LTC) (Dryer, 2015). Los biocombustibles avanzados (segunda y tercera generación) derivados de fuentes de biomasa no comestibles, pueden reducir significativamente las emisiones de gases de efecto invernadero, y disminuir la dependencia energética de los combustibles fósiles para el trasporte. Los biocombustibles funcionan bien en los motores de combustión existentes, ya sea como aditivos combinados con combustibles de petróleo o como reemplazos puros "directos" (Bergthorson, 2015).

3.2 Motores de encendido por chispa (SI).

Se han realizado diversos estudios con motores SI, estos estudios fueron realizados con gasolina mezclada con biocombustibles. La finalidad de cada estudio fue de analizar la eficiencia energética, potencia, torque, y gases contaminantes. Los resultados fueron comparados con gasolina como combustible puro, pero diferente motor en cada uno de los estudios.

En un motor tipo SI, Uslu (2019) utiliza el 1-butanol para hacer una mezcla con gasolina, se utilizó en un motor con una alta relación de compresión (r_c) para mejorar el rendimiento y las emisiones. En este caso en particular, se realizaron análisis experimentales, los experimentos se realizaron con diferentes r_c (8.0: 1, 8.5: 1 y 9.0: 1) y diferentes velocidades (2600, 2800, 3000 y 3200 rpm) utilizando diferentes mezclas de combustibles A0 (100% gasolina), A10 (10% 1-butanol - 90% gasolina), A20 (20% 1-butanol – 80% gasolina) y A30 (30% 1-butanol – 70% gasolina). La mezcla A20 aumento aproximadamente un 2,67% la eficiencia energética, 2.03% el

torque y 2.51% la potencia. Con el uso de A30, las emisiones de monóxido de carbono (CO), óxidos de nitrógeno (NOx) e hidrocarburos (HC) disminuyeron en aproximadamente 12.2%, 35.6% y 6.45%, respectivamente en comparación con la gasolina.

En un estudio experimental (Elfasakhany, 2014) se utilizó como combustible nbutanol, el motor de prueba era de un solo cilindro alimentado con mezclas de combustibles: A0 (100% gasolina), A3 (3% n-butanol – 97% gasolina), A7 (7% nbutanol – 93% gasolina) y A10 (10% n-butanol – 90% gasolina). La mezcla A10 es inferior al de la gasolina (100%) en aproximadamente un 3,5% la eficiencia energética, 2,5% el torque y 6,6% la potencia. En este caso las emisiones contaminantes están significativamente influenciadas por las velocidades del motor. A baja velocidad, las emisiones de gasolina (100%) son mayores que las mezclas en aproximadamente 43%, 32% y 26% para dióxido de carbono (CO₂), monóxido de carbono (CO) e hidrocarburos no quemados (UHC), respectivamente; sin embargo, a velocidad moderada, las emisiones de gasolina son más altas en aproximadamente 40%, 6% y 11%, respectivamente; a alta velocidad, el CO₂ de la gasolina pura es más alto que las mezclas en aproximadamente un 27%, mientras que el CO y el UHC se vuelven del mismo orden de magnitud para la gasolina con los combustibles mezclados.

Observando los resultandos obtenidos de potencia, eficiencia energética y torque, podemos considerar que el uso de combustibles mezclados con n-butanol-gasolina disminuye ligeramente cada uno de estos, mientras que con 1-butanol aumento ligeramente cada uno. Viéndolo por el lado de las emisiones contaminantes, ambos estudios fueron favorecidos, ya que disminuyeron las emisiones.

Un modelo unidimensional (Lliev, 2015) de un motor SIse realizó en AVL Boost, este se usó como herramienta de simulación, para analizar la potencia y las emisiones contaminantes, realizando diferentes mezclas de etanol, metanol y gasolina (E5, M5, E10, M10, E30, M30, E50 y M50), con la finalidad de comparar los resultados obtenidos de las simulaciones con solo gasolina como combustible. De igual manera para verificar que el etanol y metanol han sido buenos candidatos como combustibles alternativos para los vehículos, porque son líquidos y tienen varias propiedades físicas y de combustión similares a la gasolina. Cuando se aumentó el contenido de etanol en el combustible mezclado (E5-E50), la potencia del motor disminuyó para todas las velocidades del motor comparando con gasolina (100%). Cuando se aumentó el contenido de metanol en el combustible mezclado (M5 y M10), la potencia del motor aumentó ligeramente y cuando se incrementó el contenido de metanol en el combustible mezclado (M30 y M50), la potencia del motor disminuyó para todas las velocidades del motor. Cuando aumenta el porcentaje de etanol y metanol, disminuye la concentración de monóxido de carbono (CO) y partículas de hollín (HC). Las emisiones más bajas de CO y HC se obtienen con combustible mezclado que contiene metanol (M50).

Galloni (2016) realizo mezclas de gasolina con biobutanol, B20 (20% butanol – 80% gasolina) y B40 (40% butanol – 60% gasolina). Con la finalidad de evaluar para las diferentes mezclas la eficiencia energética, torque y emisiones contaminantes. Los resultados obtenidos muestran que tanto el torque del motor como la eficiencia energética disminuyen ligeramente (aproximadamente un 4%) cuando aumenta el contenido de butanol de la mezcla. Sin embargo, el butanol aumenta la velocidad de combustión de las mezclas magras (pobres) y un resultado interesante es que el avance de la chispa no requiere ajustes al alimentar los cambios de gasolina pura a mezclas de biobutanol/gasolina. Con respecto a las emisiones de contaminantes, cuando el combustible pasa de la gasolina pura a la mezcla B40, las concentraciones de HC y NOx disminuyen ligeramente, mientras que la concentración de CO no cambia. En conclusión, dado que todas las emisiones gaseosas no empeoran y el rendimiento del motor no cambia visiblemente, el biobutanol (producido por biomasas) puede considerarse una alternativa eficiente a los combustibles de transporte de origen fósil.

3.3 Motores de encendido por compresión (CI).

Para los siguientes análisis, se tienen diversos estudios con motores de encendido por compresión (CI), estos estudios fueron realizados con diésel mezclado con biocombustibles. La finalidad de cada estudio fue de analizar la eficiencia energética, potencia, torque, y gases contaminantes. Los resultados fueron comparados con el diésel como combustible puro, pero diferente motor en cada uno de los estudios.

Gumus (2010) uso la semilla de albaricoque (Prunus armeniaca) la transesterificó con metanol usando hidróxido de potasio como catalizador para obtener el éster metílico del aceite de semilla de albaricoque (ASKOME). Este se utilizó con diversas mezclas con combustible diésel: B5 (5% ASKOME - 95%Diesel), B20 (20% ASKOME - 80%Diesel) y B50 (50% ASKOME - 50%Diesel) y B100 (100% ASKOME). Las mezclas se probaron en un motor CI para evaluar la eficiencia energética y las emisiones. El porcentaje más bajo de mezclas (B5, B20) proporciona una buena mejora en la potencia del motor, así como también un menor consumo de energía específica (BSEC). Además, se descubrió que mejoraban las emisiones de escape. Un porcentaje más alto de mezcla ASKOME (B50) y ASKOME puro (100%) redujo la emisión de CO, HC y la densidad de humo en el escape de manera efectiva. Pero aumentaron ligeramente las emisiones de NOx y ofrecen características de rendimiento más bajas que el combustible diésel. Por lo tanto, un porcentaje menor de ASKOME puede usarse como aditivo, lo que mejora el rendimiento y las emisiones de escape en el combustible diésel. En consecuencia, ASKOME se puede utilizar efectivamente en motores diésel sin ninguna modificación.

En una investigación experimental (Rakopoulos, 2010) para evaluar los efectos del uso de mezclas de n-butanol diésel: A8 (8% n-butanol – 92% diésel), A16 (16% n-

butanol – 84% diésel) y A24 (24% n-butanol – 76% diésel), con la finalidad de analizar la eficiencia energética y las emisiones contaminantes de un Motor diésel, de cuatro tiempos, de alta velocidad, con inyección directa (DI). La serie de pruebas se realizó con cada una de las mezclas de combustible anteriores, con el motor funcionando a una velocidad de 2000 rpm y con tres cargas (baja, media y alta). Con respecto a la eficiencia energética, se observó un consumo de combustible específico un poco más alto con un ligero aumento correspondiente de la misma. Mientras que, en emisiones, la densidad del humo se redujo significativamente, las emisiones de NOx y CO se redujeron, por el contrario, las emisiones de hidrocarburos no quemados (HC) aumentaron, siendo mayores conforme incrementa el porcentaje de butanol en la mezcla, todo fue con respecto a las del combustible diésel puro. Una conclusión práctica general es que este combustible (n-butanol), puede usarse de manera segura y ventajosa hasta altas relaciones de mezcla con el combustible diésel en el motor diésel, tanto desde el punto de vista de la eficiencia energética como de las emisiones.

3.4 Motores de encendido por combustión a baja temperatura (LTC).

Los motores de encendido por combustión a baja temperatura (LTC), funcionan con poco combustible, lo que produce relaciones de calor específicas más altas y, por lo tanto, mayor trabajo. Los motores LTC incluyen la ignición por compresión de carga homogénea (HCCI) y el encendido por compresión controlada por reactividad (RCCI). Estos motores son una estrategia de combustión de alta eficiencia y bajas emisiones, debido a las bajas temperaturas que dan como resultado una reducción de NOx. (Bergthorson y Thomson, 2015). El concepto inicial de la combustión HCCI se basa en una combinación de las ventajas de los motores de encendido por chispa (SI) y encendido por compresión (CI), evitando al mismo tiempo sus desventajas (Taylor, 2008). El concepto de combustión RCCI ha sido propuesto para utilizar la concentración y la estratificación de reactividad para optimizar el proceso de combustión. Se premezcla un combustible de baja reactividad (es decir, gasolina) a través de la inyección del puerto y se inyectó directamente un combustible de alta reactividad (es decir, diésel) en la cámara de combustión para que sirviera como fuente de ignición (Wang, 2015).

Wang (2015) llevo a cabo investigaciones numéricas para simular la combustión de RCCI y HCCI lograda con varios combustibles incluidos gasolina/diésel, isobutanol/diésel e isobutanol/isobutanol + peróxido de di-terc-butilo (DTBP) cetano mejorador. Se formuló un mecanismo reducido de combustible y se combinó con el código de dinámica de fluidos computacional (CFD) KIVA para predecir la combustión y las emisiones de estos combustibles en diferentes condiciones de funcionamiento en un motor diésel de servicio pesado. Los resultados muestran que la combustión de RCCI se puede lograr aplicando un solo combustible de baja reactividad combinado con una pequeña cantidad de cetano (DTBP) en condiciones de funcionamiento amplias, y que el rendimiento del combustible iso-butanol/DTBP

es comparable al de la gasolina/diésel e iso-butanol/diésel. Sin embargo, debido a la baja reactividad del isobutanol, se necesita una cantidad relativamente alta de DTBP para mejorar la reactividad de la mezcla DI isobutanol+DTBP. Además de las simulaciones de combustión de RCCI, la combustión de HCCI también fue modelada bajo diferentes condiciones de operación con varios combustibles, y se hicieron comparaciones entre HCCI y RCCI. Las comparaciones entre estos muestran que, aunque se puede obtener un rendimiento comparable con HCCI en condiciones de carga baja y media, RCCI puede extender el rango de funcionamiento estable a condiciones de carga mucho más altas, al tiempo que mantiene un rendimiento y emisiones razonables.

Prince (2018-2) describe la importancia del motor de combustión interna de carga homogénea encendida por compresión (HCCI), así como su eficiencia energética asociada a una menor generación de contaminantes. El análisis permitió realizar una buena aproximación al estudio del desempeño de un motor HCCI operado con mezclas de aire con n-propanol y n-butanol. El modelado se llevó acabo con el programa COMSOL Multiphysics, se considera la cinemática del pistón dentro de la cámara de combustión y el mecanismo de reacciones químicas de los bio-combustibles mencionados. Se logró determinar que para las especificaciones del motor HCCI analizado, la temperatura óptima de entrada de la mezcla aire/n-propanol (reactantes) al cilindro de 482 K, ocurriendo la autoignición exactamente en el punto muerto superior (PMS). La temperatura óptima de entrada de la mezcla de aire/n-butanol (reactantes) al cilindro de 418 K, ocurriendo la autoignición exactamente en el PMS. Los resultados de la simulación muestran que la autoignición de la mezcla depende de su temperatura de entrada a la cámara de combustión.

3.5 Software Diesel-RK.

Se realizó Investigación numérica (Datta, 2016-1) de la eficiencia energética y los parámetros de emisión de un motor diésel, para evaluar el efecto de la adición de metanol a la mezcla de diésel y biodiesel de cadena de palma. En este estudio se simulo un motor diésel de cuatro tiempos. Los resultados indican que, aumenta un 9,14% el consumo de combustible en comparación con el diésel. Por otro lado, aumento en la eficiencia energética en un 2.47% con la mezcla de diésel y biodiesel mezclado con metanol. Desde el punto de vista ambiental, las emisiones se reducen considerablemente. Se observa que los combustibles mezclados reducen significativamente las emisiones nocivas de CO₂, NOx, PM y humo en una cantidad de 2.12%, 16.92%, 56.49% y 48.98% respectivamente.

Se llevó a cabo una adición de alcohol al diésel en un motor CI (Datta, 2016-2), utilizando mezclas de diésel/etanol y diésel/metanol como combustibles. El motor considerado para la simulación es un motor diésel de cuatro tiempos de aspiración natural, enfriado por agua e inyección directa a 1500 rpm. Los resultados indican que el combustible mezclado con etanol al 15% reduce las emisiones nocivas de

NOx, PM y humo en un 39.08%, 32.63% y 27.29% respectivamente. También se observa una reducción marginal en el CO_2 con etanol. Pero en el caso de la mezcla de metanol (15%), las emisiones de NOx y CO_2 se reducen en un 15.96% y 3.39% respectivamente.

Hamdan (2010) describe una investigación teórica sobre el funcionamiento de un motor de encendido por compresión de cuatro tiempos, que funciona con combustibles alternativos en forma de mezclas de diésel-etanol y diésel-éter. La cantidad de cada alcohol añadida fue del 5, 10 y 15% en volumen. La velocidad del motor estuvo dentro del rango de 1000 a 4000 rpm. Se calcularon varios parámetros a saber; torque, presión media efectiva al freno, potencia al freno, consumo específico de combustible y eficiencia energética, esto se llevó a cabo mediante el software Diesel-RK. Los resultados se compararon con diésel puro, el motor tiene la mayor eficiencia energética cuando es impulsado por una mezcla de etanol-diésel al 15%, con respecto al consumo específico de combustible, esté aumenta con cualquier porcentaje de etanol o éter, sin embargo, se encontró que la potencia disminuye con la cantidad de etanol o éter.

Se ha simulado (Nasim, 2010) el rendimiento de un motor de encendido por compresión de invección directa de cuatro tiempos, refrigerado por aire, impulsado por aceite puro de jatropha. El precalentamiento del aceite puro de jatropha se realiza entre 30°C y 100°C. Los parámetros considerados para comparar el rendimiento del aceite de jatropha puro con el del funcionamiento con combustible diésel fueron; el consumo de combustible específico al freno (BSFC), la eficiencia energética, la potencia al freno y las emisiones de NOx del motor, en un rango de velocidad entre 1500 y 4000 rpm. Los resultados indican que el combustible calentado (100°C) mostró una disminución marginal en la eficiencia energética en comparación con el funcionamiento con combustible diésel, la potencia al freno y las emisiones de NOx aumentan con el aumento de la temperatura de entrada de combustible y BSFC es mayor que el funcionamiento con combustible diésel a todas las temperaturas de entrada de combustible, sin embargo, no hay una diferencia significativa en BSFC cuando el motor funciona con combustibles de aceite vegetal precalentados y sin calentar. En otras palabras, el BSFC no se ve afectado debido a la temperatura del combustible en las condiciones de entrada.

Capitulo IV. Modelo de simulación de Diesel-RK

Los modelos teóricos utilizados para los motores de combustión interna se clasifican en dos grupos, modelos termodinámicos y modelos de mecánica de fluidos. Los modelos termodinámicos se basan principalmente en la primera ley de la termodinámica y se utilizan para analizar las características de rendimiento de los motores. La presión, la temperatura y otras propiedades se evalúan con respecto al ángulo del cigüeñal, en otras palabras, con respecto al tiempo. La fricción del motor y la transferencia de calor se tienen en cuenta mediante ecuaciones empíricas obtenidas de experimentos. Estos modelos se clasifican en dos grupos, modelos 0dimensionales y matizona. Por otro lado, los modelos multizona también se denominan modelos de dinámica de fluidos computacionales. Estos también se aplican para la simulación del proceso de combustión en los motores de combustión interna. Se basan en el cálculo numérico de ecuaciones de conservación de masa, momento, energía y especies en una, dos o tres dimensiones para seguir la propagación de la llama o el frente de combustión dentro de la cámara de combustión del motor.

El software Diesel-RK utiliza el modelo termodinámico basado en primera ley de la termodinámica y varios sub-modelos de mecánica de fluidos para el proceso inyección del combustible, pulverización y evaporación del mismo, fricción y liberación de calor del motor, formación de NOx, hollín y materia particulada, período de retraso de auto-encendido para combustión de alta y baja temperatura, descrito por el profesor Kuleshov (2005,2006,2007,2008,2009).

4.1 Geometría del motor

Para cualquier cilindro, cigüeñal, biela, pistón y conjunto de la cabeza (culata) se pueden representar mediante el mecanismo que se muestra en la Figura 4.1. De particular interés son los siguientes parámetros geométricos: diámetro interior,*B*; longitud de la biela, *r*; radio de manivela (la mitad de la carrera), a; carrera, *s*; ángulo de manivela, θ ; la distancia entre el eje del cigüeñal y el eje del pasador del pistón, *X*; y las válvulas de admisión y de escape (IV, EV por sus siglas en inglés inlet valve y exhaust valve, respectivamente). El punto muerto superior (TDC, top dead center) de un motor se refiere al cigüeñal en una posición tal que $\theta = 0^{\circ}$. El volumen del cilindro en esta posición es mínimo y también se denomina volumen libre, *V_c*. El punto muerto inferior (BDC, bottom dead center) se refiere a que el cigüeñal está en $\theta = 180^{\circ}$. El volumen máximo del cilindro es en BDC (*V_d*).

Figura 4.1. Geometría del motor

La relación de compresión, r_c , se define como la relación del volumen máximo y el mínimo.

$$r_c = \frac{V_{BDC}}{V_{TDC}} = \frac{V_b}{V_c} \tag{4.1}$$

El volumen de desplazamiento, V_{d} , es la diferencia entre el volumen máximo y mínimo; para un solo cilindro, y para varios cilindros (volumen de desplazamiento total) es el producto del número de cilindros n_c .

$$V_d = V_{BDC} = \frac{\pi}{4} B^2 s \times n_c \tag{4.2}$$

La velocidad media del pistón \overline{U}_p es un parámetro importante en el diseño del motor, ya que las tensiones y otros factores aumentan con la velocidad del pistón en lugar de con la velocidad del motor. Dado que el pistón recorre una distancia del doble de la carrera por revolución, debe quedar claro que

$$\overline{U}_p = 2 N s \tag{4.3}$$

La velocidad del motor, N, se refiere a la velocidad de rotación del cigüeñal y se expresa en revoluciones por minuto (rpm). La frecuencia del motor, ω , también se refiere a la velocidad de rotación del cigüeñal (manivela) pero en unidades de radianes por segundo (rad/s).

4.1.1 Rendimiento del motor

Los parámetros para encontrar el rendimiento del motor, por el software Diesel-RK: potencia al freno, presión media efectiva al freno, torque (par), eficiencia volumétrica y el consumo específico de combustible. Estos parámetros se calculan para cada relación de mezcla y a diferentes velocidades del motor. La relación de equivalencia de la mezcla aire/combustible, λ , se define como la relación entre la relación aire/combustible real y la relación aire/combustible estequiométrica y se escribe como:

$$\lambda = \frac{(A/F)}{(A/F)_s} = \frac{\left(\dot{m}_a/\dot{m}_f\right)}{\left(\dot{m}_a/\dot{m}_f\right)_s}$$
(4.4)

La mezcla estequiométrica de aire/combustible contiene la cantidad de aire necesaria para quemar completamente el combustible. La potencia al freno (\dot{W}_b) viene dada del torque motor (τ) y la velocidad angular del motor $(\omega, rad/s)$.

La potencia al freno, es la velocidad a la que se realiza el trabajo; y el torque del motor, τ , es una medida del trabajo realizado por unidad de rotación (radianes) de la manivela. La potencia al freno es la potencia de salida del motor. La potencia al freno es menor que la tasa límite del trabajo realizado por el gas, conocido como potencia indicada, la potencia al freno y el par están relacionados por

$$\dot{W}_b = 2\pi \tau N \tag{4.5}$$

El trabajo indicado W_i es el trabajo neto transferido del gas al pistón durante un ciclo, que es la integral de la presión sobre el volumen del cilindro:

$$W_i = \int P dV \tag{4.6}$$

y la potencia indicada \dot{W}_i , para un motor con cilindros n_c :

 $\dot{W}_i = n_c W_i N / 2$ (Motor de cuatro tiempos) (4.7)

$$\dot{W}_i = n_c W_i N$$
 (Motor de dos tiempos) (4.8)

esto es porque el motor de cuatro tiempos tiene dos revoluciones por carrera de potencia y el motor de dos tiempos tiene una revolución por carrera de potencia.

La potencia al freno es menor que la potencia indicada debido a la fricción mecánica del motor, las pérdidas de bombeo en la admisión como en el escape, y las necesidades de potencia de los accesorios, se agrupan como una pérdida de potencia de fricción, \dot{W}_f

$$\dot{W}_f = \dot{W}_i - \dot{W}_b \tag{4.9}$$

La relación entre la potencia al freno y la potencia indicada es la eficiencia mecánica, $\eta_{\rm m}$:

$$\eta_m = \dot{W}_b / \dot{W}_i = 1 - \dot{W}_f / \dot{W}_i \tag{4.10}$$

4.1.2 Presión media efectiva

La presión media efectiva (*mep*) es el trabajo realizado por unidad de volumen de desplazamiento, y tiene unidades de fuerza/área. Es la presión promedio que resulta en la misma cantidad de trabajo realmente producida por el motor. La presión media efectiva es un parámetro muy útil, ya que aumenta el efecto del tamaño del motor, lo que permite comparar el rendimiento de motores de diferente desplazamiento. Hay tres parámetros útiles de presión media efectiva: *imep, bmep* y *fmep*.

La presión media efectiva indicada (*imep*) es el trabajo neto por unidad de volumen de desplazamiento realizado por el gas durante la compresión y la expansión. La presión en el cilindro inicialmente aumenta durante la carrera de expansión debido a la adición de calor del combustible, y luego disminuye debido al aumento en el volumen del cilindro.

La presión media efectiva al freno (*bmep*) es el trabajo externo del eje por unidad de volumen realizado por el motor. Los valores típicos de *bmep* medido para motores de automóvil con aspiración natural dependen de la carga, con valores máximos de aproximadamente 10 bar y valores mayores de aproximadamente 20 bar para motores turbo o sobrealimentados. Según el par, el *bmep* es

$$bmep = \frac{4\pi\tau}{V_d}$$
 (Motor de cuatro tiempos) (4.11)

$$= \frac{2\pi\tau}{V_d}$$
(Motor de dos tiempos) (4.12)

y en términos de potencia, el bmep es

$$bmep = \frac{\dot{w}_b}{V_d N/2}$$
 (Motor de cuatro tiempos) (4.13)

$$= \frac{\dot{W}_b}{V_d N}$$
 (Motor de dos tiempos) (4.14)

El *bmep* también se puede expresar en términos de área del pistón (A_p) , velocidad media del pistón \overline{U}_n , y número de cilindros n_c :

$$bmep = \frac{4\dot{W}_b}{n_c A_p \bar{U}_p}$$
 (Motor de cuatro tiempos) (4.15)

$$= \frac{4W_b}{n_c A_p \overline{U}_p}$$
(Motor de dos tiempos) (4.16)

La presión media efectiva de fricción (fmep) incluye la fricción mecánica del motor, las pérdidas de bombeo durante las carreras de admisión como de escape, y el trabajo para hacer funcionar componentes auxiliares como las bombas de aceite y agua. En consecuencia, la presión media efectiva de fricción (fmep) es la diferencia entre el *imep* y el *bmep*.

$$fmep = imep - bmep \tag{4.17}$$

4.1.3 Eficiencia volumétrica

La eficiencia volumétrica, e_v , se define como la masa de aire y combustible inducida en el cilindro dividido por la masa que ocuparía el volumen desplazado a la densidad (ρ_i) en el colector de admisión. Las restricciones de flujo en el sistema de admisión, incluido el acelerador, el puerto de admisión y la válvula, crean una caída de presión en el flujo de entrada, lo que reduce la densidad y, por lo tanto, la masa del gas en el cilindro. La eficiencia volumétrica es una relación de masa y no una relación de volumen. La eficiencia volumétrica para un motor que funciona a una velocidad *N* es, por lo tanto

$$\mathbf{e}_{v} = \frac{\dot{m}_{in}}{\rho_{i} V_{d} N/2} \tag{4.18}$$

donde \dot{m}_{in} , es la masa de aire (\dot{m}_a) más el caudal del combustible (\dot{m}_f)

$$\dot{m}_{in} = \dot{m}_{a} + \dot{m}_{f} \tag{4.19}$$

En la Ec. 4.19, \dot{m}_f es el caudal del combustible inducido en el colector de admisión. Para un motor de inyección directa, \dot{m}_f = 0. El factor 2 de la Ec. 4.18 explica las dos revoluciones por ciclo en un motor de cuatro tiempos. La densidad del múltiple de admisión se utiliza como condición de referencia en lugar de la atmosférica, de modo que el rendimiento del supercargador no se incluye en la definición de eficiencia volumétrica. Para los ciclos de dos tiempos, un parámetro relacionado con la eficiencia volumétrica llamado relación de suministro se define solo en términos del flujo de aire y la densidad del aire del ambiente en lugar de la densidad del múltiple de admisión.

4.1.4 Consumo específico de combustible

El consumo específico de combustible es una medida comparativa para la eficiencia de convertir la energía química del combustible en el trabajo producido por el motor. Al igual que con la presión media efectiva, hay dos parámetros específicos de consumo de combustible, al freno y el indicado. El consumo de combustible específico al freno (*bsfc*) es el caudal de combustible \dot{m}_f , dividido por la potencia al freno \dot{W}_b . Tiene tres términos que son medidas de forma estándar en una prueba de motor: el caudal de combustible, el torque y la velocidad del motor:

$$bsfc = \frac{\dot{m}_f}{\dot{W}_b} = \frac{\dot{m}_f}{2\pi \tau N}$$
(4.20)

El consumo de combustible específico indicado (isfc) es la relación entre la masa de combustible inyectada durante un ciclo y el trabajo del cilindro indicado, y se utiliza para comparar el rendimiento del motor en simulaciones computacionales que no incluyen la fricción del motor.

$$isfc = \frac{\dot{m}_f}{W_i} \tag{4.21}$$

Los valores típicos de *bsfc* para motores de automóvil con aspiración natural dependen de la carga del motor, con valores que varían de aproximadamente 200 a 400 g/kWh.

El consumo específico de combustible y la eficiencia del motor están inversamente relacionados, de modo que cuanto menor sea el consumo específico de combustible, mayor será la eficiencia del motor. Los ingenieros usan *bsfc* en lugar de eficiencia térmica principalmente porque no existe una definición universal aceptada de eficiencia térmica. Solo que hay un problema al asignar un valor al contenido de energía del combustible conocido como energía de calor de la combustión (q_c); la eficiencia térmica al freno (η) es entonces

$$\eta = \frac{\dot{W}_b}{\dot{m}_f q_c} = \frac{1}{bsfc q_c} \tag{4.22}$$

En la Ec. 4.22 muestra que bsfc es una medida válida de eficiencia siempre que q_c se mantenga constante. Por lo tanto, se pueden comparar dos motores diferentes en función de bsfc siempre que funcionen con el mismo combustible.

4.2 Balance de masa y energía en sistemas de combustión

El proceso de combustión dentro del motor se simula utilizando el modelo multizona. El modelo tiene en cuenta ecuaciones de conservación, las cuales utiliza el software Diesel-RK que implícitamente lleva la parte termodinámica.

La combustión es un proceso de conversión de masa y energía durante el cual la energía de enlace químico se transforma en energía térmica. El combustible reacciona con el oxígeno del aire para formar productos como el dióxido de carbono (CO₂) y el agua (H₂O) que tienen una energía de enlace químico más baja que los reactivos.

Cuando las especies químicas reaccionan entre sí para formar otras especies, sus componentes básicos, los elementos químicos se conservan. El átomo particular que define el elemento, un átomo de C dentro de una molécula de CH₄, por ejemplo, se encontrará dentro de la molécula de CO₂ después de que se complete la combustión.

4.2.1 Conservación de masa

Consideramos un sistema de múltiples componentes con n diferentes especies químicas que contiene una gran cantidad de moléculas. Luego 6.0236×10^{23} moléculas se definen como un mol. El número de moles de especies i que denoté con n_i y su suma es el número total de moles n_s

$$n_s = \sum_{i=1}^n n_i \tag{4.23}$$

La fracción molar de las especies i ahora está definida

$$X_i = \frac{n_i}{n_s}, \quad i = 1, 2, ..., n.$$
 (4.24)

4.2.2 Conservación de especies

La masa m_i de todas las moléculas de las especies i está relacionada con su número de moles por

$$m_i = M_i n_i \tag{4.25}$$

donde M_i es el peso molecular de las especies i. La masa total de todas las moléculas en la mezcla es

$$m = \sum_{i=1}^{n} m_i \tag{4.26}$$

La fracción másica de las especies i ahora se define

$$Y_i = \frac{m_i}{m}, \quad i = 1, 2, ..., n.$$
 (4.27)

donde m_i es la masa de la especie *i* y *m* es la masa total dentro del cilindro de control. Las ecuaciones de especies se deducen de sus contrapartes multidimensionales descuidando los términos de difusión de especies, de acuerdo con el supuesto de dimensión cero y se escriben como:

$$\frac{d(mY_i)}{dt} = \sum_j \dot{m}_j Y_i^j + \dot{S}_{gen}$$
(4.28)

donde Y_i^j son los coeficientes estequiométricos en el lado del producto y \dot{S}_{gen} es la tasa de generación neta de la especie *i* y está dada por

$$\dot{S}_{gen} = \Omega_i M_i \tag{4.29}$$

donde Ω_i es la tasa de producción molar.

Combinando la Ec. (28), Ec. (29) y la ecuación de continuidad, la ecuación de conservación de especies finalmente puede reescribirse como:

$$Y_i = \sum_j \left(\frac{\dot{m}_j}{m}\right) \left(Y_i^j - Y_i^{cyl}\right) + \frac{\Omega_i M_i}{\rho}$$
(4.30)

donde \dot{m}_j es el flujo másico de la especie *j*, Y_i^{cyl} son los coeficientes estequiométricos en el lado de los reactivos y ρ es la densidad

Definiendo el peso molecular M por

$$m = Mn_s \tag{4.31}$$

se obtiene la relación entre fracciones molares y fracciones másicas

$$Y_i = \frac{M_i}{M} X_i \tag{4.32}$$

el peso molecular puede calcularse si se conocen las fracciones molares o las fracciones másicas

$$M = \sum_{i=1}^{n} M_i X_i = \left[\sum_{i=1}^{n} \frac{Y_i}{M_i}\right]^{-1}$$
(4.33)

4.2.3 Conservación de energía

La primera ley de la termodinámica describe el equilibrio entre las diferentes formas de energía y, por lo tanto, define la energía interna.

$$\frac{d(mu)}{dt} = -p\frac{dv}{dt} + \frac{dQ_{ht}}{dt} + \sum_{j} \dot{m}_{j}h_{j}$$
(4.34)

Aquí dQ_{ht}/dt es la transferencia de calor del sistema, d(mu)/dt es el cambio de energía interna y -p dv/dt es el trabajo debido a los cambios volumétricos. La entalpía específica *h* está relacionada con la energía interna específica *u* por

$$h = u + pv = u + \frac{RT}{M} \tag{4.35}$$

donde $v = 1/\rho$ es el volumen especifico, *R*, es la constante universal de los gases.

En un sistema multizona, la energía interna específica y la entalpía específica son las sumas en masa de las cantidades específicas de todas las especies.

$$u = \sum_{i=1}^{n} Y_{i} u_{i}, \qquad h = \sum_{i=1}^{n} Y_{i} h_{i}, \qquad (4.36)$$

4.3 Modelo de fricción

El modelado de la presión media efectiva de fricción (fmep) de un motor y la determinación de las pérdidas asociadas son necesarias para evaluar la presión media efectiva al freno y la potencia al freno.

4.3.1 Modelo de fricción de McAulay

McAulay et al. [1966] propuso que la pérdida total en el motor de encendido por compresión de un solo cilindro variaba linealmente con la presión máxima dentro del cilindro y también con la velocidad del pistón. McAulay utilizo varias definiciones y relaciones para el modelo de fricción, como

$$fmep = rmep + amep + pmep = gimep - bmep$$
 (4.37)

donde *rmep* es la fricción por roce entre piezas mecánicas, *amep* es la fricción debido a accesorios, en este caso las bombas, agua y aceite, *pmep* es el trabajo neto durante la admisión y el escape, *gimep* es el trabajo neto durante la carrera de compresión y expansión (McAulay et al, 1966).

4.3.2 Modelo de fricción de Chen y Flynn

Chen y Flynn (1965) también propusieron una correlación similar a la de McAulay, para el modelado de la fricción del motor. El modelo de Chen y Flynn proporciona una ecuación (Datta, 2016-2) simplificada que considera la mayoría de las pérdidas en términos de fmep.

$$fmep = a + BP_{max} + S\overline{U}_p \tag{4.38}$$

donde *a*, *B* y *S* son constantes, que dependen de la geometría del motor, *Pmax* es la presión máxima del cilindro en bar y \overline{U}_p es la velocidad media del pistón en m/s. La correlación de Chen y Flynn puede ser utilizada en el software Diesel-RK, solo tiene que ser cargada en el mismo por el usuario.

4.3.2 Modelo de fricción de Diesel-RK

Para la *fmep* el software Diesel-RK tiene predeterminada la Ec. 4.39 para el modelo de fricción, la ecuación se encuentra descrita en el mismo software en la zona de parámetros generales (fricción) (Diesel-RK).

$$fmep = A_f \overline{U}_p + B_f \cdot p_m \tag{4.39}$$

donde A_f , B_f son coeficientes empíricos, \overline{U}_p es la velocidad media del pistón en m/s y p_m es la presión media o motorizada (etapa de compresión) del cilindro (bar).

Los valores de los coeficientes empíricos $(A_f \ y \ B_f)$ logran que la presión de fricción se calcule correctamente en diferentes modos. Para motores de cuatro tiempos: $A_f = 0.06...0.12$; $B_f = 0.06...0.11$; y para motores de dos tiempos: $A_f =$ 0.03...0.06; $B_f = 0.03...0.06$. Estos valores se logran ver en una de las ventanas del software Diesel-RK.

4.4 Modelo de liberación de calor

El software Diesel-RK utiliza un modelo de combustión multizona (Kuleshov 2007) donde el proceso de liberación de calor se describe en cuatro fases principales (Kuleshov 2005). Sus características físicas y químicas son diferentes, pero cada una tiene efecto sobre la velocidad de liberación de calor (Datta, 2016-2).

Al modelar el motor con inyección múltiple, la combustión de cada porción inyectada se simula por separado teniendo en cuenta los valores de la masa de combustible inyectado y la relación aire-combustible para cada porción (Kuleshov 2005, 2006, 2007).

Kuleshov dice que el período de retraso de autoignición debe predecirse para cada porción de combustible durante la inyección múltiple. El combustible de las porciones segunda, tercera y posterior se puede inyectar después de TDC con gran retraso y en un entorno con una gran fracción de gas quemado. Estas condiciones específicas hacen que el uso de fórmulas clásicas para el cálculo del período de retraso de autoignición sea incorrecto (Kuleshov 2005, 2006, 2007). La ecuación que proporciona un buen acuerdo entre los resultados de la simulación y las mediciones para varios tipos de motores se derivó por Kuleshov (2006) sobre la base del procesamiento experimental de datos. El período de retraso de autoignición para cada porción j se determina a partir de la expresión:

$$\tau_{ij} = C_t C_c \tau_{ih} \tag{4.40}$$

donde Kuleshov (2006, 2007) determina, C_t , como el factor de corrección que representa la tasa de crecimiento de la temperatura durante el período de retraso de autoignición para la porción *j*; C_c , es el factor de corrección que representa la concentración de productos de combustión en el momento del encendido de la porción; τ_{ih} , es el período de retraso de autoignición obtenido para la porción *j* por integración (Heywood, 1988, Kannan et al, 2012) de las relaciones:

$$\int_{0}^{\tau_{ih}} \frac{dt}{\tau_i} = 1 \tag{4.41}$$

Heywood (1988) dice que el tiempo de inyección en condiciones normales del motor (velocidad baja a media, motor completamente calentado), el retraso mínimo ocurre con el inicio de la inyección a aproximadamente 10 ° a 15 ° BDC. El aumento en el retraso con el tiempo de inyección anterior o posterior ocurre porque la temperatura y la presión del aire cambian significativamente cerca de TDC. Si la inyección comienza antes, la temperatura y la presión iniciales del aire son más bajas, por lo que el retraso aumentará. Si la inyección comienza más tarde (más cerca de TDC),

la temperatura y la presión son inicialmente ligeramente más altas, pero luego disminuyen a medida que avanza el retraso. Las condiciones más favorables para el encendido se encuentran en el medio (Heywood, 1988, Kannan et al, 2012).

Heywood muestra una fórmula empírica, desarrollada por Hardenberg y Hase (1979). para predecir la duración del período de retardo de autoignición en motores DI. Esta fórmula proporciona el retraso de autoignición (en grados de ángulo del cigüeñal) en términos de temperatura de carga T_m (Kelvin) y presión p_m (bar) durante el retraso (tomado como condiciones TDC) como

$$\tau_i(CA \ o \ \theta) = (0.36 + 0.22\overline{U}_p)exp\left[E_a\left(\frac{1}{RT_m} - \frac{1}{17190}\right)(p_m)^{0.63}\right]$$
(42)

Diesel-RK predice la duración del período de retardo de autoignición (τ_i , seg.) utilizando la ecuación de Tolstov, modificada por Kuleshov (2005, 2006, 2007)

$$\tau_i = 3.8 \times 10^{-6} (1 - 1.6 \times 10^{-4} . N) \sqrt{\frac{T_m}{p_m}} \exp\left(\frac{E_a}{8.312T_m} \cdot \frac{70}{CN + 25}\right)$$
(43)

donde Kuleshov (2005, 2006, 2007,2009) determina como $E_a = 23000 \dots 28000$ kJ/kmole, es la energía de activación para el proceso de autoignición, *CN* es el número de cetano del combustible, T_m y p_m son la temperatura (K) y presión(Mpa) media (motorizada) del cilindro en la liberación de calor, *R* es la constate universal de los gases.

Durante la combustión premezclada (la segunda fase) (Datta, 2016-2) la tasa de liberación de calor viene dada por

$$\frac{dx}{dt} = \phi_0 \times \left(A_0 (\dot{m}_f / V_i) \times (\sigma_{ud} - x) \times (0.1 \times \sigma_{ud} + x_0) \right) + \phi_1 \times (d\sigma_u / dt)$$
(4.44)

donde Kuleshov (2008) determina como *x*, la fracción del calor liberado o la fracción del combustible quemado; x_0 es la fracción del vapor de combustible formado durante el período de retraso del encendido y quemado en el instante *t*, σ_{ud} es la fracción del vapor formado durante el período de retraso del encendido y V_i es el volumen del cilindro al comienzo de la temperatura de combustión (HTC, High Temperature Combustion) de la porción de combustible actual en m³.

La tasa de liberación de calor durante la tercera fase (llamada fase de combustión controlada por mezcla) (Datta, 2016-2) se calcula utilizando la siguiente ecuación:

$$\frac{dx}{dt} = \phi_1 \times (d\sigma_u/dt) + \phi_2 \times (A_2(\dot{m}_f/V_c)(\sigma_u - x)(\lambda - x))$$
(4.45)

donde Kuleshov (2005, 2006, 2007, 2009) determina como V_c , es el volumen del cilindro en TDC, m³, σ_u es la fracción de combustible evaporado hasta el momento actual y λ es la relación de equivalencia A/F.

Después de la inyección de combustible, en la fase de combustión tardía (Datta, 2016-2), que es la última etapa, la tasa de liberación de calor viene dada por:

$$\frac{dx}{dt} = \phi_3 A_3 K_T (1-x)(\xi_b \lambda - x) \tag{4.46}$$

donde Kuleshov (2005, 2006, 2007, 2009) determina como ξ_b , es la eficiencia del aire, K_T tiene en cuenta la destrucción de los flujos cercanos a la pared en la corona del pistón debido a la aceleración del pistón y está relacionado por un espacio estrecho entre el pistón y la culata:

$$K_{T} = \begin{cases} 1, & \text{if } Z < Z_{n} \\ 1 + 3000_{crown} (Z^{2} - Z_{n}^{2}), \text{if } Z \ge Z_{n} \end{cases}$$

$$Z = (dV/d\theta)/V$$
(4.47)

donde Kuleshov (2005, 2006, 2007, 2009) determina como V, es el volumen actual del cilindro, en el instante θ , Z_n es Z a 15° después del TDC. El modelo de combustión presentado, permite predecir la liberación de calor en el cilindro sin recalibración para cada modo de operación.

En las Eqs (4. 44), (4.45) y (4.46) se supone que $\phi_0 \approx \phi_1 \approx \phi_2 \approx \phi_3 = \phi$ (Kuleshov 2008), representan funciones que describen la finalización de la combustión del combustible en forma de vapor, la cual viene dada por (Kuleshov 2005,2006,2007,2009)

$$\phi = 1 - \frac{A_1}{\xi_b \lambda - x} \left\{ r_v + \sum_{i=1}^{m_w} \left[300 r_{wi} exp\left(\frac{-16000}{2500 + T_{wi}}\right) \right] \right\} \frac{dx}{dt}$$
(4.48)

donde Kuleshov (2005, 2006, 2007, 2009) determina como A_0 , A_1 , A_2 y A_3 , son factores empíricos que dependen de la velocidad del motor y la intensidad de turbulencia de inyección de carga fresca, m_w es el número actual de zonas formadas por el flujo cercano a la pared, T_{wi} es la temperatura de la pared de una zona correspondiente, r_v es la tasa de evaporación relativa en las zonas de unión con el exterior y el frente, r_{wi} es la tasa de evaporación relativa en diferentes zonas de flujo cerca de la pared (Kuleshov 2005, 2006, 2007, 2009)

$$r_{v} = \frac{d \sigma_{u \, env}/dt + d\sigma_{u \, front}/dt}{d\sigma_{u}/dt},$$

$$r_{wi} = \frac{d \sigma_{u \, wi}/dt}{d\sigma_{u}/dt}$$
(4.49)
(4.50)

La eficiencia del aire (ξ_b) se describe por la relación de la equivalencia actual de la relación A/F en zonas de combustión con la relación general A/F en el cilindro definido como λ . Sobre la base de las pruebas de análisis de gas para diferentes

motores diesel, Razleytsev (1980) obtuvo la expresión ξ_b y presentada por Kuleshov (2005, 2006, 2007, 2009) en la forma:

$$\xi_{b} = 1 - 1.46(1 - \xi_{b0}) \frac{\bar{\varphi}_{z}}{\bar{\varphi}_{z0}} \frac{2}{\pi} exp \left[-\frac{1}{2} \left(\frac{\bar{\varphi}_{z}}{\bar{\varphi}_{z0}} \right)^{2} \right]$$
(4.51)

donde Kuleshov (2005, 2006, 2007) determina como $\bar{\varphi}_{z0} = 0.25 \dots 0.35$ es una constante, $\bar{\varphi}_z = \varphi/\varphi_z$ es ángulo del cigüeñal (θ) actual desde el inicio de la combustión (φ) relacionada con la duración de la combustión convencional φ_z , $\xi_{b0} = 0.45 \dots 0.55$ para motores diesel con tazón de pistón compacto, y $\xi_{b0} = 0.40 \dots 0.45$ para motores diesel de velocidad media y alta con cámara de combustión abierta (Hesselman). La duración de la combustión convencional (φ_z) está determinada por el período de evaporación de las gotas grandes inyectadas al final de la inyección (Kuleshov 2005, 2006, 2007, 2009).

$$\varphi_{z} = (\tau_{inj} - \tau_{i} + \tau_{l\,burn}) 6N; \qquad (4.52)$$

$$\tau_{l\,burn} = d_{l}^{2} / K_{u} [1 + 2.5 \cdot 10^{6} K_{o} / (\lambda - 1)]; K_{u} = Y K_{0}$$

donde Kuleshov (2005, 2006, 2007, 2009) determina como d_l , el diámetro de la gota más grande, τ_{inj} es la duración de inyección (seg.), $\tau_{l \ burn}$ es el tiempo de evaporación y combustión de grandes gotas de combustible (seg.) y τ_i es el período de retardo de ignición (seg.) definido por la Ec. 4.43.

La experiencia de la calibración del modelo RK propuesto por Kuleshov (2005, 2006, 2007, 2009) para diferentes motores permite recomendar lo siguiente para los factores empíricos (A_0 , A_1 , A_2) de las Eqs. (4.44, 4.45 y 4.48).

$$A_0 = a_0 (R_s N)^{0.5}; A_1 = 0.04 / (R_s N)^{0.5}; A_2 = 9 (R_s N)^{0.5}$$
 (53)

donde $R_s = \omega_s / \omega$ es la relación de turbulencia (swirl ratio), donde ω_s , es la velocidad angular de turbulencia de inyección de la carga fresca (rad/s) (Kuleshov 2005, 2006, 2007, 2009).

Las ecuaciones anteriores se utilizan para el cálculo del proceso de trabajo de motores diésel de dos y cuatro tiempos. El método descrito anteriormente constituye el núcleo de esa parte del software Diesel-RK, que se ocupa de los cálculos de los motores de encendido por compresión. Durante el proceso de simulación, se tiene en cuenta la transferencia de calor en el cilindro y los coeficientes de transferencia de calor para sus diferentes zonas se calculan utilizando la ecuación de Woschni (1967).

La correlación de Woschni (1967) se desarrolló utilizando un análisis de balance de calor para cada carrera de un motor diésel de inyección directa, el cual utiliza una velocidad de gas característica variable para tener en cuenta el aumento de la velocidad del gas inducida por la combustión.

La correlación de Woschni es

$$Nu = 0.035 \, Re^{0.8} \tag{4.54}$$

Donde Nu es el número de Nusselt y Re es el número de Reynolds.

La velocidad característica del gas en la correlación de Woschni (1967) es proporcional a la velocidad media del pistón durante la admisión, la compresión y el escape. Durante la combustión y la expansión, con las válvulas cerradas, se supone que las velocidades del gas aumentan por el proceso de combustión, por lo que la velocidad del gas (U_g) tiene términos tanto de velocidad del pistón como de aumento de la presión de combustión (Woschni, 1967).

$$U_g = 2.28\overline{U}_p + 0.00324T_r \frac{V_d}{V_r} \frac{P_{inc} - P_m}{P_r}$$
(4.55)

donde:

 \overline{U}_p = velocidad media del pistón (m/s)

Pinc = es el aumento de presión debido a la combustión en el cilindro

 T_r = temperatura al cerrar la válvula de admisión (K)

 V_r = volumen del cilindro al cerrar la válvula de admisión (m³)

 P_r = presión al cerrar la válvula de admisión (kPa)

 V_d = volumen de desplazamiento (m³)

 P_m = presión motorizada (kPa)

La presión motorizada es el cilindro de presión en ausencia de combustión. Para obtenerlo, debe detener la inyección y registrar la presión del cilindro. Esta presión es un dato experimental.

La Ec. 4.55 para la velocidad del gas es aplicable cuando las válvulas de admisión y escape están cerradas y se produce la combustión. Cuando las válvulas están abiertas, los gases del cilindro tienen una velocidad característica diferente que resulta del flujo dentro o fuera del cilindro. En este caso, la correlación de Woschni (1967) utiliza

$$U_g = 6.18\overline{U}_p \tag{4.56}$$

Las constantes en la correlación de Woschni (1967) se determinaron haciendo coincidir los resultados experimentales de un motor dado. Cuando se aplica a cualquier otro motor, las constantes para el coeficiente de transferencia de calor y
la velocidad característica son, en el mejor de los casos, estimaciones, sin embargo, se pueden ajustar para que coincidan con el motor que se esté analizando.

4.5 Modelado de formación de NOx

De todos los óxidos de nitrógeno, el *NO* (óxido nítrico) es predominante en las emisiones de motores diésel. La principal fuente de NO es la oxidación del nitrógeno atmosférico (molecular). Sin embargo, si el combustible contiene nitrógeno del combustible es una fuente adicional de NO (Heywood, 1988). Por lo tanto, se considera la formación de *NO* después del mecanismo de Zeldovich. Kuleshov (2006) describió el procedimiento. Consiste en el cálculo paso a paso de la composición de equilibrio de los productos de combustión para dieciocho especies en la zona de gas quemado. El *NO* térmico se calcula utilizando el mecanismo de Zeldovich en cadena y las reacciones básicas para la formación de *NO* son las siguientes (Datta, 2016-2):

$$0_{2} \leftrightarrow 20$$

$$N_{2} + 0 \leftrightarrow N0 + N$$

$$N + 0_{2} \leftrightarrow N0 + 0$$
(4.57)

Donde 0_2 es el oxígeno, N_2 es el nitrógeno.

Ferguson (2015) dice que la segunda reacción Ec. (4.57), es una reacción de disociación de nitrógeno desencadenada por un átomo de oxígeno. Esta reacción es lenta y, por lo tanto, limita la velocidad, ya que es endotérmica con una energía de activación de 75.0 kcal. La tercera reacción, la Ec. (4.57), es muy rápida, ya que un átomo de nitrógeno reacciona exotérmicamente (+31.8 kcal) con una molécula de oxígeno para formar óxido nítrico y un átomo de oxígeno (Ferguson, 2015).

Heywood [1988] dice que *NO* se forma tanto en el frente de la llama como en los gases posteriores a la llama. Sin embargo, en los motores, la combustión se produce a alta presión, por lo que la zona de reacción de la llama es extremadamente delgada (~ 0.1 mm) y el tiempo de residencia dentro de esta zona es corto. Además, la presión del cilindro aumenta durante la mayor parte del proceso de combustión, por lo que los gases quemados producidos temprano en el proceso de combustión se comprimen a una temperatura más alta que la que alcanzaron inmediatamente después de la combustión. Por lo tanto, la formación de *NO* en los gases posteriores a la llama casi siempre domina cualquier *NO* producido por el frente de llama. Por lo tanto, es apropiado suponer que los procesos de combustión y formación de *NO* están desacoplados y aproximar las concentraciones de 0, 02, 0H, H y N, por sus valores de equilibrio a la presión local y la temperatura de equilibrio (Heywood 1988).

Las reacciones de la Ec. 4.57 dependen de la concentración de oxígeno atómico. La concentración en volumen de *NO* formado en los productos de combustión se obtiene de la siguiente ecuación (Datta, 2016-2).

$$\frac{d[NO]}{d\theta} = \frac{p_{max} \times 2.333 \times 10^7 \cdot e^{-\frac{38020}{T_z}} [N_2]_e \cdot [O]_e \cdot \{1 - ([NO]/[NO]_e)^2\}}{R \cdot T_z \cdot \left(1 + \frac{2365}{T_z} \cdot e^{\frac{3365}{T_z}} \cdot \frac{[NO]}{[O_2]_e}\right)} \cdot \frac{1}{\omega}$$
(4.58)

donde Datta (2016-2) determina como, $[N_2]_{e,}[O]_e,[NO]_e,[O_2]_e$ son las concentraciones de equilibrio; molecular del nitrógeno, atómico de oxígeno, de un óxido de nitrógeno y de oxígeno, respectivamente y T_z es la temperatura del gas quemado en una zona.

Las altas temperaturas y las altas concentraciones de oxígeno dan como resultado altas tasas de formación de NO. La Figura 4.2 muestra la tasa de formación de *NO* en función de la temperatura del gas y la relación de equivalencia combustible/aire (ϕ) en gases post-llama. También se muestra la temperatura de llama adiabática alcanzada por una mezcla de combustible y aire inicialmente a 700 K a una presión constante de 15 atm. Para la combustible que se quema en un motor), esta tasa inicial de formación de NO alcanza su punto máximo en la composición estequiométrica y disminuye rápidamente a medida que se vuelve más pobre o más rica (Heywood 1988).

Figura 4.2. Velocidad inicial de formación de NO, fracción de masa por segundo (para [NO] / [NO], <1), en función de la temperatura para diferentes proporciones de equivalencia (ϕ) y una presión de 15 atm (Heywood, 1988).

Kuleshov (2006) realizo las concentraciones de equilibrio de dieciocho especies se calculan en cada paso de tiempo. El sistema general de ecuaciones incluye catorce ecuaciones de equilibrio, tres ecuaciones de equilibrio de materiales y la ecuación de Dalton de presión parcial.

La concentración de *NO* en un cilindro viene dada por $r_{NOC} = r_{NO}r_{bc}$, siendo r_{bc} la fracción de gas quemado (Datta, 2016-2).

La concentración de *NO* del gas quemado "seco" dentro del cilindro se obtiene como $r_{NO_{seco}} = r_{NO} / (1 - r_{H_2O})$

donde r_{H_20} es una fracción en volumen de vapor de agua en la cámara de combustión (Datta, 2016-2).

La emisión específica de NO en g/kWh se define como (Datta, 2016-2).

$$e_{NO} = \frac{30r_{NO}m_{bg}}{L_c\eta_m} \tag{4.59}$$

donde Datta (2016-2) determina como m_{bg} , la masa del gas quemado dentro del cilindro al final de la combustión en kmol, L_c es el trabajo del ciclo en kJ y η_m es la eficiencia mecánica del motor.

4.6 Formación de hollín y partículas.

La formación de hollín es un problema importante en los motores diésel y se forma debido a la combustión incompleta de combustibles de hidrocarburos. El hollín puede describirse como una dispersión fina de partículas de carbono negro en un vehículo de vapor. El hollín se forma principalmente debido a la transformación destructiva en cadena de las moléculas de combustible que se difunden desde la superficie de las gotas hacia el frente de una llama y la polimerización térmica a alta temperatura y la deshidrogenación de un núcleo vapor-líquido de gotas que se evaporan. Simultáneamente, el proceso de combustión u oxidación de partículas de hollín reduce su concentración volumétrica. La tasa de formación de hollín en la zona de combustión se calcula utilizando la siguiente ecuación mencionada por Alkidas (1984):

$$\left(\frac{d[C]}{dt}\right)_{k} = 0.004 \frac{q_{c}}{V_{d}} \frac{dx}{dt}$$
(4.60)

donde *C* es la concentración de carbono o de masa de hollín (conocido como "humo").

El nivel de formación de hollín se puede expresar como el nivel de humo de Hartridge o el número de humo de Bosch, los cuales son medidores de humo

comerciales (Alkidas, 1984). El nivel de humo en Diesel-RK se calcula usando Hartridge

$$Hartridge = 100\{1 - 0.9545\exp(-2.4226[C])\}$$
(4.61)

Alkidas (1984) también presentó una correlación para Diesel-RK para la emisión de partículas en función del número de humo de Bosch y está dada por

$$[PM] = 565 \left(ln \frac{10}{10 - Bosch} \right)^{1.206}$$
(4.62)

donde *PM* es la concentración de masa en partículas, que incluye tanto carbono como material volátil, numero de Bosch es la concentración de carbono de los gases de escape sin diluir (Alkidas, 1984).

4.7 Modelo de combustión de pulverización de combustible diésel

Kuleshov (2008) dice que la base teórica del modelo se basa en el método por McAulay et al. (1966) en el que el combustible inyectado en la cámara de combustión del motor se divide en una serie de zonas específicas. De acuerdo con la referencia (McAulay et al, 1966) la posición actual y la velocidad de una porción de control del combustible (CPF, control portion of fuel) están relacionadas como

$$\left(\frac{U}{U_o}\right)^{3/2} = 1 - \frac{l}{l_m}$$
(4.63)

En la Fig. 4.3 se presenta la variación de los parámetros de evolución del rociado l, l_m , U y U_m como funciones del tiempo para un motor diesel de velocidad media.

Figura 4.3 (a) simplifica el rociado y las variaciones de los parámetros de evolución del rociado l, l_m , U y U_m , así como funciones del tiempo para un motor diésel de velocidad media en (b) (Kuleshov, 2008).

Donde Kuleshov (2008) U_m , la velocidad del frente de pulverización (m/s); U_0 , es la velocidad inicial de la pulverización en la boquilla (m/s); U, es la velocidad de la porción de control de combustible (m/s); l es la longitud de la pulverización (m); l_m , es la distancia de penetración de la porción de control de combustible (m); t,es el instante de tiempo cuando se inyecta el aerosol (seg); t_s , el tiempo absoluto desde el inicio de la inyección de combustible (seg); t_m , el tiempo de viaje para que la porción de control de combustible alcance el frente de pulverización antes de detenerse.

La solución de la ecuación (4.63) encontrada por kuleshov (2008)

$$3l_m \left[1 - \left(1 - \frac{l}{l_m} \right)^{0.333} \right] - U_0 t_k = 0$$
(4.64)

Donde Kuleshov determina como t_k , tiempo de viaje para que la porción de control de combustible alcance la distancia *l* desde la boquilla del inyector.

Para l = lm

$$t_k = t_m \quad y \quad l_m = U_0 \frac{t_m}{3}$$
 (4.65)

De las ecuaciones (4.63) a (4.65)

$$U = U_0 \left(1 - \frac{t_k}{\tau_m} \right)^2 \tag{4.66}$$

$$l = l_m \left[1 - \left(1 - \frac{t_k}{t_m} \right)^3 \right]$$
(4.67)

Kuleshov (2008) introduce varios parámetros adimensionales para calcular la geometría de la pulverización, que explica los parámetros de diseño del inyector y las propiedades físicas del combustible, a saber

$$W_e = U_{0m}^2 d_n \frac{\rho_f}{\sigma_f} \tag{4.68}$$

$$Oh = \frac{\mu_f^2}{\left(\rho_f d_n \sigma_f\right)} \tag{4.69}$$

$$\Phi = \frac{t_s^2 \sigma_f}{\left(\rho_f d_n^3\right)} \tag{4.70}$$

$$\rho' = \frac{\rho_{aire}}{\rho_f} \tag{4.71}$$

donde Kuleshov [2008] determina como W_e , Oh, $\Phi y \rho'$ son parámetros adimensionales, conocidos como numero Weber, numero de Ohnesorge, criterio adimensional y densidad adimensional, respectivamente, U_{0m} , es la velocidad

media de la pulverización en la boquilla; d_n , el diámetro de las boquillas (mm); ρ_f densidad del combustible; ρ_{aire} , densidad del aire, σ_f , coeficiente de tensión superficial del combustible; μ_f , viscosidad dinámica del combustible. Al modelar el comportamiento del rociado de combustible, Kuleshov (2008) supone que su evolución se produce en dos fases, a saber, inicial (a) y principal (b). El límite entre estas dos fases se denota por distancia desde la boquilla hasta el límite entre dos fases de la evolución del rociado (l_g , m), y el período de tiempo de viaje para que la porción de control de combustible alcance el límite entre dos fases de la evolución del rociado (t_g , seg).

$$l_g = C_s d_n W e^{0.25} O h^{0.4} (\rho')^{-0.6}$$
(4.72)

$$t_g = \frac{l_g^2}{B_s} \tag{4.73}$$

donde

$$B_{s} = d_{n} U_{0m} W e^{0.21} \frac{Oh^{0.16}}{\left(D_{s} \sqrt{2}\rho'\right)}$$
(4.74)

En las Ecs. (4.68) a (4.70) los valores de C_s y D_s para los cálculos del motor diesel varían de 8.25 a 8.85 y de 4.5 a 5, respectivamente.

La longitud de la pulverización y su ángulo de cono durante las fases inicial (l_a y γ_a) y principal (l_b y γ_b) se calculan como (Kuleshov 2008)

donde, l_a , l_b , son la longitud del rociado durante las fases inicial y principal de su evolución, respectivamente (m); γ_a , γ_b , son el ángulo del cono del aerosol durante las fases inicial y principal de su evolución, respectivamente (θ) y A_s , B_s , C_s , D_s , E_s , F_s son coeficientes (Kuleshov 2008)

 l_b

$$l_a = A_s \Phi^{0.35} exp\left[-0.2\left(\frac{t_s}{t_g}\right)\right] \tag{4.75}$$

$$\gamma_a = 2 \times \operatorname{arctg}(E_s W e^{0.35} O h^{-0.07} \Phi^{-0.12} \rho^{0.5} e^{0.07 t_s/t_g})$$

$$=B_s^{0.5}t_s^{0.5} \tag{4.77}$$

$$\gamma_b = 2 \times arctg(F_s W e^{0.32} O h^{-0.07} \Phi^{-0.12} \rho^{0.5})$$
(4.78)

donde

$$A_s = 1.22 l_g \Phi_g^{-0.35} \tag{4.79}$$

$$E_s = 0.932 F_s W e^{-0.03} \Phi_g^{0.12} \tag{4.80}$$

y el parámetro Φ_g se determina usando la ec. (4.70) en que $t_s = t_g$ y $F_s = 0.0075 - 0.009$ (Kuleshov, 2008)

Las ecuaciones (4.72) a (4.78) se usan generalmente para motores diésel con diámetros de boquilla de inyector mayores a 0.3 mm. Estas ecuaciones no producen resultados precisos cuando se aplican para la determinación de la distancia de penetración de pulverización en motores diésel de alta velocidad en los que el diámetro de la boquilla es inferior a 0,3 mm. Para eliminar esta deficiencia, se propone introducir en los cálculos la siguiente ecuación (Kuleshov, 2008).

$$D_s = \frac{14.21}{D_f}$$
(4.81)

donde

$$D_f = \begin{cases} 2.9, & \text{if } d_d \ge 0.3\\ 2.9(9.749 \cdot d_n^2 + 7.45 \cdot d_n^2) - 7.21 \cdot d_n + 2.224 & \text{if } d_d < 0.3 \end{cases}$$
(4.82)

En la ecuación (4.82) d_n es el diámetro de la boquilla medido en milímetros. Las ecuaciones (4.81) y (4.82) se han obtenido como resultado del análisis de datos experimentales sobre la dependencia de una distancia de penetración de rociado de combustible del valor del diámetro de la boquilla y la presión de inyección publicada en las referencias (Arrègle et al, 1999, Pastor et al, 2000, Larmi et al, 2002 (Nakagawa et al, 1990). En estas investigaciones, el diámetro de la boquilla y las presiones de inyección variaron de 0.11 a 0. 45 mm y de 300 a 1200 bar, respectivamente. Los resultados de este análisis demuestran que la presión de la inyección de combustible no afecta significativamente el valor de D_s . La variación de D_s en función de d_n se muestra en la Fig. 4.4.

Figura 4.4: Variación de D_s en función del diámetro de la boquilla d_n (Kuleshov, 2008).

Kuleshov (2008) dice que si existe una turbulencia de inyección de la carga fresca con velocidad angular ω_s en la cámara de combustión, entonces la pulverización se deforma y desvía una cierta distancia y en la dirección tangencial dentro de la cámara, como se muestra en la Fig. 4.5. La deformación de la forma cónica inicial de la pulverización se caracteriza por los parámetros $y, y3, y4 y r_f$. El cálculo de la distancia de desviación y la deformación en términos de $y, y3, y4 y r_f$ se puede realizar de acuerdo con el método descrito en las referencias (Kuleshov, 2007,2006). Cuando el rocío llega a las paredes de la cámara de combustión, se forma un flujo denso cerca de la pared (NWF), que consiste en gotas de combustible y aire, y se propaga en todas las direcciones en la superficie de la cámara de combustión (Kuleshov, 2008).

Figura 4.5: Forma del rocío de combustible y el flujo cercano a la pared en la cámara de combustión del flujo de aire con turbulencia (Kuleshov, 2008).

La forma del área de flujo de la pared cercana que se puede definir utilizando los parámetros $l_{w1} - l_{w4}$ depende de los ángulos de impacto $\gamma_1 - \gamma_4$ (Fig. 4). Estos ángulos se pueden determinar teniendo en cuenta los efectos combinados del flujo de aire con turbulencia, el desplazamiento del pistón y la forma local del tazón del pistón. Los parámetros $l_{w1} - l_{w4}$ se calculan como funciones de $\gamma_1 - \gamma_4$ utilizando las ecuaciones propuestas en la referencia (Gavrilov, 2004).

donde Kuleshov (2008) define l_w , l_{w1} , l_{w2} , l_{w3} , l_{w4} , r_f , y, y_3 , y_4 como dimensiones para definir una forma geométrica del rocío del combustible y el flujo cercano a la pared (m) y γ_1 , γ_2 , γ_3 , γ_4 ángulos para definir una forma geométrica del rocío del combustible y el flujo cercano a la pared (rad/s).

Diesel-RK ha sido una gran herramienta para el estudio y desarrollo de motores de combustión interna, principalmente para investigadores y desarrolladores a nivel mundial. De igual forma puede ser utilizado por estudiantes de manera gratuita a través de internet para realizar sus trabajos de investigación. Para el desarrollo del software los autores se centraron en la optimización de motores, esto es fundamental, ya que los motores tienen que ser optimizados de manera constante, tanto para el rendimiento energético o la reducción de emisiones contaminantes.

Capítulo V. Aprendizaje del software Diesel-RK

En este capítulo se explicará paso a paso el uso del software Diesel-RK, se podrá apreciar la versatilidad del mismo, así como también la facilidad de poder realizar cambios o modificar parámetros del motor que se esté analizando. Para el aprendizaje del software, se simulará el mismo motor (SI) del ejemplo de la sección 2.8, esto con la finalidad de comparar resultados, así como también se simulara un motor de encendido por compresión (CI), ambos motores son reales y cada uno pertenece a un vehículo automotor.

Para poder realizar una simulación se requiere información básica del motor, como diseño del motor (de 2 o 4 tiempos) tipo de motor (en línea o en V), valores generales como el diámetro del cilindro, carrera del cilindro, relación de compresión (r_c), revoluciones máximas permitidas por el motor, así como otros valores que se explicaran en los ejemplos.

5.1. Simulación del motor SI.

El motor es de un vehículo Chevrolet (Chevy 2003) el cual cuenta con un motor tipo transversal de 1.6L (1600cc) de 4 cilindros en línea con 8 válvulas (2 por cilindro), con una relación de compresión de 9.4:1. El manual de fabricante dice que el motor entrega una potencia de 67.5 kW a 5600 rpm y un torque de 127 N-m a 2800 rpm (ver Fig. 2.8), y los valores necesarios para Diesel-RK se muestran en la Tabla 5.1.

Datos técnic	:0S
descripción	valor
Número de cilindros y tipo	4 en línea.
Diámetro y carrera	(D / S) 79/81.5 mm
Relación de compresión	9.4:1
Número de válvulas por cilindro	2
Sistema de refrigeración	líquido
Potencia máxima a RPM nominales	67.5 KW @ 4000 rpm
Torque máximo a RPM	127 N-m @ 1900 rpm

Tabla 5.1 Especificaciones del motor Chevy 1.6L.

5.1.1. Apertura del software e introducción de datos del motor.

En el momento de la apertura del software, emergerá una ventana (Wizard of New **Project Creation)** como se muestra en la Fig. 5.1, en la cual se le tiene que dar clic en next (siguiente).

Figura 5.1 Ventana de inicio del software.

Posteriormente emergerá otra ventana en la cual se tiene que especificar las características del motor como se muestra en la Fig. 5.2, en la parte superior se tiene que seleccionar el ciclo de trabajo (Working Cycle) y el combustible junto con el tipo de encendido (Fuel and Method of ignition):

(Working Cycle)

- Motor de 4 tiempos (Four-stroke Cycle).
- Motor de 2 tiempos (Two-stroke Cycle).

(Fuel and Method of ignition)

- Diésel con inyección directa (DI Diesel).
- Gasolina, encendido por chispa en un motor carburado. (Petrol, SI, Carburation).
- Gasolina, encendido por chispa, con Inyección en el puerto de la válvula de admisión (Petrol, SI, Injection into Port Valve port).
- Gas encendido por chispa (Gas, Spark Ignition).
- Gas encendido por chispa con precamara (Gas, SI with Prechamber).

En este analisis se seleccionará: Motor de 4 tiempos y Gasolina encendido por chispa, con Inyección en el puerto de la válvula de admisión.

Figura 5.2 Selección del tipo de motor y tipo de encendido.

En la tercera ventana se tiene que especificar el diseño básico del motor (Basic Engine Design), el número de cilindros (Number of Cylinders) y el sistema de enfriamiento del mismo (Cooling System) como se muestra en la Fig. 5.3:

(Basic Engine Design)

- Motor en línea (In-Line)
- Motor en V (V-Engine)
- Motor opuesto tipo bóxer (Opposed Engine "Bóxer")
- Motor radial (Radial)

(Number of Cylinders)

• Numero de cilindros (1-100)

(Cooling System)

 Enfriado por liquido (Liquid Cooling)

• Enfriado por aire (Air Cooling) En este análisis se selecciona: motor en línea de 4 cilindros enfriado por líquido.

Figura 5.3 Diseño del motor y tipo de enfriamiento.

En la cuarta ventana como se muestra en la Fig. 5.4, se tienen que especificar valores internos del motor junto con la relación de compresión:

- El diámetro interior del cilindro (Cylinder Bore, D,[mm])
- La carrera del embolo (Piston Stroke, S,[mm])
- Velocidad nominal del motor (Nominal Engine Speed, [rpm])
- Relación de compresión (Compression Ratio)

En este análisis los valores serán:

- Diámetro interior del cilindro: 79 mm
- Carrera del embolo 81.5
- Velocidad nominal del motor 5,600 rpm
- Relación de compresión 9.4

Figura 5.4: Valores internos del motor y relación de compresión.

En la quinta ventana se tiene que especificar los parámetros del medio ambiente (Ambient Parameters on a Sea level) así como a qué se va aplicar el motor (Application) como se muestra en la Fig. 5.5.

(Ambient Parameters on a Sea level)

- Presión del ambiente (Pressure, Po [bar])
- Temperatura del ambiente (Temperature, To [K])

(Application)

- Sobre tierra a nivel del mar (Overland and on the sea)
- Aviación (Aviation)
- Submarino (Submarine)

En el análisis será una presión atmosférica de 1 bar, con una temperatura del medio ambiente de 288 K, y como es un vehículo se selecciona sobre tierra a nivel del mar.

Figura 5.5 Parámetros del medio ambiente y aplicación del motor.

En la sexta ventana se tiene que especificar si el motor es super-cargado o turbocargado (Super-or Turbocharged engine) especificando la relación de presión del mismo como se muestra en la Fig. 5.6, así como también si el vehículo cuenta con interculer (intercooling). Así como también el diseño de la culata (Cylinder Head Desing)

(Cylinder Head Desing)

- 2 válvulas por cilindro (Two Valves)
- 4 válvulas por cilindro (Four Valves)

El motor que se analiza no cuenta con super o turbo cargado, por lo que se tiene que desactivar lo mencionado, de igual manera el interculer y se selecciona 2 válvulas por pistón.

Figura 5.6 súper-cargado o turbo-cargado.

Una vez que ya se especificó las características del motor nos emergerá la ventana principal del software como se muestra en la Fig. 5.7, en la barra superior de componentes se puede modificar lo anteriormente realizado, así como otros valores, que más adelante se mencionaran.

File Engine_Para	ameters Optimization Run Results Op	otions Help				
2 🔁	F 🖁 📴 🔁 🤕	R T T H	🜢 🗠 🖈 🗎 🖾 🏤			
Title	Mode titles	▲ Date	Simulation type	Status	Path	
			ritor			
			DenOSIUT.			
			Vcb.			
<						>
2019-07-11 1	3-21-27 Data file converter: 4.	1.3.140> 4.3.0.189				
Data file wa	s created with previous version	of Diesel-RK.				
2019-07-11 1	3-21-28 New project is created.	sible.				
1						

Figura 5.7 Ventana principal del software.

Antes de empezar la simulación se tiene que modificar las rpm de cada análisis,

para eso presione en **Opereting Mode** , nos emergerá una ventana como se muestra en la Fig. 5.8, en esta se podrá modificar los modos de funcionamiento del motor de acuerdo con las características de rendimiento del motor. En la parte superior de la ventana hay cuatro características que especificar (modo de simulación del proceso dentro del cilindro, parámetros del medio ambiente perdidas de presión antes del compresor, perdidas de presión después de la turbina). En la parte central de la ventana se muestran 10 espacios, en el espacio #1 y #4 se tiene que colocar "Análisis con la potencia máxima" y "Análisis con torque máximo" respectivamente, de igual manera en la parte inferior de la ventana tiene que especificar la velocidad del motor (Engine Speed) en la zona que corresponde para el #1 y #4 debe colocar 5600 y 2800 rpm respectivamente, las cuales pertenecen a la máxima potencia y máximo torque, en el resto de los espacios se puede ir reduciendo gradualmente las rpm, en la parte inferior hay una variedad de parámetros los cuales poder ser modificados si se conocen, de lo contrario se pueden colocar como se muestra en la Fig. 5.8.

S Operating Mode										
-Way of In-Cylinder Process Simulation O Specify Cycle Fuel Mass, [g]	Environment parameters © Set explicitly O Calculate using vehicle velocity and altitude above sea level									
Losses of pressure before compressor Set explicitly Calculate on pressure ratio in inlet device Calculate on pressure ratio in inlet device										
#1 Análisis con la potencia máximal #2 4500 rpm #2 500 cpm			6 1500 7 850 r	rpm pm						
#3 3500 rpm #8 #4 Análisis con torque máximo #9										
#5 2000 rpm										
Engine Speed. [rpm]	5600	4500	3500	2800	2000	1500	850	5600	5600	5600
Air Fuel Equivalence Ratio in the Cylinder	1	1	1	1	1	1	1	1	1	1
Injection / Ignition Timing, [deg B.TDC]	25	25	25	13	25	25	25	25	25	25
Ambient Pressure, [bar]			1	1	1	1	1	1	1	1
Ambient Temperature, [K]	288	288	288	288	288	288	288	288	288	288
Inlet Pressure Losses (before compressor), [bar]	0.02	0.02	0.02	0.001	0.02	0.02	0.02	0.02	0.02	0.02
Differential Pressure in exhaust (tail) system, [bar]	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Fuel Supply Timing, [deg B.TDC]	340	340	340	340	340	340	340	340	340	340
Fuel Supply Duration, [deg B.TDC]	120	120	120	120	120	120	120	120	120	120

Figura 5.8 Modo de operación del motor SI.

Antes de comenzar la simulación, se tiene que guardar el archivo, de lo contrario al momento de empezar a correr nos emergerá la opción de guardar el archivo, solo hasta que este guardado nos dejara realizar la simulación.

5.1.2. Corrida de la simulación del motor SI

Para comenzar, presione en Run $\stackrel{>}{>}$, emergerá una ventana en la cual nos mostrara los modos de operación especificados anteriormente, en la parte inferior podremos observar tres opciones para realizar el análisis como se observa en la Fig. 5.9, y así el software realice los cálculos en base a lo seleccionado.

Run		×
File Name for results (without extens C:\Users\User\Desktop\software R	ion) K\simulaciones gasolina\№	lotor 4 cil, 1600cc\Motor 4 cil, 1600c
Title		
"A/F eq. defines m_f"		
Operating Modes		
 ✓ #1: Análisis con la potencia má ↓#2: 4500 rpm ↓#3: 3500 rpm ↓#4: Análisis con torque máximo ↓#5: 2000 rpm 	ximal #6:1500 rp #7:850 rp #8 #9 #10	om m
ICE simulation	Scanning	Optimizing
🤊 Help		× Cancel

Figura 5.9 Empezando la simulación del motor SI, el software cuenta con tres tipos de simulación (ICE simulation, Scanning, Optimizing).

Dependiendo el tipo de simulación vamos a obtener diferentes resultados (tablas, graficas etc.) por el momento solo se van a explicar (ICE simulation y Scanning).

El primer análisis se realizará con la potencia máxima (5600 rpm) como se muestra en la Fig. 5.9, por lo que para empezar con la simulación se selecciona el punto #1 (análisis con la potencia máxima), y se da clic en **ICE simulation.**

Una vez que se empiece la simulación nos aparecerá una ventana como se muestra en la Fig. 5.10.

Prod.			×	*						
Diesel - RK Packing file Preparing d Connecting	. Clier es0 Jata to g to D	it (4.3.) k. o send iesel-R	0.189) Ok. IK server sr	v1.diesel-rk.b	mstu.ru : 8	0 == Ok.				
<										
Engine To inter	: rrup	4 st: t it:	roke; 4 erations	cyl.; D= and outp	79; S ut resu	= 81; 1 lts pres	RPM= 5600 ss <ctrl< td=""><td>); + F</td><td>SI Pet 10> an</td><td>rol d wait.</td></ctrl<>); + F	SI Pet 10> an	rol d wait.
				Regime: El	NGINE S	IMULATI	DN			
Engine Fuel:	Con	figu: Pet:	ration: rol (reg	Naturally ular)	Aspira	ted ICE	-i-b-14 (
			5 [H]: U	.145 [0]:		(A/F) St	01Cn=14.3			
Elabora	atio	n	Calc	ulated	I.	Setti	ng	Т	No	te
р_Т,	v	I	1.238	144.5	p_T=	1.040;	T_T=107	7	"A"=	4200
р_Т,	v	I	1.234	149.0	p_T=	1.040;	T_T=105	1	"A"=	4200
р_Т,	v	I	1.228	149.4	p_T=	1.040;	T_T=1049	5	"A"=	4263
р_Т,	v	I	1.172	156.1	p_T=	1.040;	T_T=103	9 I	"A"=	4893
р_Т,	v	I	1.133	160.9	p_T=	1.040;	T_T=103	5	"A"=	5523
р_Т,	v	I	1.106	164.3	p_T=	1.040;	T_T=1033	3	"A"=	6153
р_Т,	v	I	1.086	167.0	p_T=	1.040;	T_T=103	2	"A"=	6783
р_Т,	v	I	1.071	169.5	p_T=	1.040;	T_T=103	D I	"A"=	7413
р_Т,	v	I	1.059	171.4	p_T=	1.040;	T_T=102	θI	"A"=	8043
р_Т,	v	I	1.049	172.5	p_T=	1.040;	T_T=103	1	"A"=	8673
р_Т,	v	I	1.042	174.0	p_T=	1.040;	T_T=103	1	"A"=	9303
p_T,	v	I	1.036	175.0	p_T=	1.040;	T_T=1030	D	"A"=	9933
p_T,	v	I	1.042	174.0	p_T=	1.040;	T_T=103	1	"A"=	9303
р_Т,	v	1	1.042	174.0	p_T=	1.040;	T_T=103	1	"A"=	9303

Figura 5.10: Corriendo la simulación.

Si la simulación es correcta, emergerá una ventana cono se muestra en la Fig. 5.11.

-	Information X	ľ
r	Computing is done.	ĸ
	Aceptar	

Figura 5.11: Simulación realizada.

En caso de que no corra la simulación como se debe, nos podría emerger una de las siguientes ventanas como se muestra en la Fig. 5.12.

Error	×	Error ×
Unknown error occur Wrong input data or	red. system fault.	Error occured.
	Aceptar	Aceptar

Figura 5.12: Problemas en la simulación.

Una vez que la simulación sea realizada de manera correcta, se puede empezar a simular el segundo análisis, el cual es para el máximo torque (2800 rpm), y así sucesivamente los análisis que se deseen realizar a las revoluciones deseadas.

5.1.3. Resultados del motor SI

Una vez que finalizo las simulaciones se puede acceder a los resultados:

Para ver los parámetros internos del motor.

Para ver los resultados en formato 1D.

Los resultados de los parámetros internos se muestra en la Tabla 5.2, Diesel-RK muestra una gran diversidad de datos, sin embargo, se sombrearon los que se consideran de mayor importancia, o los que son más similares al ciclo Otto; con amarillo se muestra la potencia (kW), en gris se muestra el torque (N m), en aguamarina la eficiencia energética, purpura los cuatro estados que se describen en los diagramas p-V y T-s, de los cuales se requiere su temperatura y presión, como los que se muestra en la Figs. 2.9 y 2.10 y en color verde las emisiones contaminantes como el NOx y el NO.

Dichos parámetros serán comparados entre las dos revoluciones anteriormente mencionadas.

- 1.- Revoluciones para obtener la máxima potencia (5600 rpm)
- 2.- Revoluciones para obtener el máximo torque (2800 rpm)

Tabla 5.2 Parametros internos del motor s	Tabla 5.2	os del motor SI:
---	-----------	------------------

1 Máxima potencia 5600rpm	2 Máximo torque 2800 rpm
PARAMETERS OF EFFICIENCY AND POWER	PARAMETERS OF EFFICIENCY AND POWER
5600.0 - RPM - Engine Speed, rev/min 67.489 - P_eng - Piston Engine Power, kW 9.0504 - BMEP - Brake Mean Effective Pressure, bar 115.09 - Torque - Brake Torque, N m 0.02789 - m_f - Mass of Fuel Supplied per cycle, g 0.27778 - SFC - Specific Fuel Consumption, kg/kWh 0.28290 - SFC_ISO - Specific Fuel Consumption in ISO, kg/kWh 0.29454 - Eta_f - Efficiency of piston engine 11.724 - IMEP - Indicated Mean Effective Pressure, bar 0.38154 - Eta_i - Indicated Efficiency 15.213 - Sp - Mean Piston Speed, m/s 2.0907 - FMEP - Friction Mean Effective Pressure, bar Intern.Exp) 0.81234 0.81234 - Eta_m - Mechanical Efficiency of Piston Engine ENVIRONMENTAL PARAMETERS 1.0000 - po_amb 1.0000 - po_amb - Total Ambient Pressure, bar 288.00 - To_amb - Total Ambient Temperature, K 1.0000 - p_act - Exhaust Back Pressure, bar (after turbine) 0.98000 - p_a oftr Total Ambient Temperature, Air Filter ha <td>2800.0 - RPM - Engine Speed, rev/min 36.548 - P_eng - Piston Engine Power, kW 9.8023 - BMEP - Brake Mean Effective Pressure, bar 124.66 - Torque - Brake Torque, N m 0.02771 - m_f - Mass of Fuel Supplied per cycle, g 0.25472 - SFC - Specific Fuel Consumption, kg/kWh 0.26791 - SFC_ISO - Specific Fuel Consumption in ISO, kg/kWh 0.32120 - Eta_f - Efficiency of piston engine 11.251 - IMEP - Indicated Mean Effective Pressure, bar 0.36869 - Eta_i - Indicated Efficiency 7.6067 - Sp - Mean Piston Speed, m/s 1.2993 - FMEP - Friction Mean Effective Pressure, bar (Intern.Exp) 0.88297 - Eta_m - Mechanical Efficiency of Piston Engine ENVIRONMENTAL PARAMETERS - Notal Ambient Pressure, bar 1.0000 - po_amb - Total Ambient Pressure, bar (after turbine) 0.90000 - Data Ambient Temperature, K 1.0000 - p.Te - Exhaust Back Pressure after Induction Air Either har</td>	2800.0 - RPM - Engine Speed, rev/min 36.548 - P_eng - Piston Engine Power, kW 9.8023 - BMEP - Brake Mean Effective Pressure, bar 124.66 - Torque - Brake Torque, N m 0.02771 - m_f - Mass of Fuel Supplied per cycle, g 0.25472 - SFC - Specific Fuel Consumption, kg/kWh 0.26791 - SFC_ISO - Specific Fuel Consumption in ISO, kg/kWh 0.32120 - Eta_f - Efficiency of piston engine 11.251 - IMEP - Indicated Mean Effective Pressure, bar 0.36869 - Eta_i - Indicated Efficiency 7.6067 - Sp - Mean Piston Speed, m/s 1.2993 - FMEP - Friction Mean Effective Pressure, bar (Intern.Exp) 0.88297 - Eta_m - Mechanical Efficiency of Piston Engine ENVIRONMENTAL PARAMETERS - Notal Ambient Pressure, bar 1.0000 - po_amb - Total Ambient Pressure, bar (after turbine) 0.90000 - Data Ambient Temperature, K 1.0000 - p.Te - Exhaust Back Pressure after Induction Air Either har
TURBOCHARGING AND GAS EXCHANGE	TURBOCHARGING AND GAS EXCHANGE
0.98000 - p_C - Pressure before Inlet Manifold, bar 288.00 - T_C - Temperature before Inlet Manifold, K 0.07906 - m_air - Total Mass Airflow (+EGR) of Piston Engine, kg/s 0.000 - Eta_TC - Turbocharger Efficiency 1.0508 - po_T - Average Total Turbine Inlet Pressure, bar 951.81 - To_T - Average Total Turbine Inlet Temperature, K 0.08409 - m_gas - Mass Exhaust Gasflow of Pison Engine, kg/s 0.99994 - A/F_eq.t - Total Air Fuel Equivalence Ratio 1.0001 - F/A_eq.t - Total Fuel Air Equivalence Ratio -0.59132 - PMEP - Pumping Mean Effective Pressure, bar 0.91969 - Eta_v - Volumetric Efficiency 0.90129 - Eta_vo - Volumetric Efficiency defined by Ambient Parameters 0.06420 - x_r - Residual Gas Mass Fraction 0.99993 - Phi - Coeff. of Scavenging (Delivery Ratio / Eta_v) 2.0321 - BF_int - Burnt Gas Fraction Backflowed into the Intake, % 0.29269 - %Blow-by - % of Blow-by through piston rings	0.99900 - p_C - Pressure before Inlet Manifold, bar 288.00 - T_C - Temperature before Inlet Manifold, K 0.03878-m_air-TotalMassAirflow(+EGRof Piston Engine, kg/s 0.0000 - Eta_TC - Turbocharger Efficiency 1.0426 - po_T - Average Total Turbine Inlet Pressure, bar 889.26 - To_T - Average Total Turbine Inlet Temperature, K 0.04115-m_gas-Mass Exhaust Gasflow of Pison Engine, kg/s 0.99990-A/F_eq.t- Total Air Fuel Equivalence Ratio (Lambda) 1.0001 - F/A_eq.t - Total Fuel Air Equivalence Ratio -0.15014 - PMEP - Pumping Mean Effective Pressure, bar 0.88499 - Eta_v - Volumetric Efficiency 0.88411 - Eta_vo - Volumetric Efficiency defined by Ambient Parameters 0.05355 - x_r - Residual Gas Mass Fraction 1.0002- Phi - Coeff. of Scavenging (Delivery Ratio / Eta_v) 0.96066-BF_int-BurntGasFractionBackflowedintotheIntake,% 0.52849 - %Blow-by - % of Blow-by through piston rings
0.900000000000000000000000000000000000	0.99201 - P_Int - Average Intake Manifold Pressure, par 301.47 - T_int - Average Intake Manifold Temperature, K 17.224 - v_int - Average Gas Velocity in intake manifold, m/s 351.47 - Tw_int- Average IntakeManifoldWall Temperature, K 97.653-hc_int-HeatTransferCoeff.inIntakeManifold, W/(m2*K) 192.25- hc_int.p-HeatTransferCoeff. in Intake Port, W/(m2*K) 88.545-v_int.p-MaxVelocityinaMiddle Section of Int. Port, m/s 5.5152- A_v.thrt - Total Effective Valve Port Throat Area, cm2 Valve Dim. Estim.: Num=1 Dv= 34.8 Dt= 32.7 Ds= 8.2 Lv= 11.4 Lv_max= 8.7 mm
EXHAUST SYSTEM	EXHAUST SYSTEM
1.0403 - p_exh - Average Exhaust Manifold Gas Pressure, bar 949.61 - T_exh - Average Exhaust Manifold Gas Temperature, K 79.188 - v_exh - Average Gas Velocity in exhaust manifold, m/s 15.947 - Sh - Strouhal number: Sh=a*Tau/L (has to be: Sh > 8) 864.62 - Tw_exh - Average Exhaust Manifold Wall Temperature, K 256.27 -hc_exh-Heat Transfer Coeff. in Exhaust Manifold, W/(m2*K) 1192.8 - hc_exh.p - Heat Transfer Coeff. in Exhaust Port, W/(m2*K)	1.0403 - p_exh - Average Exhaust Manifold Gas Pressure, bar 888.81 - T_exh - Average Exhaust Manifold Gas Temperature, K 36.038 - v_exh - Average Gas Velocity in exhaust manifold, m/s 30.857 - Sh - Strouhal number: Sh=a*Tau/L (has to be: Sh > 8) 791.99 - Tw_exh - Average Exhaust Manifold Wall Temperature, K 155.37-hc_exh- Heat Transfer Coeff. in Exhaust Manifold, W/(m2*K) 723.18 - hc_exh.p - Heat Transfer Coeff. in Exhaust Port, W/(m2*K)

370.99- v_exh.p- Max Velocity in a Middle Section of Exh. Port, m/s 4.6808 - A_v.thrt - Total Effective Valve Port Throat Area, cm2 Valve Dim Estim : Num-1 Dv= 31.6 Dt= 29.5 Ds= 7.5 Lv= 7.5	315.23-v_exh.p - Max Velocity in a Middle Section of Exh. Port, m/s 4.6808 - A_v.thrt - Total Effective Valve Port Throat Area, cm2 Valve Dim Estim : Num-1 Dv= 31.6 Dt= 29.5 Ds= 7.5 Lv= 7.5
Lv max= 7.9 mm	Lv max= 7.9 mm
COMBUSTION	COMBUSTION
 1.0000 - A/F_eq - Air Fiel Equival. Ratio (Lambda) in the Cylinder 1.0000 - F/A_eq - Fuel Air Equivalence Ratio in the Cylinder 71.98 - p_max - Maximum Cylinder Pressure, bar 273.5 - T_max - Maximum Cylinder Temperature, K 9.0000 - CA_p.max - Angle of Max. Cylinder Pressure, deg. A.TDC 13.000 -CA_t.max - Angle of Max. Cylinder Temperature, deg. A.TDC 13.000 -CA_t.max - Angle of Max. Cylinder Temperature, deg. A.TDC 2.9354 - dp/dTheta- Max. Rate of Pressure Rise, bar/deg. 12.624 - Ring_Intn- Ringing / Knock Intensity, MW/m2 3618.0 - F_max - Max. Gas Force acting on the piston, kg 25.000 - SOI - Start Of Injection or Ignition Timing, deg. B.TDC 0.28797 - Phi_ign - Ignition Delay Period, deg. 24.712 - SOC - Start of Combustion, deg. B.TDC 44.000 - Phi_z - Combustion duration, deg. 3.0104 - m_w - Wiebe's Factor in the Cylinder 77.345 - ON - Minimum Octane Number of fuel (knock limit) 	1.0000 - A/F_eq - Air Fiel Equival. Ratio (Lambda) in the Cylinder 1.0000 - F/A_eq - Fuel Air Equivalence Ratio in the Cylinder 56.738 - p_max - Maximum Cylinder Pressure, bar 2599.0 - T_max - Maximum Cylinder Temperature, K 17.000 - CA_p.max - Angle of Max. Cylinder Pressure, deg. A.TDC 22.000-CA_t.max- Angle of Max. Cylinder Temperature, deg. A.TDC 1.6365 - dp/dTheta- Max. Rate of Pressure Rise, bar/deg. 1.2286 - Ring_Intn- Ringing / Knock Intensity, MW/m2 2817.3 - F_max - Max. Gas Force acting on the piston, kg 13.000 - SOI - Start Of Injection or Ignition Timing, deg. B.TDC 0.14395 - Phi_ign - Ignition Delay Period, deg. 12.856 - SOC - Start of Combustion, deg. B.TDC 40.000 - Phi_z - Combustion duration, deg. 3.2733 - m_w - Wiebe's Factor in the Cylinder 79.456 - ON - Minimum Octane Number of fuel (knock limit)
4570 0 NOv w ppm Exection of wet Nov in orth gas ppm	ECOLOGICAL PARAMETERS
4570.0 - NOX.w,ppm- Fraction of wet NOX in exh. gas, ppm 22.678 - NO - Specif. NOX emiss. reduc. to NO, g/kWh (Zeldovich) 0.0000 - SO2 - Specific SO2 emission, g/kWh CYLINDER BARAMETERS	4659.3 - NOX.w,ppm- Fraction of wet NOX in exh. gas, ppm 21.041 - NO - Specif. NOX emiss. reduc. to NO, g/kWh (Zeldovich) 0.0000 - SO2 - Specific SO2 emission, g/kWh
1.3722 - p_lvc - Pressure at IVC, bar 403.63 - T_ivc - Temperature at IVC, K 21.537 - p_tdc - Compression Pressure (at TDC), bar 771.76 - T_tdc - Compression Temperature (at TDC), K 6.4681 - p_evo - Pressure at EVO, bar 1571.9 - T_evo - Temperature at EVO, K	372.73 - T_ivc - Temperature at IVC, Kar 19.468 - p_tdc - Compression Pressure (at TDC), bar 713.58 - T_tdc - Compression Temperature (at TDC), Kar 6.1295 - p_evo - Pressure at EVO, bar 1538.5 - T_evo - Temperature at EVO, Kar
1409 4 - T eq Average Equivalent Temperature of Cycle K	1279 9 - Teg - Average Equivalent Temperature of Cycle K
 a h_loc - Aver. Factor of Heat Transfer in Cyl., W/m2/K b h_c - Aver. Factor of Heat Transfer in Cyl., W/m2/K c Tw_pist - Average Piston Crown Temperature, K c Tw_liner - Average Cylinder Liner Temperature, K c Tw_head - Average Head Wall Temperature, K c Tw_cool - Average Temperature of Cooled Surface head of Cylinder Head, K 	 491.33 - hc_c - Aver. Factor of Heat Transfer in Cyl., W/m2/K 451.48 - Tw_pist - Average Piston Crown Temperature, K 413.00 - Tw_liner - Average Cylinder Liner Temperature, K 418.05 - Tw_head - Average Head Wall Temperature, K 399.06 - Tw_cool - Average Temperature of Cooled Surface head of Cylinder Head, K
 386.65 - Tboil - Boiling Temp. in Liquid Cooling System, K 12235 hc_cool - Average Factor of Heat Transfer, W/(m2*K) from head cooled surface to coolant 	386.65 - Tboil - Boiling Temp. in Liquid Cooling System, K 11697 hc_cool - Average Factor of Heat Transfer, W/(m2*K) from head cooled surface to coolant
3929.3 - q_nead - Heat Flow in a Cylinder Head, J/s	20/5.7 - q_head - Heat Flow in a Cylinder Head, J/s
3883.0 - q_liner - Heat Flow in a Cylinder Liner, J/s	1998.6 - q_liner - Heat Flow in a Cylinder Liner, J/s
MAIN ENGINE CONSTRUCTION PARAMETERS	MAIN ENGINE CONSTRUCTION PARAMETERS
9.4000- CR- Compression Ratio71.000- EVO- Exhaust Valve Opening, deg. before BDC16.000- EVC- Exhaust Valve Closing, deg. after DC16.000- IVO- Intake Valve Opening, deg. before DC70.000- IVC- Intake Valve Closing, deg. after BDC	9.4000- CR- Compression Ratio71.000- EVO- Exhaust Valve Opening, deg. before BDC16.000- EVC- Exhaust Valve Closing, deg. after DC16.000- IVO- Intake Valve Opening, deg. before DC70.000- IVC- Intake Valve Closing, deg. after BDC

5.1.4. Diagramas del motor SI

Para ver los resultados en formato 1D le damos clic en _____, nos emergerá una ventana nueva como se muestra en la Fig. 5.13.

🔯 Diagram	s			-	o ×
- 🚞 🤤	as Exchange	>	12		0 🗙
Mode:	#4 :: "Ana CA p_c T_c	Crank Cylin Cylin	2	Drag functions from the treeview and drop here. No results found if the terview is empty.	
	p_exh T_exh v_exh m_exh.p	Exhau Exhau Gas V Exhau	0.8		
	A_exh v_exh.p C_exh.p Lv_exh	Exhau Gas V Gas C Lift	0.4		
	p_int T_int m_int.p A_int v_int.p	Intak Intak Intak Gas V	÷ 0		
	C_int.p Lv_int v_C.int P_pist	Gas C Lift Air F Pisto	~		
⊜- Mode :	#1 :: "An6 CA	Crank	-0.4		
	T_C C_Cyl p exh	Cylin Avera Exhau			
	T_exh v_exh m_exh.p	Exhau Gas V Exhau	-0.8		
	A_exh v_exh.p C_exh.p	Exhau Gas V Gas C			
	rv_exu	Lift		-0.8 -0.4 0 0.4 0.8	

Figura 5.13 Ventana para ver diagramas 1D.

La zona de diagramas se puede mostrar desde 1 solo diagrama hasta 4 diagramas como se muestra en la Fig. 5.14, esto se podrá ajustar dando clic en 2 3 4 que se encuentra en la parte superior.

Figura 5.14 Cantidad de diagramas posibles de mostrar, el uso de esto dependerá del usuario.

El software tiene 5 zonas de muestra de resultados de diagramas 1D (Gas Exchange, fuel Injection and Heat Release, In-cylinder Parameters, Engine Performance & 1D Scanning Results) como se muestra en la Fig. 5.15, cada zona se obtiene diferentes diagramas y para seleccionarlo le damos clic en uno de ellos.

	Gas Exchange
	Fuel Injection and Heat Release
	In-cylinder Parameters
	Engine Performance
1D Scan	1D Scanning Results

Figura 5.15 Zonas de diagramas 1D.

En este análisis se comenzará con los resultados de parámetros dentro del cilindro (In-cylinder Parameters) como se muestra en la Fig. 5.16.

Diagrams		-	o ×				
▶ In cylinder Parameters 30 1 2 3 1 1 1 2 3 2 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
Mode: #4 :: "Analisis of CA Crank p_c Cylind T_c Cylind T_air Temper Town	A 2 e a 0.8	Drag functions from the treeview and drop here. No results found if the treeview is empty.					
- I_burn Temper - V Cylind - hc_c Heat T - p_lring Pressu - m_bb Mass g - P pist Piston	a r r a						
Mode: #1 :: "An6lisis co - CA Crank - p_c Cylind - T_c Cylind - T_air Temper	e 0.4 A e a .g						
- T_burn Temper V Cylind - hc_c Heat T - p_lring Pressu - m_bb Mass g - P_pist Piston	a ≪ 0 e r a e .04						
ileat N	.0.4						
	-0.8						
<	>	V Dylinder volume, m3					

Figura 5.16 In-cylinder Parameters.

Para poder realizar el diagrama, solo tenemos que seleccionar el argumento que se desea graficar, arrastrándolo desde la columna de la izquierda hacia la zona del diagrama a dibujar como se muestra en la Fig. 5.17.

Figura 5.17 Cómo hacer un diagrama 1D.

Como primer diagrama 1D, se mostrara el diagrama presión vs volumen (p-v) este diagrama es muy común en un análisis termodinámico simple de un motor a gasolina (ciclo OTTO), pero antes de hacer el diagrama tenemos que cerciorarnos que el eje X se encuentre en volumen del cilindro (Cylinder volume, m³) de no ser así se puede cambiar solo se tiene que dar clic en la zona del diagrama con el botón secundario y nos emergerá una ventana, para darle clic en seleccionar argumento (Select argument) como se muestra en la Fig. 5.18, finalizando con la selección del argumento deseado.

Figura 5.18 Cambiando el argumento en el eje X.

Una vez que ya este el eje x como se desee, se arrastra el argumento (Cylinder Pressure, bar) que se quiere dibujar a la zona del diagrama, como se muestra en la Fig. 5.19.

Figura 5.19 Diagrama p-V del motor SI a 5600 rpm, por Diesel-RK.

Sin embargo, por cuestión de calidad de la Fig. 5.19, Diesel-RK tiene una herramienta de extracción de datos, estos fueron exportados OriginPro 8 y así lograr la Fig. 2.20.

Figura 5.20 Diagrama p-V del motor SI a 5600 rpm, por OriginPro 8.

Para realizar los diagramas de rendimiento del motor (Engine Performance) se tiene que simular más de 2 simulaciones juntas como se muestra en la Fig. 5.21.

Run		×		
File Name for results (without extension C:\Users\User\Desktop\software RK	o n) \simulaciones gasolina\mi	otor chevy/simulacion motor chevy		
Title				
"A/F eq. defines m_f"				
Operating Modes				
🗹 #1: "Analisis con la potencia ma:	kima." 🔄 #6: RPM=9	900		
#2: RPM=4500	#7			
#8				
WARNING: selected modes form parameters have	a performance curve. Injec to be specified for every o	ction profiles and turbocharging perating mode.		
ICE simulation	Scanning	Optimizing		
🕐 Help		🗙 Cancel		

Figura 5.21 Corriendo la simulación a 5600 rpm y 2800 rpm, este tipo de simulaciones no se puede realizar escaneados ni optimizaciones

Para ver los diagramas de rendimiento del motor (Engine Performance) se le da clic

en , nos emergerá de nuevo la ventana de la Fig. 5.14. Seleccionamos la opción de "Engine performance" y nos emergerá todas las opciones a graficar para este modo como se muestra en la Fig. 5.22 y 5.23. De igual manera se selecciona el parámetro a dibujar y se arrastra a la zona del diagrama.

Figura 5.22 Diagrama de potencia del motor a 2800 y 5600 rpm, en la figura se puede observar como se muestra el incremento de potencia, cabe recordar que en la Tabla 3.2 a 5600 rpm se tiene una potencia de 67.45 KW y a 2800 rpm 36.6 KW.

Figura 5.23 Diagrama del torque del motor a 2800 y 5600 rpm, en la figura se puede observar como se muestra el incremento del torque, cabe recordar que en la Tabla 3.2 a 5600 rpm se tiene un torque de 115 N.m y a 2800 rpm 124.6 N.m.

5.2 Simulación del motor CI

En el análisis de un motor diésel es completamente diferente a un análisis de un motor a gasolina, ya que el tipo de encendido es diferente y utiliza otro combustible, el resto de los parámetros suelen cambiar un poco, pero para la introducción de los mismos al software es semejante.

El motor CI es de un vehículo Volkswagen Jetta con turbo de inyección directa (TDI por sus siglas en inglés, Turbo Direct Injection). El cual cuanta con un motor tipo transversal de 1.9 Lts. (1900cc), 4 cilindros en línea 8 válvulas (2 por cilindro), con una relación de compresión de 19:1. El manual de fabricante dice que el motor entrega una potencia de 77 kW a 4000 rpm y un torque de 250 N-m a 1900 rpm, y los valores necesarios para Diesel-RK se muestran en la Tabla 5.3.

Datos técnicos				
Descripción	Valor			
Número de cilindros y tipo	4 en línea.			
Diámetro y carrera	(D / S) 79.5/95.5 mm			
Relación de compresión	19:1			
Número de válvulas por cilindro	2			
Sistema de refrigeración	líquido			
Potencia máxima a RPM nominales	77 KW @ 4000 rpm			
Torque máximo a RPM	250N-m @ 1900 rpm			

Tabla 5.3 Especificaciones del motor Jetta TDI 1.9L.

Para introducir los valores al software es muy semejante al ejemplo anterior, para comenzar se abre un nuevo proyecto, solo que en la ventana de la Fig. 5.2, se tiene que seleccionar otro combustible junto con método de ignición; el cual es "Diésel con inyección directa (DI Diesel)". Posteriormente nos emergerán el resto de las ventanas que se mostraron en motor SI, dichas ventanas tienen que ser editadas de acuerdo con la Tabla 5.3, una vez que se realice esto nos emergerá la ventaba principal de la Fig. 5.7.

Antes de empezar la simulación se tiene que modificar parámetros en la ventana de

Opereting Mode , nos emergerá una ventana como se muestra en la Fig. 5.24, en esta se puede modificar los modos de funcionamiento del motor de acuerdo con las características de rendimiento del motor. En la parte superior de la ventana hay cuatro características que especificar (modo de simulación del proceso dentro del cilindro, parámetros del medio ambiente perdidas de presión antes del compresor, perdidas de presión después de la turbina). En la parte central de la ventana se muestran 10 espacios, en el espacio #1, y #2 se puede colocar "Análisis con la potencia Max" y "Análisis con torque Max" respectivamente, de igual manera en la parte inferior de la ventana tiene que especificar la velocidad del motor (Engine Speed) en la zona que corresponde para el #1, #2 debe colocar 4000 y 1900 respectivamente, las cuales pertenecen a la máxima potencia y máximo torque, en el resto de los espacios puede reducir gradualmente los valores de las rpm. Las otras características se pueden colocar si son conocidos, de lo contrario se pueden colocar como se muestra en la Fig. 5.24.

Operating Mode										
Way of In-Cylinder Process Simulation	Environment parameters									
O Specify Cycle Fuel Mass, [g]	Set explicitly									
Specify A/F equivalence Ratio in Cylinder			dculate u:	sing vehi	cle veloc	ity and a	altitude ak	ove sea	ı level	
Losses of pressure before compressor			es of pres	ssure afte	er turbine					
Set explicitly			t explicitly	У						
O Calculate on pressure ratio in inlet device		OCe	dculate o	n pressu	re ratio in	exhaust	t device (silencer,	etc.)	
HP stage turbine settings HP stage compressor settings										
#1 RPM=4000			#6 RPN	4=1500						
#2 RPM=3500		- Fi	#7 RPN	1=800						
#3 RPM=3000			#8							
#4 RPM=2500			#9							
#5 RPM=1900			#10							
Mode of Performance (#1 = Full Load)	⊠ #1	#2	□#3	#4	⊻ #5	#6	#7	#8	□#9	#10
Engine Speed, [rpm]		3500	3000	2500	1900	1500	800	4000	4000	4000
Air Fuel Equivalence Ratio in the Cylinder	2	2	2	2	2	2	2	2	2	2
Injection / Ignition Timing, [deg B.TDC]		3	3	3	3	3	3	3	3	3
Ambient Pressure, [bar]		1	1	1	1	1	1	1	1	1
Ambient Temperature, [K]		288	288	288	288	288	288	288	288	288
Inlet Pressure Losses (before compressor), [bar]		0.02	0.02	0.02	0.002	0.02	0.02	0.02	0.02	0.02
Differential Pressure in exhaust (tail) system, [bar]		0.04	0.04	0.04	0.004	0.04	0.04	0.04	0.04	0.04
Compressor Pressure Ratio (HP Stage)		2	2	2	2.975	2	2	2	2	2
Compressor Adiabatic Efficiency (HP Stage) 0.7			0.7	0.7	0.85	0.7	0.7	0.7	0.7	0.7
Compressor Adiabatic Efficiency (HP Stage)	0.78	0.7								
Compressor Adiabatic Efficiency (HP Stage) Fraction of the Exhaust Gasflow By-passed before Turbine	0.78	0.7	0	0	0	0	0	0	0	0
Compressor Adiabatic Efficiency (HP Stage) Fraction of the Exhaust Gasflow By-passed before Turbine Fraction of the Airflow By-passed after Compressor into atmosphere	0.78 0 e0	0	0	0	0 0	0	0	0	0	0

Figura 5.24. Modo de operación del motor del motor CI.

5.2.1 Simulación y resultados del motor CI

El primer análisis se realizará con la potencia máxima como se muestra en la Fig. 5.24, por lo que para empezar con la simulación se selecciona el punto #1 (análisis con la potencia máxima) y se da clic en **ICE simulation.**

Los resultados de los parámetros internos del motor CI se muestra en la Tabla 5.4, así como en el motor SI se sombrearon los valores que se consideran de mayor importancia, o los que son más similares al ciclo Diesel; con amarillo se muestra la potencia (kW), en gris se muestra el torque (N m), en aguamarina la eficiencia energética, purpura los cuatro estados que se describen en los diagramas p-V y T-s, de los cuales se requiere su temperatura y presión, como los que se muestra en la Fig. 2.11 y en color verde las emisiones contaminantes como el CO₂, NOx, NO, entre otros.

Dichos parámetros serán comparados entre las dos revoluciones anteriormente mencionadas en la Tabla 5.3.

. . .

4000

- 1.- Revoluciones para obtener la máxima potencia (4000 rpm)
- 2.- Revoluciones para obtener el máximo torque (1900 rpm)

1 Maxima potencia 4000 rpm	2 Maximo torque 1900 rpm			
PARAMETERS OF EFFICIENCY AND POWER	PARAMETERS OF EFFICIENCY AND POWER			
4000.0 - RPM - Engine Speed, rev/min	1900.0 - RPM - Engine Speed, rev/min			
77.03 - P_eng - Piston Engine Power, kW	49.789 - P_eng - Piston Engine Power, kW			
12.187 - BMEP - Brake Mean Effective Pressure, bar	16.583 - BMEP - Brake Mean Effective Pressure, bar			
183.90 - Torque - Brake Torque, N m	249.88 - Torque - Brake Torque, N m			
0.03824 - m_f - Mass of Fuel Supplied per cycle, g	0.04782 - m_f - Mass of Fuel Supplied per cycle, g			
0.26520 - SFC - Specific Fuel Consumption, kg/kWh	0.21899 - SFC - Specific Fuel Consumption, kg/kWh			
0.26521 - SFC_ISO - Specific Fuel Consumption in ISO, kg/kWh	0.24116 - SFC_ISO - Specific Fuel Consumption in ISO, kg/kWh			
0.33972 - Eta_f - Efficiency of piston engine	0.37878 - Eta_f - Efficiency of piston engine			
15.594 - IMEP - Indicated Mean Effective Pressure, bar	18.920 - IMEP - Indicated Mean Effective Pressure, bar			
0.43467 - Eta_i - Indicated Efficiency	0.43215 - Eta_i - Indicated Efficiency			
12.733 - Sp - Mean Piston Speed, m/s	6.0483 - Sp - Mean Piston Speed, m/s			
2.5861 - FMEP - Friction Mean Effective Pressure, bar (Intern.Exp)	2.2412 - FMEP - Friction Mean Effective Pressure, bar (Intern.Exp)			
0.82494 - Eta_m - Mechanical Efficiency of Piston Engine	0.88094 - Eta_m - Mechanical Efficiency of Piston Engine			
ENVIRONMENTAL PARAMETERS	ENVIRONMENTAL PARAMETERS			
1.0000 - po_amb - Total Ambient Pressure, bar	1.0000 - po_amb - Total Ambient Pressure, bar			
1.0000 - po_amb - Total Ambient Pressure, bar 288.00 - To_amb - Total Ambient Temperature, K	1.0000 - po_amb - Total Ambient Pressure, bar 288.00 - To_amb - Total Ambient Temperature, K			
1.0000- po_amb- Total Ambient Pressure, bar288.00- To_amb- Total Ambient Temperature, K1.0400- p_Te- Exhaust Back Pressure, bar (after turbine)	1.0000- po_amb- Total Ambient Pressure, bar288.00- To_amb- Total Ambient Temperature, K1.0400- p_Te- Exhaust Back Pressure, bar (after turbine)			
1.0000- po_amb- Total Ambient Pressure, bar288.00- To_amb- Total Ambient Temperature, K1.0400- p_Te- Exhaust Back Pressure, bar (after turbine)0.98000- po_afltr - Total Pressure after Induction Air Filter, bar	1.0000- po_amb- Total Ambient Pressure, bar288.00- To_amb- Total Ambient Temperature, K1.0400- p_Te- Exhaust Back Pressure, bar (after turbine)0.98000- po_afltr- Total Pressure after Induction Air Filter, bar			
1.0000- po_amb- Total Ambient Pressure, bar288.00- To_amb- Total Ambient Temperature, K1.0400- p_Te- Exhaust Back Pressure, bar (after turbine)0.98000- po_afltr - Total Pressure after Induction Air Filter, barTURBOCHARGING AND GAS EXCHANGE	1.0000 - po_amb - Total Ambient Pressure, bar 288.00 - To_amb - Total Ambient Temperature, K 1.0400 - p_Te - Exhaust Back Pressure, bar (after turbine) 0.98000 - po_afltr - Total Pressure after Induction Air Filter, bar TURBOCHARGING AND GAS EXCHANGE			
1.0000- po_amb- Total Ambient Pressure, bar288.00- To_amb- Total Ambient Temperature, K1.0400- p_Te- Exhaust Back Pressure, bar (after turbine)0.98000- po_afltr - Total Pressure after Induction Air Filter, barTURBOCHARGING AND GAS EXCHANGE2.4980- p_C- Pressure before Inlet Manifold, bar	1.0000 - po_amb - Total Ambient Pressure, bar 288.00 - To_amb - Total Ambient Temperature, K 1.0400 - p_Te - Exhaust Back Pressure, bar (after turbine) 0.98000 - po_afltr - Total Pressure after Induction Air Filter, bar TURBOCHARGING AND GAS EXCHANGE 2.4980 - p_C - Pressure before Inlet Manifold, bar			
1.0000 - po_amb - Total Ambient Pressure, bar 288.00 - To_amb - Total Ambient Temperature, K 1.0400 - p_Te - Exhaust Back Pressure, bar (after turbine) 0.98000 - po_afltr - Total Pressure after Induction Air Filter, bar TURBOCHARGING AND GAS EXCHANGE 2.4980 - p_C - Pressure before Inlet Manifold, bar 320.29 - T_C	1.0000 - po_amb - Total Ambient Pressure, bar 288.00 - To_amb - Total Ambient Temperature, K 1.0400 - p_Te - Exhaust Back Pressure, bar (after turbine) 0.98000 - po_afltr - Total Pressure after Induction Air Filter, bar TURBOCHARGING AND GAS EXCHANGE 2.4980 - p_C - Pressure before Inlet Manifold, bar 320.29 - T_C - Temperature before Inlet Manifold, K			
1.0000 - po_amb - Total Ambient Pressure, bar 288.00 - To_amb - Total Ambient Temperature, K 1.0400 - p_Te - Exhaust Back Pressure, bar (after turbine) 0.98000 - po_afltr - Total Pressure after Induction Air Filter, bar TURBOCHARGING AND GAS EXCHANGE 2.4980 - p_C - Pressure before Inlet Manifold, bar 320.29 - T_C - Total Mass Airflow (+EGR) of Piston Engine, kg/s	1.0000 - po_amb - Total Ambient Pressure, bar 288.00 - To_amb - Total Ambient Temperature, K 1.0400 - p_Te - Exhaust Back Pressure, bar (after turbine) 0.98000 - po_afltr - Total Pressure after Induction Air Filter, bar TURBOCHARGING AND GAS EXCHANGE 2.4980 - p_C - Pressure before Inlet Manifold, bar 320.29 - T_C - Temperature before Inlet Manifold, K 0.07526 - m_air - Total Mass Airflow (+EGR) of Piston Engine, kg/s			
1.0000- po_amb- Total Ambient Pressure, bar288.00- To_amb- Total Ambient Temperature, K1.0400- p_Te- Exhaust Back Pressure, bar (after turbine)0.98000- po_afltr - Total Pressure after Induction Air Filter, barTURBOCHARGING AND GAS EXCHANGE2.4980- p_C- Pressure before Inlet Manifold, bar320.29- T_C- Temperature before Inlet Manifold, K0.14383- m_air - Total Mass Airflow (+EGR) of Piston Engine, kg/s0.47179- Eta_TC	1.0000- po_amb- Total Ambient Pressure, bar288.00- To_amb- Total Ambient Temperature, K1.0400- p_Te- Exhaust Back Pressure, bar (after turbine)0.98000- po_afltr- Total Pressure after Induction Air Filter, barTURBOCHARGING AND GAS EXCHANGE2.4980- p_C- Pressure before Inlet Manifold, bar320.29- T_C- Temperature before Inlet Manifold, K0.07526- m_air- Total Mass Airflow (+EGR) of Piston Engine, kg/s0.50924- Eta_TC- Turbocharger Efficiency			
1.0000- po_amb- Total Ambient Pressure, bar288.00- To_amb- Total Ambient Temperature, K1.0400- p_Te- Exhaust Back Pressure, bar (after turbine)0.98000- po_afltr - Total Pressure after Induction Air Filter, barTURBOCHARGING AND GAS EXCHANGE2.4980- p_C- Pressure before Inlet Manifold, bar320.29- T_C- Temperature before Inlet Manifold, K0.14383- m_air - Total Mass Airflow (+EGR) of Piston Engine, kg/s0.47179- Eta_TC- Turbocharger Efficiency2.4701- po_T- Average Total Turbine Inlet Pressure, bar	1.0000- po_amb- Total Ambient Pressure, bar288.00- To_amb- Total Ambient Temperature, K1.0400- p_Te- Exhaust Back Pressure, bar (after turbine)0.98000- po_afltr- Total Pressure after Induction Air Filter, barTURBOCHARGING AND GAS EXCHANGE2.4980- p_C- Pressure before Inlet Manifold, bar320.29- T_C- Temperature before Inlet Manifold, K0.07526- m_air- Total Mass Airflow (+EGR) of Piston Engine, kg/s0.50924- Eta_TC- Turbocharger Efficiency2.4650- po_T- Average Total Turbine Inlet Pressure, bar			
1.0000- po_amb- Total Ambient Pressure, bar288.00- To_amb- Total Ambient Temperature, K1.0400- p_Te- Exhaust Back Pressure, bar (after turbine)0.98000- po_afltr- Total Pressure after Induction Air Filter, barTURBOCHARGING AND GAS EXCHANGE2.4980- p_C- Pressure before Inlet Manifold, bar320.29- T_C- Temperature before Inlet Manifold, K0.14383- m_air0.47179- Eta_TC- Turbocharger Efficiency2.4701- po_T- Average Total Turbine Inlet Pressure, bar881.37- To_T- Average Total Turbine Inlet Temperature, K	1.0000- po_amb- Total Ambient Pressure, bar288.00- To_amb- Total Ambient Temperature, K1.0400- p_Te- Exhaust Back Pressure, bar (after turbine)0.98000- po_afltr- Total Pressure after Induction Air Filter, barTURBOCHARGING AND GAS EXCHANGE2.4980- p_C- Pressure before Inlet Manifold, bar320.29- T_C- Temperature before Inlet Manifold, K0.07526- m_air- Total Mass Airflow (+EGR) of Piston Engine, kg/s0.50924- Eta_TC- Turbocharger Efficiency2.4650- po_T- Average Total Turbine Inlet Pressure, bar837.75- To_T- Average Total Turbine Inlet Temperature, K			
1.0000- po_amb- Total Ambient Pressure, bar288.00- To_amb- Total Ambient Temperature, K1.0400- p_Te- Exhaust Back Pressure, bar (after turbine)0.98000- po_afltr- Total Pressure after Induction Air Filter, barTURBOCHARGING AND GAS EXCHANGE2.4980- p_C- Pressure before Inlet Manifold, bar320.29- T_C- Temperature before Inlet Manifold, K0.14383- m_air- Total Mass Airflow (+EGR) of Piston Engine, kg/s0.47179- Eta_TC- Turbocharger Efficiency2.4701- po_T- Average Total Turbine Inlet Pressure, bar881.37- To_T- Average Total Turbine Inlet Temperature, K0.14493- m_gas- Mass Exhaust Gasflow of Pison Engine, kg/s	1.0000- po_amb- Total Ambient Pressure, bar288.00- To_amb- Total Ambient Temperature, K1.0400- p_Te- Exhaust Back Pressure, bar (after turbine)0.98000- po_afltr- Total Pressure after Induction Air Filter, barTURBOCHARGING AND GAS EXCHANGE2.4980- p_C- Pressure before Inlet Manifold, bar320.29- T_C- Temperature before Inlet Manifold, K0.07526- m_air- Total Mass Airflow (+EGR) of Piston Engine, kg/s0.50924- Eta_TC- Turbocharger Efficiency2.4650- po_T- Average Total Turbine Inlet Pressure, bar837.75- To_T- Average Total Turbine Inlet Temperature, K0.07367- m_gas- Mass Exhaust Gasflow of Pison Engine, kg/s			
1.0000- po_amb- Total Ambient Pressure, bar288.00- To_amb- Total Ambient Temperature, K1.0400- p_Te- Exhaust Back Pressure, bar (after turbine)0.98000- po_afltr- Total Pressure after Induction Air Filter, bar TURBOCHARGING AND GAS EXCHANGE 2.4980- p_C- Pressure before Inlet Manifold, bar320.29- T_C- Temperature before Inlet Manifold, K0.14383- m_air- Total Mass Airflow (+EGR) of Piston Engine, kg/s0.47179- Eta_TC- Turbocharger Efficiency2.4701- po_T- Average Total Turbine Inlet Pressure, bar881.37- To_T- Average Total Turbine Inlet Temperature, K0.14493- m_gas- Mass Exhaust Gasflow of Pison Engine, kg/s1.9036- A/F_eq.t - Total Air Fuel Equivalence Ratio (Lambda)	1.0000- po_amb- Total Ambient Pressure, bar288.00- To_amb- Total Ambient Temperature, K1.0400- p_Te- Exhaust Back Pressure, bar (after turbine)0.98000- po_afltr- Total Pressure after Induction Air Filter, barTURBOCHARGING AND GAS EXCHANGE2.4980- p_C- Pressure before Inlet Manifold, bar320.29- T_C- Temperature before Inlet Manifold, K0.07526- m_air- Total Mass Airflow (+EGR) of Piston Engine, kg/s0.50924- Eta_TC- Turbocharger Efficiency2.4650- po_T- Average Total Turbine Inlet Pressure, bar837.75- To_T- Average Total Turbine Inlet Temperature, K0.07367- m_gas- Mass Exhaust Gasflow of Pison Engine, kg/s1.7848- A/F_eq.t - Total Air Fuel Equivalence Ratio (Lambda)			
1.0000- po_amb- Total Ambient Pressure, bar288.00- To_amb- Total Ambient Temperature, K1.0400- p_Te- Exhaust Back Pressure, bar (after turbine)0.98000- po_afltr- Total Pressure after Induction Air Filter, barTURBOCHARGING AND GAS EXCHANGE2.4980- p_C- Pressure before Inlet Manifold, bar320.29- T_C- Temperature before Inlet Manifold, K0.14383- m_air- Total Mass Airflow (+EGR) of Piston Engine, kg/s0.47179- Eta_TC- Turbocharger Efficiency2.4701- po_T- Average Total Turbine Inlet Pressure, bar881.37- To_T- Average Total Turbine Inlet Temperature, K0.14493- m_gas- Mass Exhaust Gasflow of Pison Engine, kg/s1.9036- A/F_eq.t- Total Air Fuel Equivalence Ratio (Lambda)0.52531- F/A_eq.t- Total Fuel Air Equivalence Ratio	1.0000- po_amb- Total Ambient Pressure, bar288.00- To_amb- Total Ambient Temperature, K1.0400- p_Te- Exhaust Back Pressure, bar (after turbine)0.98000- po_afltr- Total Pressure after Induction Air Filter, barTURBOCHARGING AND GAS EXCHANGE2.4980- p_C- Pressure before Inlet Manifold, bar320.29- T_C- Temperature before Inlet Manifold, K0.07526- m_air- Total Mass Airflow (+EGR) of Piston Engine, kg/s0.50924- Eta_TC- Turbocharger Efficiency2.4650- po_T- Average Total Turbine Inlet Pressure, bar837.75- To_T- Average Total Turbine Inlet Temperature, K0.07367- m_gas- Mass Exhaust Gasflow of Pison Engine, kg/s1.7848- A/F_eq.t - Total Air Fuel Equivalence Ratio (Lambda)0.56029- F/A_eq.t - Total Fuel Air Equivalence Ratio			
1.0000- po_amb- Total Ambient Pressure, bar288.00- To_amb- Total Ambient Temperature, K1.0400- p_Te- Exhaust Back Pressure, bar (after turbine)0.98000- po_afltr- Total Pressure after Induction Air Filter, barTURBOCHARGING AND GAS EXCHANGE2.4980- p_C- Pressure before Inlet Manifold, bar320.29- T_C- Temperature before Inlet Manifold, K0.14383- m_air- Total Mass Airflow (+EGR) of Piston Engine, kg/s0.47179- Eta_TC- Turbocharger Efficiency2.4701- po_T- Average Total Turbine Inlet Pressure, bar881.37- To_T- Average Total Turbine Inlet Temperature, K0.14493- m_gas- Mass Exhaust Gasflow of Pison Engine, kg/s1.9036- A/F_eq.t- Total Air Fuel Equivalence Ratio (Lambda)0.52531- F/A_eq.t- Total Fuel Air Equivalence Ratio-1.31118- PMEP- Pumping Mean Effective Pressure, bar	1.0000- po_amb- Total Ambient Pressure, bar288.00- To_amb- Total Ambient Temperature, K1.0400- p_Te- Exhaust Back Pressure, bar (after turbine)0.98000- po_afltr- Total Pressure after Induction Air Filter, barTURBOCHARGING AND GAS EXCHANGE2.4980- p_C- Pressure before Inlet Manifold, bar320.29- T_C- Temperature before Inlet Manifold, K0.07526- m_air- Total Mass Airflow (+EGR) of Piston Engine, kg/s0.50924- Eta_TC- Turbocharger Efficiency2.4650- po_T- Average Total Turbine Inlet Pressure, bar837.75- To_T- Average Total Turbine Inlet Temperature, K0.07367- m_gas- Mass Exhaust Gasflow of Pison Engine, kg/s1.7848- A/F_eq.t - Total Air Fuel Equivalence Ratio (Lambda)0.56029- F/A_eq.t - Total Fuel Air Equivalence Ratio-0.17844- PMEP- Pumping Mean Effective Pressure, bar			

Tabla 5.4 Parámetros internos del motor Cl.

....

. . /

0.03222 - x_r - Residual Gas Mass Fraction	0.02608 - x_r - Residual Gas Mass Fraction
0.48277-BF_int - Burnt Gas Fraction Backflowed into the Intake, %	0.02701 -BF_int - Burnt Gas Fraction Backflowed into the Intake, %
2.3932 - %Blow-by - % of Blow-by through piston rings	4.9490 - %Blow-by - % of Blow-by through piston rings
319.20 - T _int - Average Intake Manifold Pressure, bail 319.20 - T _int - Average Intake Manifold Temperature, K 28.629 - v_int - Average Gas Velocity in intake manifold, m/s 326.99 - Tw_int - Average Intake Manifold Wall Temperature, K 109.99 - hc_int - Heat Transfer Coeff. in Intake Manifold, W/(m2*K) 144.77 - hc_int.p - Heat Transfer Coeff. in Intake Port, W/(m2*K) 112.07 - v_int.p - Max Velocity in a Middle Section of Int. Port, m/s 5.2418 - A_v.thrt - Total Effective Valve Port Throat Area, cm2 Valve Dim. Estim.: Num=1 Dv= 37.3 Dt= 32.4 Ds= 9.7 Lv= 6.5 Lv_max= 9.3 mm EXHAUST SYSTEM	320.38 - T _int - Average Intake Manifold Pressure, bai 320.38 - T _int - Average Intake Manifold Temperature, K 14.302 - v_int - Average Gas Velocity in intake manifold, m/s 324.93 - Tw_int - Average Intake Manifold Wall Temperature, K 115.99- hc_int - Heat Transfer Coeff. in Intake Manifold, W/(m2*K) 77.024 - hc_int.p - Heat Transfer Coeff. in Intake Port, W/(m2*K) 52.202 - v_int.p - Max Velocity in a Middle Section of Int. Port, m/s 5.2418 - A_v.thrt - Total Effective Valve Port Throat Area, cm2 Valve Dim. Estim.: Num=1 Dv= 37.3 Dt= 32.4 Ds= 9.7 Lv= 6.5 Lv_max= 9.3 mm EXHAUST SYSTEM
1 5992 - p. exh Average Exhaust Manifold Gas Pressure, bar	2 7441 - p. exh Average Exhaust Manifold Gas Pressure, bar
1. Solution 1. Solution 1. Average Exhaust Manifold Gas Tressule, Ball 839.01 - T_exh - Average Exhaust Manifold Gas Tressule, Ball 80.962 - v_exh - Average Gas Velocity in exhaust manifold, m/s 9.8012 - Sh - Strouhal number: Sh=a*Tau/L (has to be: Sh > 8) 797.34 - Tw_exh - Average Exhaust Manifold Wall Temperature, K 202.86-hc_exh- HeatTransfer Coeff. in Exhaust Manifold, W/(m2*K) 528.30 - hc_exh.p - Heat Transfer Coeff. in Exhaust Port, W/(m2*K) 185.52-v_exh.p - Max Velocity in a Middle Section of Exh. Port, m/s 5.4701 - A_v.thrt - Total Effective Valve Port Throat Area, cm2 Valve Dim. Estim.: Num=1 Dv= 37.0 Dt= 33.0 Ds= 9.6 Lv= 5.2 Lv_max= 9.2 mm	787.78 • T _exh • Average Exhaust Manifold Gas Tressure, bar 787.78 • T _exh • Average Exhaust Manifold Gas Tressure, K 38.071 • v_exh • Average Gas Velocity in exhaust manifold, m/s 20.138 • Sh • Strouhal number: Sh=a*Tau/L (has to be: Sh > 8) 745.75 • Tw_exh • Average Exhaust Manifold Wall Temperature, K 127.14-hc_exh- Heat Transfer Coeff. in Exhaust Manifold, W/(m2*K) 331.11 • hc_exh.p • Heat Transfer Coeff. in Exhaust Port, W/(m2*K) 137.36-v_exh.p • Max Velocity in a Middle Section of Exh. Port, m/s 5.4701 • A_v.thrt • Total Effective Valve Port Throat Area, cm2 Valve Dim. Estim.: Num=1 Dv= 37.0 Dt= 33.0 Ds= 9.6 Lv= 5.2 Lv_max= 9.2 mm
COMBUSTION	COMBUSTION
 2.0000 - A/F_eq - Air Fiel Equival. Ratio (Lambda) in the Cylinder 0.50000 - F/A_eq - Fuel Air Equivalence Ratio in the Cylinder 148.56 - p_max - Maximum Cylinder Pressure, bar 1588.8 - T_max - Maximum Cylinder Temperature, K 7.0000 - CA_p.max - Angle of Max. Cylinder Pressure, deg. A.TDC 28.000-CA_t.max - Angle of Max. Cylinder Temperature, deg. A.TDC 4.2152 - dp/dTheta- Max. Rate of Pressure Rise, bar/deg. 4.4946 - Ring_Intn- Ringing / Knock Intensity, MW/m2 8420.6 - F_max - Max. Gas Force acting on the piston, kg System: Custom Fuel Injection System 949.51 - p_inj.max- Max. Sac Injection Pres. (before nozzles), bar 745.04 - p_inj.avr- Mean Sac Press. for Total Fuel Portion, bar 9.9512 - d_32 - Sauter Mean Diameter of Drops, microns 8.0000 - SOI - Start Of Injection or Ignition Timing, deg. B.TDC 31.278 - Phi_ign - Ignition Delay Period, deg. calculated by modified Tolstov method : 3.1 4.8722 - SOC - Start of Combustion, deg. B.TDC 0.00147- x_e.id - Fuel Mass Fraction Evaporated during Ignit. Delay 118.40 - Phi_z - Combustion duration, deg. Phi_z 5%= 3.8; Phi_z 50%= 21.4; Phi_z 95%= 67.8 4.0390 - Rs_tdc - Swirl Ratio in the Cylinder at IVC 36.132 - W_swirl - Max. Air Swirl Velocity, m/s at cylinder R= 22 	 1.8000 - A/F_eq - Air Fiel Equival. Ratio (Lambda) in the Cylinder 0.55556 - F/A_eq - Fuel Air Equivalence Ratio in the Cylinder 186.5 - p_max - Maximum Cylinder Pressure, bar 1621.5 - T_max - Maximum Cylinder Temperature, K 7.0000 - CA_p.max - Angle of Max. Cylinder Pressure, deg. A.TDC 24.000-CA_t.max-Angle of Max. Cylinder Temperature, deg. A.TDC 5.2088 - dp/dTheta- Max. Rate of Pressure Rise, bar/deg. 1.4056 - Ring_Intn- Ringing / Knock Intensity, MW/m2 9670.8 - F_max - Max. Gas Force acting on the piston, kg System: Custom Fuel Injection System 476.19 - p_inj.max- Max. Sac Injection Pres. (before nozzles), bar 385.58 - p_inj.avr- Mean Sac Press. for Total Fuel Portion, bar 12.240 - d_32 - Sauter Mean Diameter of Drops, microns 8.0000 - SOI - Start Of Injection or Ignition Timing, deg. B.TDC 27.741 - Phi_inj - Duration of Injection, CA deg. 3.5331 - Phi_ign - Ignition Delay Period, deg. calculated by modified Tolstov method : 3.5 4.4669 - SOC - Start of Combustion, deg. B.TDC 0.00491 - x_e.id- Fuel Mass Fraction Evaporated during Ignit. Delay 93.200 - Phi_z - Combustion duration, deg. Phi_z 5%= 2.4; Phi_z 50%= 17.2; Phi_z 95%= 52.4 5.1471 - Rs_tdc - Swirl Ratio in the Cylinder at IVC 21.871 - W_swirl - Max. Air Swirl Velocity, m/s at cylinder R= 22
ECOLOGICAL PARAMETERS	ECOLOGICAL PARAMETERS
 20.881 - Hartridge- Hartridge Smoke Level 2.0804 - Bosch - Bosch Smoke Number 0.54804 - K,m-1-Factor of Absolute Light Absorption, 1/m 0.64631 - PM-Specific Particulate Matter emission, g/kWh 746.74 CO2 - Specific Carbon dioxide emission, g/kWh 167.36 -NOx.w,ppm-Fraction of wet NOx in exh. gas, ppm 	12.353 - Hartridge- Hartridge Smoke Level 1.3322 - Bosch - Bosch Smoke Number 0.30715 -K,m-1- Factor of Absolute Light Absorption, 1/m 0.31316- PM-Specific Particulate Matter emission, g/kWh 669.63 CO2 - Specific Carbon dioxide emission, g/kWh 409.06 -NOx.w,ppm-Fraction of wet NOx in exh. gas, ppm

1.3085 - NO- Specif. NOx emiss. reduc. to NO, g/kWh	2.8454 - NO - Specif. NOx emiss. reduc. to NO, g/kWh
2.3413 - SE - Summary emission of PM and NOx	1.4507 - SE - Summary emission of PM and NOx
0.01011 - SO2 - Specific SO2 emission, g/kWh	0.00876 - SO2 - Specific SO2 emission, g/kWh
CYLINDER PARAMETERS	CYLINDER PARAMETERS
2.8904 - p_ivc - Pressure at IVC, bar	2.9152 - p_ivc - Pressure at IVC, bar
400.44 - I_ivc - Iemperature at IVC, K	379.71 - I_ivc - Temperature at IVC, K
139.67 - p_tdc - Compression Pressure (at TDC), bar	161.64 - p_tdc - Compression Pressure (at TDC), bar
9.3244 - p. evo - Pressure at EVO bar	9.53/0 - p.evo - Pressure at EVO bar
1168.9 - T evo - Temperaure at EVO K	11441 - T evo - Temperaure at EVO, bar
HEAT EXCHANGE IN THE CYLINDER	HEAT EXCHANGE IN THE CYLINDER
1043.9 - T_eq - Average Equivalent Temperature of Cycle, K	1132.8 - T_eq - Average Equivalent Temperature of Cycle, K
828.85 - hc_c - Aver. Factor of Heat Transfer in Cyl., W/m2/K	557.58 - hc_c - Aver. Factor of Heat Transfer in Cyl., W/m2/K
544.55 - Tw_pist - Average Piston Crown Temperature, K	517.21 - Tw_pist - Average Piston Crown Temperature, K
570.00 - Tw_liner - Average Cylinder Liner Temperature, K	570.00 - Tw_liner - Average Cylinder Liner Temperature, K
504.11 - Tw_head - Average Head Wall Temperature, K	478.90 - Tw_head - Average Head Wall Temperature, K
396.85 - Tw_cool - Average Temperature of Cooled Surface	390.86 - Tw_cool - Average Temperature of Cooled Surface
208 16 Theil Beiling Temp in Liquid Cooling System K	208 16 Theil Beiling Tomp in Liquid Cooling System K
12150 - hc. cool - Average Factor of Heat Transfer W/(m2*K)	11587 - hc. cool - Average Factor of Heat Transfer W/(m2*K)
from head cooled surface to coolant	from head cooled surface to coolant
2220.9 - q_head - Heat Flow in a Cylinder Head, J/s	1810.0 - q_head - Heat Flow in a Cylinder Head, J/s
2054.5 - q_pist - Heat Flow in a Piston Crown, J/s	1703.9 - q_pist - Heat Flow in a Piston Crown, J/s
1687.8 - q_liner - Heat Flow in a Cylinder Liner, J/s	900.69 - q_liner - Heat Flow in a Cylinder Liner, J/s
MAIN ENGINE CONSTRUCTION PARAMETERS	MAIN ENGINE CONSTRUCTION PARAMETERS
19.000 - CR - Compression Ratio	19.000 - CR - Compression Ratio
7.0000 - n_inj - Number of Injector Nozzles	7.0000 - n_inj - Number of Injector Nozzles
0.13700 - d_inj - Injector Nozzles Bore, mm	0.13700 - d_inj - Injector Nozzles Bore, mm
0.000 - Pril_inj - Injection Duration for specified Injection Profile, deg.	25.000 - Philin - Injection Duration for specific Inj. Profile, deg.
58 000 - FVO - Exhaust Valve Opening deg before BDC	58 000 - FVO - Exhaust Valve Opening deg before BDC
15.000 - EVC - Exhaust Valve Closing, deg. after DC	15.000 - EVC - Exhaust Valve Closing, deg. after DC
11.000 - IVO - Intake Valve Opening, deg. before DC	11.000 - IVO - Intake Valve Opening, deg. before DC
43.000 - IVC - Intake Valve Closing, deg. after BDC	43.000 - IVC - Intake Valve Closing, deg. after BDC
COMPRESSOR PARAMETERS HP stage	COMPRESSOR PARAMETERS HP stage
77509 RPM C.hp - Rotor Speed of HPC, rev/min	36817 RPM C.hp - Rotor Speed of HPC, rev/min
19.169 - P_C.hp - Power of HPC, kW	9.7676 - P_C.hp - Power of HPC, kW
0.70000 - Eta_C.hp - Adiabatic Efficiency of HPC	0.70000 - Eta_C.hp - Adiabatic Efficiency of HPC
0.14769 - m_C.hp - Mass Airflow of HP Compressor, kg/s	0.07526 - m_C.hp - Mass Airflow of HP Compressor, kg/s
2.5576 - m*_C.hp - Mass Airflow Parameter, kg SQRT(K)/(s bar)	1.3032 - m*_C.hp - Mass Airflow Parameter, kg SQRT(K)/(s bar)
0.14816 - m.cor_Chp- Corrected Mass Airflow of HPC, kg/s	0.07549 - m.cor_Chp- Corrected Mass Airflow of HPC, kg/s
4567.2 - RPM [*] _U.np- Rotor Speed Parameter, rev/min SQRT(K)	2169.4 - RPM [*] _C.np- Rotor Speed Parameter, rev/min SQRT(K)
2 6000 - PR C bp - Pressure Patio of HP Compressor	2 6000 - PP. C hp Pressure Patio of HP Compressor
0.0000 - Kni C hn - Factor Kni of HP Compressor	0.0000 - Kni Cho - Factor Kni of HP Compressor
0.98000 - po iC.hp - Inlet Total Pressure of HPC, bar	0.98000 - po iC.hp - Inlet Total Pressure of HPC, bar
288.00 - To_iC.hp - Inlet Total Temperature of HPC, K	288.00 - To_iC.hp - Inlet Total Temperature of HPC, K
2.5480 - po_"C.hp - Total Discharge Press. (before HP cooler), bar	2.5480 - po_"C.hp - Total Discharge Press. (before HP cooler), bar
417.15 - To_"C.hp - Total Discharge Temp. (before HP cooler), K	417.15 - To_"C.hp - Total Discharge Temp. (before HP cooler), K
0.75000 - Ecool.hp - Thermal Efficiency of HP Air Inter-cooler	0.75000 - Ecool.hp - Thermal Efficiency of HP Air Inter-cooler
288.00 - Tcool.hp - HP Inter-cooler Refrigerant Temperature, K	288.00 - Tcool.hp - HP Inter-cooler Refrigerant Temperature, K
2.4980 - po_C.hp - Total Pressure after Inter-cooler, bar	2.4980 - po_C.hp - Total Pressure after Inter-cooler, bar
TURBINE PARAMETERS HP stage	TURBINE PARAMETERS HP stage
77509 RPM T,hp - HP Turbine Rotor Speed, rev/min	36817 RPM T.hp - HP Turbine Rotor Speed. rev/min
19.148 - P T.hp - Effective Power of HPT. kW	9.7672 - P T.hp - Effective Power of HPT. kW
0.72975 - Eta_T.hp - Internal turbine Efficiency of HPT	0.78850 - Eta_T.hp - Internal turbine Efficiency of HPT
0.92400 - Eta_mT.hp- Mechanical Efficiency of HPT	0.92400 - Eta_mT.hp- Mechanical Efficiency of HPT
0.14802 - m_T.hp - Mass Gasflow of HPT, kg/s	0.07367 - m_T.hp - Mass Gasflow of HPT, kg/s

0.01779- m*_T.hp - Mass Gasflow Parameter,(kg SQRT(K))/(s kPa)	0.00865-m*_T.hp - Mass Gasflow Parameter, (kg SQRT(K))/(s kPa)
2610.8 - RPM*_T.hp- Rotor Speed Parameter, rev/min SQRT(K)	1272.0 - RPM*_T.hp- Rotor Speed Parameter, rev/min SQRT(K)
2.4701 - PR_T.hp - Expansion Pressure Ratio of HPT	2.3666 - PR_T.hp - Expansion Pressure Ratio of HPT
16.654 - B_T.hp - Relative Work B=118.34 {1-PR**[(1-k)/k]} Eta_T	17.957 - B_T.hp - Relative Work B=118.34 {1-PR**[(1-k)/k]} Eta_T
2.4701 - po_T.hp - Inlet Total Pressure of HPT, bar	2.4650 - po_T.hp - Inlet Total Pressure of HPT, bar
881.37 - To_T.hp - Inlet Total Temperature of HPT, K	837.75 - To_T.hp - Inlet Total Temperature of HPT, K
1.0416 - po_eT.hp - HP Turbine Exhaust Back Pressure, bar	1.0416 - po_eT.hp - HP Turbine Exhaust Back Pressure, bar
753.81 - To_eT.hp - HP Turbine Exhaust Back Temperature, K	707.82 - To_eT.hp - HP Turbine Exhaust Back Temperature, K

5.2.2. Diagramas del motor CI

Como primer diagrama 1D, se mostrará el diagrama presión vs volumen (p-V) este diagrama es muy común en un análisis termodinámico simple de un motor diésel (ciclo Diesel), este diagrama se hace de igual manera como el del motor SI. En La Figs. 5.25 y 5.26 se muestra el diagrama p-V del motor CI.

Figura 5.25. Diagrama p-V del motor CI, por Diesel-RK.

Figura 5.26 Diagrama p-V del motor CI, por OriginPro 8.

Para ver los diagramas de rendimiento del motor (Engine Performance) en este ejemplo de igual manera se realizarán los diagramas de potencia y torque respectivamente como se muestra en la Fig. 5.27 y 5.28.

Figura 5.27. Diagrama de potencia del motor a 1900 y 4000 rpm, en la figura se puede observar como se muestra el incremento de potencia, cabe recordar que en la Tabla 3.6 a 4000 rpm se tiene una potencia de 77.028 KW y a 1900 rpm 49.79 KW.

Figura 5.28. Diagrama del torque del motor a 1900 y 4000 rpm, en la figura se puede observar como se muestra el incremento del torque, cabe recordar que en la Tabla 3.6 a 4000 rpm se tiene un torque de 183.71 N.m y a 1900 rpm 250 N.m.

5.2.3 Simulación de inyección del motor CI

A diferencia del motor SI, en el cual se simulo un motor a gasolina, comparando con en el motor CI que es un motor diésel, esta simulación cuenta con una extensión de visualización cuando se inyecta el diésel a la cámara de combustión. Para poder observar esta simulación solo se requiere correr el software de manera normal (ICE Simulation), con un solo modo de operación. Cuando la simulación está terminada

se da clic en ^{limit}visualización de aerosoles de combustible, el cual se encuentra en la barra superior. Nos emergerá una venta como se muestra en la Fig. 5.29.

Figura 5.29. Hacer visualización de inyección.

Cuando emerge la ventana que se muestra en la Fig. 5.29, se debe dar clic en "make Visualization", esto hará que nos emerja otra ventana, la cual muestra una sección de la cámara de combustión y la inyección del combustible (ver Fig. 5.30). La vista lateral del pistón (sección superior izquierda) muestra la inyección que atraviesa el núcleo de pulverización hasta que impacta con la pared y mas allá del radio del cilindro, la vista superior del pistón (sección inferior izquierda) muestra la evolución de todos los aerosoles simultáneamente.

Figura 5.30. Ventana de visualización de inyección.

En la Figura 5.31 se muestra una serie de imágenes (9 imágenes) de la simulación de inyección y comportamiento dentro del cilindro, así como dos diagramas; asignación de combustible (derecho superior) e inyección y relación de calor (derecho inferior), cabe mencionar que en el software es una película de la inyección del combustible. El color del núcleo axial denso de la pulverización libre y el núcleo denso del flujo cerca de la pared son oscuros, la parte exterior de la pulverización libre y los alrededores externos de su flujo cerca de la pared son de color gris claro.

Figura 5.31 Visualización de inyección del motor CI.

En las Tablas 5.5 y 5.6 se muestra la descripción de las curvas de los diagramas anteriormente mencionados.

Tabla 5.5 Descripción de las curvas de asignación de combustible.

Denotación	Color de la línea	Contenido
Dilut. OS	Azul	Fracción de combustible en la manga exterior diluida de pulverización libre en un frente de pulverización libre y en el entorno exterior diluido del flujo cercano a la pared formado por la pulverización. Esta zona tiene las mejores condiciones de evaporación.
Spr. Core	Verde	Fracción de combustible en el núcleo de inyección libre. Malas condiciones de evaporación.
Pst. Wall	Negro	Fracción de combustible en el núcleo del flujo cercano a la pared del pistón. Buenas condiciones de evaporación.
Cyl. Head	Purpura	Fracción de combustible en la pared de la culata. Condiciones medias de evaporación.
Liner	Rojo	Fracción de combustible en la camisa del cilindro. Muy malas condiciones de evaporación.

Tabla 5.6 Descripción de las curvas de inyección y relación de calor.

Denotación	Color	Contenido	
	de la		
	linea		
Dc/dCA	Negro	Relación de calor dx/dCA	
x_b	Azul	Fraccion de relación de calor x.	
v_inj	verde	Velocidad de inyeccion, m/s	

5. 3 Comparación de emisiones contaminantes de los motores SI y CI

En la Tabla 5.7 se muestra una comparación de los parámetros ecológicos de ambos motores (motor a gasolina y diésel), esta comparación se realizó a sus máximas revoluciones correspondientes de cada motor.

Tabla 5.7 Emisiones contaminantes de los motores SI y CI

ECOLOGICAL PARAMETERS					
Motor a gasolina a 5600 rpm	Motor Diesel a 4000 rpm				
4570.0 - NOx.w,ppm- Fraction of wet NOx in exh. gas, ppm	20.881 - Hartridge- Hartridge Smoke Level 2.0804 - Bosch - Bosch Smoke Number				
22.678 - NO - Specif. NOx emiss. reduc. to NO, g/kWh (Zeldovich)	0.54804 - K,m-1-Factor of Absolute Light Absorption, 1/m 0.64631 -PM-Specific Particulate Matter emission, g/kWh				
0.0000 - SO2 - Specific SO2 emission, g/kWh	746.74 CO2 - Specific Carbon dioxide emission, g/kWh 167.36 -NOx.w,ppm-Fraction of wet NOx in exh. gas,				
	ppm 1.3085 - NO- Specif. NOx emiss. reduc. to NO, g/kWh (Zeldovich)				
	2.3413 - SE - Summary emission of PM and NOx 0.01011 - SO2 - Specific SO2 emission, g/kWh				

Motor a gasolina a 2800 rpm	Motor Diesel a 1900 rpm			
4659.3 - NOx.w,ppm- Fraction of wet NOx in exh. gas,	12.353 - Hartridge- Hartridge Smoke Level			
ppm	1.3322 - Bosch - Bosch Smoke Number			
21.041 - NO - Specif. NOx emiss. reduc. to NO,	0.30715 -K,m-1- Factor of Absolute Light Absorption, 1/m			
g/kWh (Zeldovich)	0.31316- PM-Specific Particulate Matter emission, g/kWh			
0.0000 - SO2 - Specific SO2 emission, g/kWh	669.63 CO2 - Specific Carbon dioxide emission, g/kWh			
	409.06 -NOx.w,ppm-Fraction of wet NOx in exh. gas,			
	ppm			
	2.8454 - NO - Specif. NOx emiss. reduc. to NO, g/kWh			
	(Zeldovich)			
	1.4507 - SE - Summary emission of PM and NOx			
	0.00876 - SO2 - Specific SO2 emission, g/kWh			

En base a este capítulo se puede analizar motores de combustión interna reales, de igual manera se requieren los manuales que se encuentran publicados en la página web de Diesel-RK (**Tutorial 1, Tutorial 2**) las cuales son de gran importancia para el aprendizaje del software. El conocimiento obtenido al utilizar el software es fundamental para este estudio, ya que los objetivos establecidos en el capítulo 1 serían muy difíciles de alcanzar sin la ayuda de Diesel-RK.
Capítulo VI. Desarrollo de la metodología

6.1. Estructura de la metodología

Para la consecución de los objetivos establecidos en el primer capítulo, la metodología propuesta para el desarrollo de la presente tesis se presenta esquemáticamente en la Fig. 6.1.

Figura 6.1: Diagrama de bloques de la metodología.

6.2 Recopilación de información de los motores (SI, CI y HCCI), y simulación con combustibles fósiles.

La información de los motores se puede conseguir del tres maneras, la primera es el manual de propietario, este manual lo contiene todos los vehículos en existencia, donde se especifica diferentes características del motor, la segunda es de internet, aquí se requiere tener conocimiento de la marca y modelo del motor o del vehículo para realizar la búsqueda, el tercero es en artículos científicos, como por ejemplo en el caso del motor HCCI, el cual fue obtenido del artículo científico realizado por Kuleshov (2015).

6.2.1 Información para el análisis de un motor de combustión interna

Ciclo de trabajo: En este existen dos tipos, el primero es el ciclo de cuatro tiempos, normalmente para los vehículos y camiones, el segundo es el ciclo de dos tiempos, este lo tienen las motocicletas.

Tipo de encendido y combustible: algunos de los tipos de encendido se mencionan en la Fig. 6.1 (SI, CI y HCCI), así como los combustibles fósil correspondientes a cada encendido.

Diseño básico del motor: existen cuatro tipos de diseño de un motor; en línea, esté es muy común en los motores 4 cilindros, también existe en los motores 6 y 8 cilindros, el motor en forma de V se utiliza en motores de 6 a 12 cilindros y suelen ser chicos en comparación a los de en línea (comparando misma cantidad de cilindros), el motor opuesto tipo bóxer es un poco raro, este motor se utiliza en la marca Porche, Subaru y en Volkswagen (bocho), el motor radial normalmente lo tienen las avionetas, también existen los motores doble V, conocidos como motores W, este motor lo maneja la marca Bugatti.

Numero de cilindros: es la cantidad de cilindros en el motor.

Tipo de enfriamiento: existen dos tipos de enfriamiento por aire (bocho) o por agua.

Diámetro del pistón: Es la medida del pistón del motor analizado, y sus unidades normalmente se dan en mm.

Carrera del pistón: Es el recorrido que hace el pistón en la cámara de combustión en mm.

Velocidad máxima del motor: es la velocidad máxima del motor, en revoluciones por minuto (rpm)

Relación de compresión: es la relación del volumen cuando el pistón se encuentra en el punto muerto inferior y en el punto muerto superior dentro de la cámara de combustión.

Numero de válvulas. Es la cantidad de válvulas dentro del cilindro, normalmente es de 2 a 4.

Parámetros del medio ambiente: se requiere la temperatura y la presión atmosfera a la que se está analizando el motor.

6.3 Simulación de los motores con combustibles fósiles

En los capítulos 2 y 5 se realizó él estudió de los motores SI y CI con su correspondiente combustible fósil (gasolina para el SI y diésel para el CI), donde se determina la potencia, eficiencia energética, temperatura de combustión. En el capítulo 2 se analizó el motor con diversas ecuaciones, se aplicó la teoría del ciclo Otto y el ciclo Diesel. En el capítulo 5 habla del aprendizaje del software Diesel-RK, donde se simularon los mismos motores de combustión interna del capítulo 2, donde se analizó la eficiencia energética, potencia, torque y las emisiones contaminantes. Con respecto al encendido HCCI, se pretende realizar simulaciones con especificaciones de un motor analizado por Kuleshov (2015). Kuleshov estudio este motor a 1500 rpm, en este estudio se analizara el mismo motor pero para determinar la potencia máxima, a su vez se va a analizar la eficiencia energética, potencia, torque y las emisiones contaminantes.

6.4 Simulación de los motores (SI, CI y HCCI) con mezclas de combustibles fósil con bio-combustibles

Esta etapa se enfoca en la realización de diversas mezclas, estás son entre un combustible fósil (correspondiente al tipo de encendido) y un bio-combustible, este no precisamente tiene que ser uno, se pretende utilizar varios bio-combustibles. Los bio-combustibles utilizados son el Etanol, Metanol y Dimetil-Eter (DME). Diesel-RK tiene una sección donde se introducen propiedades de las mezclas que se van a utilizar, las propiedades fueron calculadas aplicando las ecuaciones que se muestran en a la siguiente sección. Una vez que se establezcan las mezclas en el Diesel-RK, esté realizara las simulaciones necesaria para la realización de diagramas y tablas.

Los resultados se pretenden dividir en grupos, éstos pertenecerán al tipo de encendido y a su vez al tipo de mezcla. Con respecto a las mezclas de un solo tipo de encendido se pretende realizar la comparación entre ellas y así dar a conocer cuál de ellas es la más óptima.

Se pretende comparar la potencia, el torque, la eficiencia energética, temperatura de combustión, presión media efectiva e indicada (bmep e imep) consumo específico de combustible (SFC), combustible por ciclo (m_f), óxidos nítricos (NOx) y dióxido de carbono (CO₂).

6.5 Propiedades del combustible (mezclas)

En la sección de combustible de Diesel-RK se puede modificar las propiedades del combustible, esto quiere decir que se pude realizar mezclas, para esto se requiere conocer algunas de las características del combustible tales como; fracciones másicas, peso molecular (M) y poder calorífico (LHV o HHV).

6.5.1 Fracciones másicas

Los combustibles fósiles normalmente se componen de dos especies; carbono (C) e hidrogeno (H), como por ejemplo el octano (C_8H_{18}), sin embargo, los biocombustibles tiene una tercera, que es el oxígeno (O), como por ejemplo el etanol (C_2H_5OH) y metanol (CH₃OH).

La fracción másica (Y_i) de una mezcla se determina con la ecuación 4.27

$$Y_i = \frac{m_i}{m}, \quad i = 1, 2, \dots, n.$$

donde m_i es la masa de una especie (C, H ó O) y m es la masa total de todas las especies.

6.5.2 Peso molecular

El peso molecular se obtiene si se conocen las fracciones molares o las másicas (ver Ec 4.33),

$$M = \sum_{i=1}^{n} M_i X_i = \left[\sum_{i=1}^{n} \frac{Y_i}{M_i}\right]^{-1}$$

para la mezcla del combustible, es la suma de la masa molar de las especies.

6.5.3 Poder calorífico

Para determinar el poder calorífico se requiere hacer el balance estequiométrico de la mezcla a utilizar, este balance se puede hacer en base a la sección 2.7, con la Ec. 2.12.

$$C_a H_b + \left(a + \frac{b}{4}\right)(O_2 + 3.76N_2) \rightarrow aCO_2 + \frac{b}{2}H_2O + \left(a + \frac{b}{4}\right)3.76N_2$$

Sucesivamente se requiere calcular la entalpia de combustión (\bar{h}_{RP}) de la subsección 2.7.2, con la Ec. 2.14,

$$\bar{h}_{RP} = \sum_{P} n_e \bar{h}_e - \sum_{R} n_i \bar{h}_i = \sum_{P} n_e (\bar{h}_f + \Delta \bar{h})_e - \sum_{R} n_i (\bar{h}_f + \Delta \bar{h})_i$$

está entalpia es dividida entre el peso molecular (M) de la sustancia.

$$LHV \ o \ HHV = \frac{\overline{h}_{RP}}{M}$$

6.5.4 Propiedades de la mezcla de 50% etanol y 50% metanol

Fracciones másicas y peso molecular

Sustancia: $0.5 C_2H_5OH + 0.5 CH_3OH$ (la suma de las sustancias es = 1 o 100%)

En la tabla 6.1 determina el peso molecular de la sustancia aplicando la Ec. 4.27, y con la Tabla termodinámica A-3 o A-4 donde se obtiene la masa molar de la especie,

Tabla 6.1 Masa molar de las	especies y peso molec	ular del combustible	(mezcla).
-----------------------------	-----------------------	----------------------	-----------

Especie		Sustituyendo	Masa molar
Carbono	0.5(C2) + 0.5(C)	$0.5(2 \times 12.01) + 0.5(12.01)$	18.015 kg/kmol
Hidrogeno	0.5(H5) + 0.5(H3)	$0.5(5 \times 1.008) + 0.5(3 \times 1.008)$	5.04 kg/kmol
	+0.5(H)	+0.5(1.008) + 0.5(1.008)	
Oxigeno	0.5(0) + 0.5(0)	0.5(16) + 0.5(16)	16 kg/kmol
		Peso molecular de la mezcla	$\sum -39.055 \frac{kg}{kg}$
			$\angle = 39.033 \frac{1}{kmol}$

Especie	Masa molar/peso molecular	Fracciones másicas <i>Y</i> _i
Carbón	18.015 kg/kmol /39.055 kg/kmol	0.4613
Hidrogeno	5.04 kg/kmol 39.055 kg/kmol	0.129
Oxigeno	16 kg/kmol 39.055 kg/kmol	0.4096
		$\sum = 1$

Tabla 6.2 Fracciones másicas del combustible (mezcla).

Poder calorífico inferior

Balance estequiométrico

 $0.5 C_2 H_5 OH + 0.5 C H_3 OH + 2.75 O_2 + 10.34 N_2 1.5 C O_2 + 2.5 H_2 O + 10.34 N_2$

Entalpia de formación (Ec. 2.14)

$$\bar{h}_{RP} = \sum_{P} n_e \bar{h}_e - \sum_{R} n_i \bar{h}_i = \sum_{P} n_e (\bar{h}_f + \Delta \bar{h})_e - \sum_{R} n_i (\bar{h}_f + \Delta \bar{h})_i$$

El análisis se está realizando a la temperatura de referencia, por lo tanto el diferencial de entalpia de los productos y reactantes se eliminan.

para encontrar la entalpia de combustión se requiere para cada sustancia la entalpia de formación, esta puede ser encontrada en la Tabla A-3 o A-4.

$$\bar{h}_{RP} = 1.5\bar{h}_{f}CO_{2} + 2.5\bar{h}_{f}H_{2}O + 10.34\bar{h}_{f}N_{2} - 0.5\bar{h}_{f}C_{2}H_{5}OH - 0.5\bar{h}_{f}CH_{3}OH - 2.75\bar{h}_{f}O_{2} - 10.34\bar{h}_{f}N_{2}$$

La entalpia de formación de N_2 y O_2 es cero entonces la ecuación queda:

$$\bar{h}_{RP} = 1.5\bar{h}_{f}CO_{2} + 2.5\bar{h}_{f}H_{2}O - 0.5\bar{h}_{f}C_{2}H_{5}OH - 0.5\bar{h}_{f}CH_{3}OH$$

Sustituyendo

$$\bar{h}_{RP} = 1.5(-393520) + 2.5(-241820) - 0.5(.277690) - 0.5(-238400)$$

$$\bar{h}_{RP} = -936785 \frac{kJ}{kmol (fuel)}$$

$$LHV = \frac{\bar{h}_{RP}}{M} = \frac{-936785 \, {^{kJ}/_{kmol \, (fuel)}}}{_{39.055 \, \frac{kg}{kmol}}} = -23986.3 \, {^{kJ}/_{kg}} = -23.86 \, {^{MJ}/_{kg}}$$

Este procedimiento tiene que ser realizado para cualquier mezcla, esto fue posible con la ayuda de un Excel, y los resultados se verán en el capítulo 7.

Capítulo VII: Aplicación de la metodología.

7.1. Descripción del caso de estudio

En este caso de estudio se simularon motores de combustión interna (SI, CI y HCCI), Los motores SI y CI son motores reales en existencia, mientras que el motor HCCI es un prototipo estudiado por diversos investigadores, el más reconocido es por Kuleshov (2015).

Los motores SI y CI fueron previamente simulados en el software Diesel-RK (capitulo 5), donde se simularon con su combustible fósil correspondiente y a su vez se explica el uso del software, estas simulaciones cumplen con el primer objetivo específico de este trabajo. Los motores SI y CI fueron simulados utilizando mezclas de su combustible fósil correspondiente (gasolina o diésel) con bio-combustibles (Etanol, Metanol y Dimetil-Eter). La eficiencia energética, potencia, torque y emisiones contaminantes de cada mezcla serán comparadas con los resultados del 100% de su combustible fósil correspondiente, y así cumplir con el segundo objetivo específico de este trabajo.

Con respecto al tercer objetivo, se pretende simular el motor tipo HCCI usando puros combustibles fósiles (gasolina o diésel), para analizar su eficiencia energética, potencia, torque y sus emisiones contaminantes. Por último, se realizó la simulación del motor HCCI utilizando mezclas de combustibles fósiles con bio-combustibles (Etanol, Metanol y Dimetil-Eter), y de igual manera comparar resultados, para cumplir con el cuarto objetivo específico.

7.2 Recopilación de información de los motores (SI, CI y HCCI), y simulación con combustibles fósiles

Los información de los motores de combustión interna SI y CI se consiguieron del manual de propietario y de una página web (motor.bolsamania), respectivamente, mientras que la información del motor HCCI se consiguió de un artículo científico (Kuleshov, 2015), el motor HCCI es un prototipo en investigación, por lo que no existe en el mercado automotriz.

7.2.1 Motor SI

El motor SI corresponde a un vehículo Chevrolet (Chevy) el cual cuenta con un motor tipo transversal de 1.6 L MPFI 8V (1600cc), de 4 cilindros en línea con una relación de compresión de 9.4:1, el cual entrega una potencia de 67.5 kW a 5.600 rpm y un torque de 127 N-m a 2800 rpm. El manual otorga los valores de potencia y torque como se muestra en la Tabla. 7.1, sin embargo se corroboraron con el software Diesel-RK (capitulo 5). Los resultados del motor SI se muestran el Tabla 7.2.

Datos técnicos			
Número de cilindros y tipo	4 en línea.		
Diámetro y carrera	(D / S) 79/81.5 mm		
Relación de compresión	9.4:1		
Número de válvulas por cilindro	2		
cilindrada	1.598 cm ³		
Sistema de refrigeración	líquido		
Potencia máxima a RPM nominales	67.5 KW @ 5600 rpm		
Par máximo a RPM	127N-m @ 2800 rpm		

Tabla 7.2 Resultados del motor SI usando gasolina como combustible.

Resultados			
Potencia (5600rpm)	67.48 kW		
Torque (2800rpm)	124.66 N.m		
Eficiencia energética	29.45 %		
Temperatura de combustión	2733.4 K		
Presión media efectiva al freno (bmep)	9.0491 bar		
Presión media efectiva indicada (imep)	11.722 bar		
Consumo especifico de combustible (SFC)	277.79 g/kWh		
Masa de combustible por ciclo (m_f)	0.02789 g		
Emisiones contaminantes			
Óxidos nítricos NOx 4570.0 ppm			

Cuando se hace un análisis energético de un motor a gasolina (Ciclo Otto), existe un diagrama muy importante. El diagrama p-V logra apreciar las cuatro etapas del ciclo Otto (compresión, explosión, expansión y escape). El software Diesel-RK tiene la capacidad de elaborar el diagrama p-V (capitulo 5), el cual se logra apreciar en la Fig. 7.1.

Figura 7.1. Diagrama p-V del motor SI

7.2.2 Motor CI

El motor CI corresponde a un vehículo Volkswagen (Jetta) con turbo de inyección directa (TDI por sus siglas en inglés, Turbo Direct Injection. El cual cuenta con un motor tipo transversal de 1.9 Lts. (1900cc), 4 cilindros en línea, con una relación de compresión de 19:1, que entrega una potencia de 77 kW a 4000 rpm y un torque de 250 N-m a 1900 rpm. La página Web (motor.bolsamania) otorga los valores de potencia y torque como se muestra en la Tabla 7.3, sin embargo se corroboraron con el software Diesel-RK (capitulo 5). Los resultados del motor CI se muestran el Tabla 7.4.

Datos técnicos			
Número de cilindros y tipo	4 en línea.		
Diámetro y carrera	(D / S) 79.5/95.5 mm		
Relación de compresión	19:1		
Número de válvulas por cilindro	2		
Cilindrada	1.896 cm ³		
Sistema de refrigeración	líquido		
Potencia máxima a RPM nominales	77 KW @ 4000 rpm		
Torque máximo a RPM	250N-m @ 1900 rpm		

Tabla. 7.3. Especificaciones del motor CI.

Tabla 7.4.	Resultados	del motor (CL usando	Diesel	como	combustible.
	resultates			DICOCI	001110	combustible.

Resultados				
Potencia (4000rpm)	77.03 kW			
Torque (1900rpm)	249.88 N.m			
Eficiencia energética	33.974 %			
Temperatura de combustión	1588.8 K			
Presión media efectiva al freno (bmep)	12.187 bar			
Presión media efectiva indicada (imep)	15.594 bar			
Consumo especifico de combustible (SFC)	238.28 g/kWh			
Masa de combustible por ciclo (m_f)	0.03824 g			
Emisiones contaminantes				
Óxidos nítricos NOx	167.23 ppm			
Dióxido de carbono CO ₂	746.71 g/kWh			
Materia particulada	0.64594 g/kWh			
Nivel de Smoke (Hartridge)	20.872			

De igual manera cuando se hace un análisis energético de un motor diésel (Ciclo Diesel), existe un diagrama muy importante. El diagrama p-V logra apreciar las cuatro etapas del ciclo Diesel (compresión, explosión, expansión y escape). El software Diesel-RK tiene la capacidad de elaborar el diagrama p-V (capitulo 5), el cual se logra apreciar en la Fig. 7.2. Diesel RK tiene la capacidad de mostrar una secuencia de inyección del motor CI, la cual se muestra en la Fig. 7.3, ésta cuenta con una parte superior e inferior (dividida por una línea roja). La secuencia comienza de la parte superior izquierda, cuando apenas se está inyectando el combustible, en

la sección superior derecha se muestra cuando empieza la combustión, esta continúa en la parte inferior izquierda y para terminar en la parte inferior derecha. Esta secuencia de imágenes fue posible por el software diésel-RK, cabe mencionar que en esté se muestra en forma de video.

Figura 7.2. Diagrama p-V del motor CI.

Figura 7.3: Secuencia de inyección y combustión en la cámara de combustión del motor CI.

7.2.3 Motor HCCI

El motor HCCI es un motor diésel de dos tiempos, el cual se basa en el encendido de un motor diésel, pero este motor tiene una relación aire combustible muy baja (más aire que combustible) con respecto a los motores diésel convencionales. El tener relación (aire/combustible) muy pobre ocasiona una temperatura de combustión baja y por lo tanto una generación de óxidos nítricos bajas. La primera etapa de la compresión de aire fresco tiene lugar en un turbocompresor, la segunda parte de la compresión tiene lugar en el compresor de pistón de accionamiento mecánico (Kuleshov, 2015).

Este motor fue previamente simulado en base al estudio de Kuleshov (2015), esta simulación se realizó a 1500 rpm para obtener el torque máximo, con las especificaciones de la Tabla 7.5. Los resultados obtenidos fueron comparados con los resultados publicados por el profesor Kuleshov, sin embargo para este estudio se analizó el mismo motor, pero a diferentes revoluciones, con la finalidad de encontrar la potencia máxima del motor.

Datos técnicos			
Numero de cilindros	2		
Diámetro del pistón	72mm		
Carrera	70mm		
Biela	115mm		
Numero de cilindros	2,en línea		
Numero de válvulas por cilindro	4		
Relación aire combustible	2.5		
Diámetro de la válvula de escape y elevación	26mm y 6mm		
Válvula de escape abierta	68°BBDC		
Válvula de escape cerrada	68°BTDC		
Válvula de entrada abierta	68°BTDC		
Válvula de entrada cerrada	46°BTDC		
Diámetro de válvula de	26mm y 5.7mm		
entrada y elevación			
Relación de compresión	15.5:1		
Turbocompresor PR @	4.5-5.5 @ 0.74		
Eficiencia			
Supercargador PR @	4.25 @ 0.85		
Eficiencia			

Tabla 7.5. Especificaciones del motor HCCI.

Para la determinación de la potencia máxima del motor HCCI se realizó una serie de simulaciones a diferentes revoluciones, las cuales oscilan en un rango de 3200 a 4000 rpm. Para fines de comparación escogí a 3600 rpm, aunque estas revoluciones no entregan la potencia máxima, sin embargo hay que tener en cuenta otro factor muy importante, el cual es tomar en cuenta las condiciones de fabricación del motor, ya que existe la posibilidad de los componentes del motor tengan que ser muy sofisticados y compliquen la construcción del motor. Los resultados del motor HCCI se muestran en la Tabla 7.6.

Figura 7.4. Potencia del motor HCCI a diferentes revoluciones (rpm) usando diésel como combustible.

Resultados				
Potencia (3600rpm)	42.706 kW			
Torque (1500rpm)	124.08 N.m			
Eficiencia energética	42.8 %			
Temperatura de combustión	1989.2 K			
Presión media efectiva al freno (bmep)	12.3 bar			
Presión media efectiva indicada (imep)	13.36 bar			
Consumo especifico de combustible (SFC)	226.85 g/kWh			
Masa de combustible por ciclo (m_f)	0.01946 g			
Emisiones contaminantes				
Óxidos nítricos NOx	4.155 ppm			
Dióxido de carbono CO ₂	1002.4 g/kWh			
Materia particulada	0.2633 g/kWh			
Nivel de Smoke (Hartridge)	4.6188			

Tabla 7.6 Resultados del motor HCCI usando Diesel como combustible.

7.3 Simulación de los motores (SI, CI y HCCI) con mezclas de combustibles fósil con bio-combustibles

Para la simplificación de las mezclas se realizó una simbología, como por ejemplo E10; donde la letra inicial indica el biocombustible, el numero especifica la cantidad de biocombustible en la mezcla, en este caso el número 10 es el 10% de la mezcla de Etanol, por lo que el otro 90% es de gasolina (90%G-10%E). La suma de las mezclas tiene que dar el 100%.

7.3.1 Simulación del motor SI con mezclas

Las mezclas utilizadas son las siguientes: (M10, M20, M50, E10, E20, E50, DME10, DME20 y DME50). Para la realización de mezclas se tiene introducir una serie de datos al software Diesel-RK, estos datos pertenecen a las propiedades de la mezcla utilizada para la simulación y se muestran en la Tabla 7.7.

Tabla 7.7: Fracciones másicas, masa molecular (M) y poder calorífico inferior (LHV) para diferentes mezclas de gasolina (G) con, metanol (M), Etanol (E) y Dimetil-Eter (DME).

MEZCLA	Carbono	Hidrógeno	Oxígeno	М	LHV
	С	н	0	(kg/kmol)	MJ/kg
100%G	0.855	0.145	0	115	44
90%G-10%M	0.827	0.1578	0.0151	106	43.68
80%G-20%M	0.8106	0.156	0.0327	97.8	42.82
50%G-50%M	0.739	0.1516	0.1093	73	39
90%G-10%E	0.8274	0.1576	0.0149	107.4	43.67
80%G-20%E	0.81186	0.1563	0.0319	100.6	42.81
50%G-50%E	0.749	0.1509	0.1	80.14	39.36
90%G-10%DME	0.8275	0.1576	0.0149	107.4	43.7
80%G-20%DME	0.8119	0.1563	0.0319	100.6	42.88
50%G-50%DME	0.75	0.151	0.1	80.146	39.6

Cuando se analiza un motor en el software Diesel-RK, este muestra una diversidad de diagramas como el que se muestra en las Fig. 7.1 y 7.2, así como también una serie de resultados en una tabla, cabe recordar que cada mezcla se simulo de manera individual (5600 rpm), por lo que hubo la necesidad de hacer una recaudación de datos para este estudio. En la Fig. 7.5 se muestra la potencia (kW) de cada una de las mezclas anteriormente mencionadas. La potencia disminuye 1.2% en comparación con el 100% de gasolina aproximadamente, sin embargo es un valor insignificante en comparación con la reducción de emisiones contaminantes que se muestra más adelante en este capítulo.

Figura 7.5: Potencia del motor SI con respecto a la mezcla utilizada.

El torque máximo del motor SI se realizó a 2800 rpm, ya que a estas revoluciones el motor entrega el máximo torque (ver Tabla 7.2), este resultado es el único analizado a estas revoluciones. En la Fig. 7.6 se muestra el torque de cada una de las mezclas realizadas, el torque disminuye de igual manera que la potencia.

Figura 7.6: Torque del motor SI con respecto a la mezcla utilizada.

La Fig. 7.7 muestra el comportamiento de la temperatura de combustión, esta es la temperatura máxima. El uso de biocombustibles en la mezcla hace que la temperatura de combustión disminuya, esto beneficia en los motores SI, ya que estos son conocidos por ser de alta temperatura y alto nivel de NOx, por lo que al disminuir la temperatura de combustión, disminuye el NOx.

Figura 7.7: Temperatura de combustión del motor SI con respecto a la mezcla utilizada.

Cuando se estudia un motor de combustión interna, existe un factor muy importante, la presión media efectiva, está se clasifica en dos tipos; la presión media efectiva al freno (bmep) y la presión media efectiva indicada (imep). La bmep es la presión teórica constante que se ejerce durante cada carrera de potencia del motor, para producir una potencia igual a la del freno, por ejemplo si dos motores de igual volumen de desplazamiento (mismo tamaño del motor), el que tenga una presión media efectiva más alta produciría el mayor trabajo neto, y si los motores funcionan a la misma velocidad, mayor potencia. La imep es la presión teórica constante que supuestamente ejerce durante cada carrera de potencia del motor (después del encendido de la mezcla del combustible), para producir una potencia igual a la indicada. La Fig. 7.8 muestra la bmep e imep del motor SI, estas presiones disminuyen un poco cuando se mezcla la gasolina con un bio-combustible, esto se debe a que la presión media efectiva tiene una relación con la potencia (ver fig. 7.5).

Figura 7.8: Presión media efectiva (bmep y imep) del motor SI con respecto a la mezcla utilizada.

La Fig. 7.9 muestra el consumo específico del combustible (SFC) y la masa de combustible por ciclo (m_f). El SFC es un parámetro comparativo que muestra con cuanta eficiencia convierte un motor el combustible en trabajo, y el m_f es la cantidad de combustible inyectado por cada ciclo del motor. El SFC (línea azul) corresponde al eje de la ordenada del lado izquierdo y el m_f (línea naranja) corresponde al eje de la ordenada del lado derecho, ambas líneas se mueven de forma ascendente conforme se añade más biocombustible a la mezcla, esto indica que se consume una mayor cantidad de combustible, esto se debe a que el poder calorífico de las mezclas con bio-combustibles es in inferior al poder calorífico cuando solo se ocupa gasolina (ver Tabla 7.6).

Figura 7.9: Consumo específico del combustible y la masa de combustible por ciclo del motor SI con respecto a la mezcla utilizada.

En la Fig. 7.10 se muestra los óxidos nítricos (NOx) correspondientes a los gases de escape de las mezclas analizadas. Los NOx se producen al existir una alta temperatura durante la combustión en el motor, esto es común en los motores de gasolina, como anteriormente se dijo, estos motores (SI) son de alta temperatura, y alto nivel de NOx, pero esté tiende a disminuir hasta un 11% o más, mientras más se sustituya la gasolina por bio-combustible. La reducción de emisiones contaminantes es uno de los puntos más importantes cuando se estudia un motor de combustión interna, ya que al hacer esto posible se está ayudando al medio ambiente, otro factor muy importante es que el uso de biocombustibles no afecta el rendimiento termodinámico, principalmente en la potencia indicada (ver Fig. 7.5), por lo que esto nos permite seguir disfrutando el uso de los vehículos y principalmente los vehículos de carreras.

Figura 7.10: Los óxidos nítricos del motor SI con respecto a la mezcla utilizada.

En la Fig. 7.11 se muestra la eficiencia termodinámica del motor SI, está es baja en comparación con las de los motores CI, sin embargo, es la variación es insignificante cuando se mezcla la gasolina con un bio-combustible.

Figura 7.11: Eficiencia del motor SI con respecto a la mezcla utilizada.

7.3.2 Simulación del motor CI con mezclas.

El estudio de este motor se llevó acabo a una velocidad de 4000 rpm, pero esta vez utilizando como combustible el diésel mezclado con un bio-combustible. Así como en el modelado SI, los bio-combustibles candidatos para este motor (CI) son: etanol, metanol y dimetil-éter (DME). Las mezclas utilizadas son las siguientes: (E5, E10,

E20, M5, M10, M20, DME5 DME10 y DME20), debido a problemas de solubilidad con el diésel, no se le puede agregar más bio-combustible a la mezcla. Así como con el motor SI se tiene introducir una serie de datos al software Diesel-RK, estos datos pertenecen a las propiedades de la mezcla utilizada para la simulación y se muestran en la Tabla 7.8.

Tabla 7.8: Fracciones másicas, masa molecular (M) y poder calorífico inferior (LHV) para diferentes mezclas de diésel (G) con, metanol (M), Etanol (E) y Dimetil-Eter (DME).

MEZCLA	Carbono	Hidrógeno	Oxígeno	М	LHV
	С	н	0	(kg/kmol)	MJ/kg
100%D	0.8461	0.1539	0	170.33	44.47
95%D-5%M	0.8415	0.1536	0.005	163.41	44.23
90%D-10%M	0.8365	0.1533	0.0102	156.5	43.97
80%D-20%M	0.825	0.1526	0.0224	142.67	43.37
95%D-5%E	0.8416	0.1536	0.0049	164.12	44.22
90%D-10%E	0.8367	0.1532	0.0101	157.9	43.96
80%D-20%E	0.8256	0.1524	0.022	145.48	43.35
95%D-5%DME	0.8416	0.1536	0.0049	164.12	44.23
90%D-10%DME	0.8367	0.1532	0.0101	157.9	43.98
80%D-20%DME	0.8256	0.1524	0.22	145.48	43.4

La Fig. 7.12 se muestra la potencia de cada una de las mezclas anteriormente mencionadas. La potencia disminuye 0.4% aproximadamente cuando se le sustituye un 5-10% de la mezcla con algún bio-combustible, sin embargo, la potencia disminuye 2.2% cuando se agrega un 20% del mismo.

Figura 7.12: Potencia del motor CI con respecto a la mezcla utilizada.

El torque máximo del motor se realizó a 1900 rpm, ya que a estas revoluciones el motor entrega el máximo torque (ver Tabla 7.4), este resultado es el único analizado a estas revoluciones. En la Fig. 7.13 se muestra el torque de cada una de las mezclas realizadas, el torque aumenta un poco cuando se mezcla diésel con un bio-combustible.

Figura 7.13: Torque del motor CI con respecto a la mezcla utilizada.

Los motores CI no son conocidos por ser motores de combustión de alta temperatura como los motores SI que sí lo son, es por eso que los motores CI no producen muchos NOx en comparación del motor SI como anteriormente se mostró en este capítulo. En la Fig. 7.14 muestra que el mezclar el diésel con algún biocombustible hace que la temperatura de combustión disminuya, cuando se agrega de un 5-10% la temperatura de combustión disminuye un poco, pero cuando se agrega un 20% la temperatura de combustión disminuye 20 K aproximadamente.

Figura 7.14: Temperatura de combustión del motor CI con respecto a la mezcla utilizada.

La Fig. 7.15 muestra la bmep e imep del motor CI, estas presiones disminuyen un poco cuando se mezcla el diésel con un bio-combustible, esto se debe a lo anteriormente mencionado que la presión media efectiva tiene una relación con la potencia.

Figura 7.15: Presión media efectiva (bmep y imep) del motor CI con respecto a la mezcla utilizada.

La Fig. 7.16 muestra el consumo específico del combustible (SFC) y la masa de combustible por ciclo (m_f) del motor CI. El SFC (línea azul) corresponde al eje de la ordenada del lado izquierdo y el m_f (línea naranja) corresponde al eje de la ordenada del lado derecho. El SFC y el m_f aumentan de manera ascendente conforme más se sustituye el combustible (diésel) por algún bio-combustible, esto quiere decir que se requiere mayor cantidad de combustible para abastecer el motor, esto es debido a que es más bajo el poder calorífico de las mezclas, que el del 100 % diésel (ver Tabla. 7.6) Si esto fuese real en un vehículo, el tanque de combustible duraría menos tiempo.

Figura 7.16: Consumo específico del combustible y la masa de combustible por ciclo del motor CI con respecto a la mezcla utilizada.

Como anteriormente se mencionó el motor CI produce un bajo nivel de NOx en comparación con los motores SI, en los motores SI ronda los 4570 ppm y en los CI ronda los 167 ppm. En la Fig. 7.7 muestra los óxidos nítricos (NOx) y el dióxido de carbono (CO₂) del motor CI. El NOx (línea naranja) corresponde a la ordenada del lado izquierdo y el CO2 (línea amarilla) corresponde a la ordenada del lado derecho. El NOx incrementa en todas las mezclas realizadas, a excepción de la mezcla 95%D-5%M, en esta disminuye un poco. El CO₂ se mantiene estable cuando se le sustituye el diésel por un bio-combustible entre el 5-10%, sin embargo, aumenta cuando se sustituye por un 20%.

Figura 7.17: Los óxidos nítricos y dióxido de carbono del motor CI con respecto a la mezcla utilizada.

En la Fig. 7.18 se muestra la eficiencia energética del motor CI, está es más alta en comparación con la del motor SI. La eficiencia del motor CI disminuye más cuando se sustituye el diésel por un bio-combustible.

Figura 7.18 Eficiencia energética del motor CI con respecto a la mezcla utilizada.

7.3.3 Simulación del motor HCCI con mezclas.

El estudio de este motor se llevó acabo a una velocidad de 3600 rpm, pero esta vez utilizando como combustible el diésel mezclado con un bio-combustible. Los biocombustibles candidatos para este motor son los mismos de los motores SI y CI. Como anteriormente se mencionó, el motor HCCI funciona con diésel o gasolina, en esta sección se utilizará diésel y se las mezclas utilizadas son las siguientes: (E5, E10, E20, M5, M10, M20, DME5 DME10 y DME20), no se le puede agregar más por problemas de solubilidad, y las propiedades de la mezcla utilizadas para la simulación son las mismas del motor CI. En la Fig. 7.19 se muestra la potencia indicada del motor (HCCI). En este motor hay un ligero incremento de potencia, en comparación con el motor DICI que hay una disminución de la misma, sin embargo es insignificante lo que aumenta o disminuye.

Figura 7.19: Potencia del motor HCCI con respecto a la mezcla utilizada.

El torque máximo del motor HCCI se realizó a 1500 rpm, ya que a estas revoluciones el motor entrega el máximo torque (ver Tabla 7.6), este resultado es el único analizado a estas revoluciones. En la Fig. 7.20 se muestra el torque de cada una de las mezclas realizadas, el torque aumenta un poco cuando se mezcla diésel con un bio-combustible.

Figura 7.20: Torque del motor HCCI con respecto a la mezcla utilizada.

La temperatura de combustión de los motores HCCI ronda entre los 1400 y 2000 k (ver Fig. 2.2). La Fig. 7.21 muestra el comportamiento de la temperatura de combustión del motor HCCI. Cuando se mezcla hasta un 10 % de bio-combustible con diesel, se mantiene estable o disminuye un poco la temperatura de combustión, sin embargo cuando se sustituye por un 20% esta tiende a incrementar.

La Fig. 7.22 muestra el consumo específico del combustible (SFC, línea azul) y la masa de combustible por ciclo (m_f, línea naranja) del motor HCCI. El SFC y el m_f del motor HCCI es más bajo en todas las mezclas en comparación de los motores SI y CI, esto quiere decir que este motor consume menos combustible, y con respecto a las mezclas, el consumo aumenta conforme se agrega un bio-combustible a la mezcla.

Figura 7.22: Consumo específico del combustible y la masa de combustible por ciclo del motor HCCI con respecto a la mezcla utilizada.

En la Fig. 7.23 se muestra los óxidos nítricos (NOx) y el dióxido de carbono (CO₂). El NOx (línea naranja) corresponde a la ordenada del lado izquierdo, el CO₂ (línea amarilla) corresponde a la ordenada del lado derecho. El NOx aumenta conforme se le añade un bio-combustible a la mezcla, pero si se compara la cantidad de NOx que produce este motor con los motores SI y DICI, el NOx del HCCI es muy insignificante. Con respecto al CO₂ disminuye con la mayoría de las mezclas, pero cabe recordar que se están utilizando bio-combustibles en la mezcla, el CO₂ que sale por el escape del motor, una parte es el CO₂ neutro que se muestra en la Fig. 1.1.

Figura 23: Óxidos nítricos y dióxido de carbono del motor HCCI con respecto a la mezcla utilizada.

Como se dijo en los capítulos 1 y 3 los motores HCCI son conocidos por ser motores de alta eficiencia energética. En la Fig. 7.24 muestra la eficiencia del motor HCCI.

Figura 7.24: Eficiencia termodinámica del motor HCCI con respecto a la mezcla utilizada.

En la Tabla 7.9 se muestra una comparación de algunos de los resultados obtenidos anteriormente de los tres tipos de motores (SI, CI y HCCI), para cada motor se compararon dos mezclas con su combustible fósil correspondiente, la selección de la mezcla, fue principalmente por la diferencia de contaminantes y el SFC.

Tabla 7.9 Comparación de algunas mezclas con combustibles fósiles, con los resultados obtenidos de los motores (SI, CI y HCCI).

Motor SI									
Combustible	100% Gasolina	90%G - 10%DME	50%G - 50%M						
Potencia máxima (kW)	67.48	66.68	66.6						
Torque máximo (N.m)	124.66	123.38	123.43						
Eficiencia energética (%)	29.45	29.42	29.43						
Imep / Bmep (bar)	11.722 / 9.0491	11.612 / 8.943	11.605 / 8.9285						
Temperatura de combustión (K)	2733.4	2703.1	2714						
NOx (ppm)	4570.0	4326	3955.6						
SFC (g/kWh)	277.79	280	313.63						
	Motor CI		·						
Combustible	100% Diesel	95%D - 5%M	80%D - 20%E						
Potencia máxima (kW)	77.03	76.814	75.341						
Torque máximo (N.m)	249.88	250.21	249.84						
Eficiencia energética (%)	33.97	33.86	33.2						
Imep / Bmep (bar)	15.594 / 12.187	15.56 / 12.15	15.314 / 11.92						
Temperatura de combustión (K)	1588.8	1584.1	1563.8						
NOx (ppm)	167.23	163.61	203.78						
CO ₂ (g/kWh)	746.71	749.1	764.71						
SFC (g/kWh)	238.28	240.35	250						
	Motor HCC		·						
Combustible	100% Diesel	90%D – 10%E	80%D - 20%DME						
Potencia máxima (kW)	42.706	41.765	41.9						
Torque máximo (N.m)	124.08	123.51	124.41						
Eficiencia energética (%)	42.8	42.68	42.74						
Temperatura de combustión (K)	1989.2	1980.1	1999.2						
NOx (ppm)	4.155	6.311	7.91						
CO ₂	1002.4	1036	1033.5						
SFC (g/kWh)	226.85	208.84	211.24						

Conclusiones

Este trabajo ha demostrado que utilizar mezclas de combustibles fósiles con biocombustibles no afecta el rendimiento energético, potencia, ni torque de los ICE, sin embargo, las mezclas reducen considerablemente las emisiones contaminantes de los motores, y como se menciona en el capítulo 1, usar bicombustibles en los ICE permite generar un ciclo neutro del CO₂. De igual manera se comprueba que los biocombustibles (metanol, etanol y dimetil éter) son grandes candidatos para mezclarlos con la gasolina o con el diésel. Al realizar las mezclas el NOx se redujo hasta un 13.5% en el motor SI, esto se puede apreciar también en la Tabla 7.9, ya que el NOx del motor SI era de 4570 ppm con el 100% de gasolina y se redujo hasta 3955 ppm con la mezcla 50%G-50%M, con respecto a los motores CI y HCCI el NOx aumenta un poco, pero la cantidad de NOx que generan estos motores, es insignificante en comparación con la del motor SI (ver Tabla 7.9). EL CO₂ de los motores CI y HCCI aumenta al mezclar combustibles fósiles con un biocombustible, como por ejemplo el CO₂ aumentó un 2.5% en el motor CI con la mezcla 80%D -20%E con respecto al 100% diesel, y en el motor HCCI aumenta de 4.15 a 7.91 ppm con la mezcla 80%D – 20%DME, lo que sería prácticamente un 90% (ver Tabla 7.9). Pero el CO₂ que generan estos motores, una parte es el CO₂ neutro, que se define en la sección 1.3 y en la Fig. 1.1.

El SFC incrementó en todas las mezclas de los tres tipos de encendido, ésto se debe a que el poder calorífico de las mezclas es inferior al de los combustibles fósiles puros, porque el poder calorífico de un biocombustible (puro) es inferior a 30 MJ/kg. En los resultados del estudio, el SFC aumenta un 12.9, 5 y 2.5% con las mezclas 50%G-50%M, 80%D-20%M y 80%D-20%M para los motores SI, CI y HCCI respectivamente

Con este estudio se colabora en la investigación de ICE conocidos y de nueva generación (HCCI), para obtener un proceso paulatino de cambio de combustibles fósiles a biocombustibles, esto pasa por un proceso más suave en el cual se pueda ir aprovechando la infraestructura de motores que existen (SI y CI), y a su vez reduciendo el consumo de combustibles fósiles para aumentar el consumo de biocombustibles.

Diesel-RK fue una herramienta muy eficaz para el desarrollo de este estudio, ya que, sin el software, no se lograrían obtener los resultados en un tiempo considerable y de manera precisa, el cálculo para analizar ICE es muy extenso y complejo, es por eso que Diesel-RK se basa en un modelo de ecuaciones complejas, las cuales se observan en el capítulo 4.

Referencias.

(Agarwal, 2007). Agarwal, A. K. (2007). Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. *Progress in energy and combustion science*, *33*(3), 233-271.

(Alkidas, 1984). Alkidas, A. C. (1984). Relationships between smoke measurements and particulate measurements (No. 840412). SAE Technical Paper.

(Arrègle et al, 1999). Arrègle, J., Pastor, J. V., & Ruiz, S. (1999). The influence of injection parameters on diesel spray characteristics (No. 1999-01-0200). SAE Technical Paper.

(Bergthorson, 2015). Bergthorson, J. M., Thomson, M. J. (2015). A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. Renewable and sustainable energy reviews, 42, 1393-1417.

(Chen y Flynn, 1965) Chen, S. K., & Flynn, P. F. (1965). Development of a single cylinder compression ignition research engine (No. 650733). SAE Technical Paper.

(Datta, 2016-1). Datta, A., & Mandal, B. K. (2016). Numerical investigation of the performance and emission parameters of a diesel engine fuelled with dieselbiodiesel-methanol blends. *Journal of Mechanical Science and Technology*, *30*(4), 1923-1929.

(Datta, 2016-2). Datta, A., & Mandal, B. K. (2016). Impact of alcohol addition to diesel on the performance combustion and emissions of a compression ignition engine. *Applied thermal engineering*, *98*, 670-682.

(Diesel, 1912). Diesel R. The diesel oil engine. J Am Soc Nav Eng 1912; 24: 653–92.

(Diesel-RK) DIESEL-RK as an engine simulation tool, available from <u>http://diesel-rk.bmstu.ru/Eng/index.php</u>,.

(Dryer, 2015). Dryer, F. L. (2015). Chemical kinetic and combustion characteristics of transportation fuels. *Proceedings of the Combustion Institute*, *35*(1), 117-144.

(Elfasakhany, 2014). Elfasakhany, A. (2014). Experimental study on emissions and performance of an internal combustion engine fueled with gasoline and gasoline/n-butanol blends. *Energy conversion and management*, *88*, 277-283.

(Fargione, 2008). Fargione, J., Hill, J., Tilman, D. Polasky, S., Hawthorne, P. "Land Clearing and the Biofuel Carbon Debt", Science 2008, 319, 1235-1238.

(Ferguson, 2015). Ferguson, C. R., & Kirkpatrick, A. T. (2015). *Internal combustion engines: applied thermosciences*. John Wiley & Sons.

(Foong, 2014). Foong TM, Morganti KJ, Brear MJ, da Silva G, Yang Y, Dryer FL. The octane numbers of etanol blended with gasolina and its surrogates. Fuel 2014; 115:727–39.

(Galloni, 2016). Galloni, E., Fontana, G., Staccone, S., & Scala, F. (2016). Performance analyses of a spark-ignition engine firing with gasoline–butanol blends at partial load operation. *Energy Conversion and Management*, *110*, 319-326.

(Gavrilov, 2004). Gavrilov, V. V. Methods increasing quality of fuel-air mixing and combustion in a marine diesel based on mathematical and physical simulation of local in cylinder processes (in Russian), 2004 (StPbSMTU, St. Petersburg).

(Glassman, 1986). Glassman, I., 1986. Combustion. Academic Press, Winterbone, D. E. Advanced Thermodynamics for Engineers, (2015), Manchester. Second Edition.

(Gumus, 2010). M. Gumus a, S. Kasifoglu b. (2010). *Performance and emission evaluation of a compression ignition engine using a biodiesel (apricot seed kernel oil methyl ester) and its blends with diesel fuel.* a, Marmara University, b, Düzce University, 134-139.

(Hamdan, 2010). Hamdan, M. A., & Khalil, R. H. (2010). Simulation of compression engine powered by Biofuels. *Energy Conversion and Management*, *51*(8), 1714-1718.

(Hansen, 2005). Hansen, A. C., Zhang, Q., & Lyne, P. W. (2005). Ethanol-diesel fuel blends—a review. Bioresource technology, 96(3), 277-285.

(Handenberg y Hase, 1979).Hardenberg, H. O., & Hase, F. W. (1979). An empirical formula for computing the pressure rise delay of a fuel from its cetane number and from the relevant parameters of direct-injection diesel engines. SAE Transactions, 1823-1834.

(Heywood, 1988). J.B. Heywood, Internal Combustion Engine Fundamentals, Copyright by McGraw-Hill Co., 1988.

(Kannan et al, 2012). Kannan, D., Pachamuthu, S., Nabi, M. N., Hustad, J. E., & Løvås, T. (2012). Theoretical and experimental investigation of diesel engine performance, combustion and emissions analysis fuelled with the blends of ethanol, diesel and jatropha methyl ester. Energy conversion and management, 53(1), 322-331.

(Kuleshov, 2005). Kuleshov, A. S. (2005). Model for predicting air-fuel mixing, combustion and emissions in DI diesel engines over whole operating range (No. 2005-01-2119). SAE Technical Paper.

(Kuleshov, 2006). Kuleshov, A. S. (2006). Use of multi-zone DI diesel spray combustion model for simulation and optimization of performance and emissions of engines with multiple injection (No. 2006-01-1385). SAE Technical Paper.

(Kuleshov, 2007). Kuleshov, A. S. (2007). Multi-zone DI diesel spray combustion model and its application for matching the injector design with piston bowl shape (No. 2007-01-1908). SAE Technical Paper.

(Kuleshov, 2008). Kuleshov, A., & Mahkamov, K. (2008). Multi-zone diesel fuel spray combustion model for the simulation of a diesel engine running on biofuel. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 222(3), 309-321.

(Kuleshov, 2009). Kuleshov, A. S. (2009). Multi-zone DI diesel spray combustion model for thermodynamic simulation of engine with PCCI and high EGR level. SAE International Journal of Engines, 2(1), 1811-1834.

(Kuleshov, 2015). Kuleshov, A., Mahkamov, K., Janhunen, T., Akimov, V., & Kuleshov, A. (2015). New Downsized Diesel Engine Concept with HCCI Combustion at High Load Conditions (No. 2015-01-1791). SAE Technical Paper.

(Larmi et al, 2002). Larmi, M., Rantanen, P., Tiainen, J., Kiijärvi, J., Tanner, F. X., & Stalsberg-Zarling, K. (2002). *Simulation of non-evaporating diesel sprays and verification with experimental data* (No. 2002-01-0946). SAE Technical Paper.

(Lliev, 2015). Iliev, S. (2015). A comparison of ethanol and methanol blending with gasoline using a 1-D engine model. *Procedia Engineering*, *100*, 1013-1022.

(McAulay et al, 1966). McAulay, K. J., Wu, T., Chen, S. K., Borman, G. L., Myers, P. S., & Uyehara, O. A. (1966). Development and evaluation of the simulation of the compression-ignition engine. SAE Transactions, 560-593.

(MacLean y Lave, 2003). Maclean HL, Lave LB. Evaluating automobile fuel/propulsión system technologies. Prog Energy Combust Sci 2003; 29: 1–69.

(Moran, 2006). *Michael J. Moran, Howard N. Shapiro. (2006).* Fundamentals of Engineering Thermodynamics. 5th ed.

(motor.bolsamania).motor.bolsamania.com/fichas/coches/0000/Volkswagen/Jetta/ Advance-19-TDI-105-CV-manual/Advance-19-TDI-105-CV-manual.php

(Nasi, 2010)Nasim, M. N., Yarasu, R. B., & Yamin, J. (2010). Simulation of CI engine powered by neat vegetable oil under variable fuel inlet temperature. *Indian journal of science and technology*, *3*(4), 387-392.

(Nakagawa et al, 1990) Nakagawa, H., Oda, Y., Kato, S., Nakashima, M., & Tateishi, M. (1990). Fuel spray motion in side injection combustion system for

diesel engines. In *Proceedings of the International Symposium COMODIA* (Vol. 90, pp. 281-286).

(Pastor et al, 2000). Pastor, J. V., Encabo, E., & Ruiz, S. (2000). New modelling approach for fast online calculations in sprays (No. 2000-01-0287). SAE Technical Paper.

(Prince, 2018-1). Prince, J. C. (2018). Estudio del uso de bio-combustibles en los motores de combustión interna. Instituto Tecnológico de Veracruz, 1-12.

(Prince, 2018-2). Prince, J. C., Díaz, M., Ovando, G. E., Rodríguez, A. (2018) *Análisis, modelado y simulación de motores tipo HCCI.* Instituto Tecnológico de Veracruz, 1-8.

(Prince, 2018-3). Prince, Juan C., Díaz, Mario, Ovando, Guillermo, Rodríguez, Abelardo. Análisis de motores tipo HCCI y su modelado con biocombustibles. Memorias del XXIV Congreso Internacional Annual de la SOMIM, 19-21 de Septiembre de 2018, Campeche, Camp., México., pp. TF 191-198.

(Ramos, 2016). Ramos, Fernando Daniel; Díaz, María Soledad; Villar, Marcelo Armando; Biocombustibles; Asociación Civil Ciencia Hoy; Ciencia Hoy; 147; 1-1-2016; 69-73

(Rakopoulos, 2010). D.C. Rakopoulos a, C.D. Rakopoulos a,*, E.G. Giakoumis a, A.M. Dimaratos a, D.C. Kyritsis b. (2010). *Effects of butanol–diesel fuel blends on the performance and emissions of a high-speed DI diesel engine*. National Technical University of Athens a, University of Illinois at Urbana Champaign b, 1989-1997.

(Razleytsev, 1980). Razleytsev N.F.: "Combustion simulation and optimization in diesels", Kharkov: Vischa shkola, 169 p., 1980. (In Russian).

(Reitz, 2013). Reitz, R. D. (2013). *Directions in internal combustion engine research*. Combustion and Flame, 1(160), 1-8.

(Taylor, 2008). Taylor, A. M. (2008). Science review of internal combustion engines. *Energy Policy*, *36*(12), 4657-4667.

Tutorial 1: "Practical Exercise: Computation of the engine output characteristics for 4-stroke SI engine". Description of student's Home Work with program DIESEL-RK.

Tutorial 2: "Practical Exercise: Computation of the engine output characteristics for 4-stroke DI diesel engine". Description of student's Home Work with program DIESEL-RK.

(Tree, 2007). Tree, D. R., & Svensson, K. I. (2007). Soot processes in compression ignition engines. *Progress in Energy and Combustion Science*, *33*(3), 272-309.

(Treviño, 2018). Treviño, C., Díaz, M., & Prince, J. C. (2018). Model of the low-temperature heat release and ignition of n-butanol. *Combustion Theory and Modelling*, 22(6), 1176-1193.

(Turns, 2000). Stephen R. Turns. "An Introduction to Combustion – *Concepts and Applications*". (2nd edition), McGraw-Hill, 2000.

(Uslu, 2019). Uslu, S., & Celik, M. B. (2020). Combustion and emission characteristics of isoamyl alcohol-gasoline blends in spark ignition engine. *Fuel*, *26*2, 116496.

(Wang, 2015). Wang, H., DelVescovo, D., Yao, M., and Reitz, R., (2015) Numerical Study of RCCI and HCCI Combustion Processes Using Gasoline, Diesel, iso-Butanol and DTBP Cetane Improver," *SAE Int. J. Engines* 8(2).

(Winterbone, 2015). Desmond E. Winterbone. (2015) Advanced Thermodynamics for Engineers, Second Edition.

(Woschini, 1967). Woschni, G. (1967). A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine (No. 670931). SAE Technical paper.

(Zhao, 1999). Zhao F, Lai MC, Harrington DL. Automotive spark-ignited directinjection gasolina engines. Prog Energy Combust Sci 1999; 25(5): 437–562.

Apéndice A: Tablas termodinámicas

Tabla A-1: Propiedades del aire, en sistema internacional (Moran, 2006).

				cuando	$s = 0^1$					cuando	<i>s</i> 0
Т	h	и	S	$p_{ m r}$	$v_{\rm r}$	Т	h	и	S	$p_{ m r}$	$v_{\rm r}$
200 210 220 230 240 250 260 270 280	199.97 209.97 219.97 230.02 240.02 250.05 260.09 270.11 280.13	142.56 149.69 156.82 164.00 171.13 178.28 185.45 192.60 100.75	1.29559 1.34444 1.39105 1.43557 1.47824 1.51917 1.55848 1.59634 1.62270	0.3363 0.3987 0.4690 0.5477 0.6355 0.7329 0.8405 0.9590	1707. 1512. 1346. 1205. 1084. 979. 887.8 808.0 738.0	450 460 470 480 490 500 510 520 520	451.80 462.02 472.24 482.49 492.74 503.02 513.32 523.63 522.08	322.62 329.97 337.32 344.70 352.08 359.49 366.92 374.36 281.84	2.11161 2.13407 2.15604 2.17760 2.19876 2.21952 2.23993 2.25997 2.27067	5.775 6.245 6.742 7.268 7.824 8.411 9.031 9.684	223.6 211.4 200.1 189.5 179.7 170.6 162.1 154.1 146.7
280 285	280.13 285.14	199.75 203.33	1.65055	1.1584	738.0 706.1	530 540	535.98 544.35	381.84 389.34	2.27967 2.29906	10.37	146.7 139.7
290	290.16	206.91	1.66802	1.2311	676.1	550	554.74	396.86	2.31809	11.86	133.1
295	295.17	210.49	1.68515	1.3068	647.9	560	565.17	404.42	2.33685	12.66	127.0
300	300.19	214.07	1.70203	1.3860	621.2	570	575.59	411.97	2.35531	13.50	121.2
305	305.22	217.67	1.71865	1.4686	596.0	580	586.04	419.55	2.37348	14.38	115.7
310	310.24	221.25	1.73498	1.5546	572.3	590	596.52	427.15	2.39140	15.31	110.6
315	315.27	224.85	1.75106	1.6442	549.8	600	607.02	434.78	2.40902	16.28	105.8
320	320.29	228.42	1.76690	1.7375	528.6	610	617.53	442.42	2.42644	17.30	101.2
325	325.31	232.02	1.78249	1.8345	508.4	620	628.07	450.09	2.44356	18.36	96.92
330	330.34	235.61	1.79783	1.9352	489.4	630	638.63	457.78	2.46048	19.84	92.84
340	340.42	242.82	1.82790	2.149	454.1	640	649.22	465.50	2.47716	20.64	88.99
350	350.49	250.02	1.85708	2.379	422.2	650	659.84	473.25	2.49364	21.86	85.34
360	360.58	257.24	1.88543	2.626	393.4	660	670.47	481.01	2.50985	23.13	81.89
370	370.67	264.46	1.91313	2.892	367.2	670	681.14	488.81	2.52589	24.46	78.61
380	380.77	271.69	1.94001	3.176	343.4	680	691.82	496.62	2.54175	25.85	75.50
390	390.88	278.93	1.96633	3.481	321.5	690	702.52	504.45	2.55731	27.29	72.56
400	400.98	286.16	1.99194	3.806	301.6	700	713.27	512.33	2.57277	28.80	69.76
410	411.12	293.43	2.01699	4.153	283.3	710	724.04	520.23	2.58810	30.38	67.07
420	421.26	300.69	2.04142	4.522	266.6	720	734.82	528.14	2.60319	32.02	64.53
430	431.43	307.99	2.06533	4.915	251.1	730	745.62	536.07	2.61803	33.72	62.13
440	441.61	315.30	2.08870	5.332	236.8	740	756.44	544.02	2.63280	35.50	59.82

 $T(\mathbf{K}), h \text{ and } u \text{ (kJ/kg)}, s \text{ (kJ/kg}^{\dagger} \mathbf{K})$

				cuando	$s s 0^1$					cuando	<i>s</i> 0
Т	h	и	S	$p_{\rm r}$	$v_{\rm r}$	Т	h	и	S	$p_{ m r}$	$v_{\rm r}$
750	767.29	551.99	2.64737	37.35	57.63	1300	1395.97	1022.82	3.27345	330.9	11.275
760	778.18	560.01	2.66176	39.27	55.54	1320	1419.76	1040.88	3.29160	352.5	10.747
770	789.11	568.07	2.67595	41.31	53.39	1340	1443.60	1058.94	3.30959	375.3	10.247
780	800.03	576.12	2.69013	43.35	51.64	1360	1467.49	1077.10	3.32724	399.1	9.780
790	810.99	584.21	2.70400	45.55	49.86	1380	1491.44	1095.26	3.34474	424.2	9.337
800	821.95	592.30	2.71787	47.75	48.08	1400	1515.42	1113.52	3.36200	450.5	8.919
820	843.98	608.59	2.74504	52.59	44.84	1420	1539.44	1131.77	3.37901	478.0	8.526
840	866.08	624.95	2.77170	57.60	41.85	1440	1563.51	1150.13	3.39586	506.9	8.153
860	888.27	641.40	2.79783	63.09	39.12	1460	1587.63	1168.49	3.41247	537.1	7.801
880	910.56	657.95	2.82344	68.98	36.61	1480	1611.79	1186.95	3.42892	568.8	7.468
900	932.93	674.58	2.84856	75.29	34.31	1500	1635.97	1205.41	3.44516	601.9	7.152
920	955.38	691.28	2.87324	82.05	32.18	1520	1660.23	1223.87	3.46120	636.5	6.854
940	977.92	708.08	2.89748	89.28	30.22	1540	1684.51	1242.43	3.47712	672.8	6.569
960	1000.55	725.02	2.92128	97.00	28.40	1560	1708.82	1260.99	3.49276	710.5	6.301
980	1023.25	741.98	2.94468	105.2	26.73	1580	1733.17	1279.65	3.50829	750.0	6.046
1000	1046.04	758.94	2.96770	114.0	25.17	1600	1757.57	1298.30	3.52364	791.2	5.804
1020	1068.89	776.10	2.99034	123.4	23.72	1620	1782.00	1316.96	3.53879	834.1	5.574
1040	1091.85	793.36	3.01260	133.3	22.39	1640	1806.46	1335.72	3.55381	878.9	5.355
1060	1114.86	810.62	3.03449	143.9	21.14	1660	1830.96	1354.48	3.56867	925.6	5.147
1080	1137.89	827.88	3.05608	155.2	19.98	1680	1855.50	1373.24	3.58335	974.2	4.949
1100	1161.07	845.33	3.07732	167.1	18.896	1700	1880.1	1392.7	3.5979	1025	4.761
1120	1184.28	862.79	3.09825	179.7	17.886	1750	1941.6	1439.8	3.6336	1161	4.328
1140	1207.57	880.35	3.11883	193.1	16.946	1800	2003.3	1487.2	3.6684	1310	3.944
1160	1230.92	897.91	3.13916	207.2	16.064	1850	2065.3	1534.9	3.7023	1475	3.601
1180	1254.34	915.57	3.15916	222.2	15.241	1900	2127.4	1582.6	3.7354	1655	3.295
1200 1220 1240 1260 1280	1277.79 1301.31 1324.93 1348.55 1372.24	933.33 951.09 968.95 986.90 1004.76	3.17888 3.19834 3.21751 3.23638 3.25510	238.0 254.7 272.3 290.8 310.4	14.470 13.747 13.069 12.435 11.835	1950 2000 2050 2100 2150 2200 2250	2189.7 2252.1 2314.6 2377.4 2440.3 2503.2 2566.4	1630.6 1678.7 1726.8 1775.3 1823.8 1872.4 1921.3	3.7677 3.7994 3.8303 3.8605 3.8901 3.9191 3.9474	1852 2068 2303 2559 2837 3138 3464	3.022 2.776 2.555 2.356 2.175 2.012 1.864

Tabla A-1 (continuación)

Tabla A-2: Propiedades del aire, en sistema inglés (Moran, 2006).

			cuando	$s = 0^1$					cuando	s 0
h	и	S	$p_{ m r}$	$v_{\rm r}$	Т	h	и	S	$p_{ m r}$	$v_{\rm r}$
85.97	61.29	0.50369	0.3363	396.6	940	226.11	161.68	0.73509	9.834	35.41
90.75	64.70	0.51663	0.4061	346.6	960	231.06	165.26	0.74030	10.61	33.52
95.53	68.11	0.52890	0.4858	305.0	980	236.02	168.83	0.74540	11.43	31.76
100.32	71.52	0.54058	0.5760	270.1	1000	240.98	172.43	0.75042	12.30	30.12
105.11	74.93	0.55172	0.6776	240.6	1040	250.95	179.66	0.76019	14.18	27.17
109.90	78 36	0 56235	0 7913	215 33	1080	260.97	186.93	0 76964	16.28	24 58
11/ 60	81 77	0.50255	0.9182	103.65	1120	200.77	100.75	0.70204	18.60	24.50
119.02	85.20	0.57255	1.0590	174.90	1120	271.03	201.63	0.78767	21.18	22.30
124 27	88.62	0.50255	1 2147	158 58	1200	201.14	201.05	0.79628	24.01	18 51
124.27	91.53	0.59945	1 3593	146 34	1240	301.52	216 53	0.77020	27.13	16.93
120.34	1.55	0.37743	1.5575	140.54	1240	501.52	210.55	0.00+00	27.15	10.75
129.06	92.04	0.60078	1.3860	144.32	1280	311.79	224.05	0.81280	30.55	15.52
133.86	95.47	0.60950	1.5742	131.78	1320	322.11	231.63	0.82075	34.31	14.25
138.66	98.90	0.61793	1.7800	120.70	1360	332.48	239.25	0.82848	38.41	13.12
143.47	102.34	0.62607	2.005	110.88	1400	342.90	246.93	0.83604	42.88	12.10
148.28	105.78	0.63395	2.249	102.12	1440	353.37	254.66	0.84341	47.75	11.17
153.09	109.21	0.64159	2.514	94.30	1480	363.89	262.44	0.85062	53.04	10.34
157.92	112.67	0.64902	2.801	87.27	1520	374.47	270.26	0.85767	58.78	9.578
162.73	116.12	0.65621	3.111	80.96	1560	385.08	278.13	0.86456	65.00	8.890
167.56	119.58	0.66321	3.446	75.25	1600	395.74	286.06	0.87130	71.73	8.263
172.39	123.04	0.67002	3.806	70.07	1650	409.13	296.03	0.87954	80.89	7.556
177.00	106.51	0 (7)(()	4 102	(5.20)	1700	100 50	206.06	0.00750	00.05	6.004
1/7.23	126.51	0.67665	4.193	65.38	1750	422.59	306.06	0.88/58	90.95	6.924
182.08	129.99	0.08512	4.007	01.10 57.20	1/50	430.12	226.22	0.89542	101.98	0.337 5.947
186.94	133.47	0.68942	5.051	57.20	1800	449.71	320.32	0.90308	114.0	5.847
191.81	130.97	0.09558	5.520	50.05 50.25	1850	403.37	230.33 246.95	0.91050	127.2	2.388
190.09	140.47	0.70100	0.035	50.55	1900	477.09	540.85	0.91/88	141.5	4.974
201.56	143.98	0.70747	6.573	47.34	1950	490.88	357.20	0.92504	157.1	4.598
206.46	147.50	0.71323	7.149	44.57	2000	504.71	367.61	0.93205	174.0	4.258
211.35	151.02	0.71886	7.761	42.01	2050	518.61	378.08	0.93891	192.3	3.949
216.26	154.57	0.72438	8.411	39.64	2100	532.55	388.60	0.94564	212.1	3.667
221.18	158.12	0.72979	9.102	37.44	2150	546.54	399.17	0.95222	233.5	3.410
	h 85.97 90.75 95.53 100.32 105.11 109.90 114.69 119.48 124.27 128.34 129.06 133.86 138.66 143.47 148.28 153.09 157.92 162.73 167.56 172.39 177.23 182.08 186.94 191.81 196.69 201.56 206.46 211.35 216.26 221.18	h u 85.97 61.29 90.75 64.70 95.53 68.11 100.32 71.52 105.11 74.93 109.90 78.36 114.69 81.77 119.48 85.20 124.27 88.62 128.34 91.53 129.06 92.04 133.86 95.47 138.66 98.90 143.47 102.34 148.28 105.78 153.09 109.21 157.92 112.67 162.73 116.12 167.56 119.58 172.39 123.04 177.23 126.51 182.08 129.99 186.94 133.47 191.81 136.97 196.69 140.47 201.56 143.98 206.46 147.50 211.35 151.02 216.26 154.57 221.18 158.12	hus 85.97 61.29 0.50369 90.75 64.70 0.51663 95.53 68.11 0.52890 100.32 71.52 0.54058 105.11 74.93 0.55172 109.90 78.36 0.56235 114.69 81.77 0.57255 119.48 85.20 0.58233 124.27 88.62 0.59172 129.06 92.04 0.60078 133.86 95.47 0.60950 138.66 98.90 0.61793 143.47 102.34 0.62607 148.28 105.78 0.63395 153.09 109.21 0.64159 157.92 112.67 0.64902 162.73 116.12 0.65621 167.56 119.58 0.66321 177.23 126.51 0.67665 182.08 129.99 0.68312 186.94 133.47 0.69558 196.69 140.47 0.70160 201.56 143.98 0.70747 206.46 147.50 0.71323 211.35 151.02 0.71886 216.26 154.57 0.72438 221.18 158.12 0.72979	hus p_r 85.9761.290.503690.336390.7564.700.516630.406195.5368.110.528900.4858100.3271.520.540580.5760105.1174.930.551720.6776109.9078.360.562350.7913114.6981.770.572550.9182119.4885.200.582331.0590124.2788.620.591721.2147128.3491.530.599451.3593129.0692.040.600781.3860133.8695.470.609501.5742138.6698.900.617931.7800143.47102.340.626072.005148.28105.780.633952.249153.09109.210.641592.514157.92112.670.649022.801162.73116.120.656213.111167.56119.580.663213.446172.39123.040.670023.806177.23126.510.676654.193182.08129.990.683124.607186.94133.470.695585.526196.69140.470.701606.033201.56143.980.707476.573206.46147.500.713237.149211.35151.020.718867.761216.26154.570.724388.411221.18158.120.729799	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

 $T(\mathbf{R}), h \text{ and } u \text{ (Btu/lb)}, s \text{ (Btu/lb}^{\dagger} \mathbf{R})$

Tabla A-2 (continuación)
-------------	---------------

				when	<i>s</i> 0 ¹					when	<i>s</i> 0
Т	h	и	S	$p_{ m r}$	$v_{\rm r}$	Т	h	и	S	$p_{\rm r}$	V _r
2200 2250 2300 2350	560.59 574.69 588.82 603.00	409.78 420.46 431.16 441.91	0.95868 0.96501 0.97123 0.97732	256.6 281.4 308.1 336.8	3.176 2.961 2.765 2.585	3700 3750 3800 3850	998.11 1013.1 1028.1 1043.1	744.48 756.04 767.60 779.19	1.10991 1.11393 1.11791 1.12183	2330 2471 2618 2773	.5882 .5621 .5376 5143
2330	617.22	452.70	0.98331	367.6	2.385	3900	1043.1	790.80	1.12185	2934	.4923
2450 2500 2550 2600 2650	631.48 645.78 660.12 674.49 688.90	463.54 474.40 485.31 496.26 507.25	0.98919 0.99497 1.00064 1.00623 1.01172	400.5 435.7 473.3 513.5 556.3	2.266 2.125 1.996 1.876 1.765	3950 4000 4050 4100 4150	1073.2 1088.3 1103.4 1118.5 1133.6	802.43 814.06 825.72 837.40 849.09	1.12955 1.13334 1.13709 1.14079 1.14446	3103 3280 3464 3656 3858	.4715 .4518 .4331 .4154 .3985
2700 2750 2800 2850 2900	703.35 717.83 732.33 746.88 761.45	518.26 529.31 540.40 551.52 562.66	1.01712 1.02244 1.02767 1.03282 1.03788	601.9 650.4 702.0 756.7 814.8	1.662 1.566 1.478 1.395 1.318	4200 4300 4400 4500 4600	1148.7 1179.0 1209.4 1239.9 1270.4	860.81 884.28 907.81 931.39 955.04	1.14809 1.15522 1.16221 1.16905 1.17575	4067 4513 4997 5521 6089	.3826 .3529 .3262 .3019 .2799
2950 3000 3050 3100 3150	776.05 790.68 805.34 820.03 834.75	573.84 585.04 596.28 607.53 618.82	1.04288 1.04779 1.05264 1.05741 1.06212	876.4 941.4 1011 1083 1161	1.247 1.180 1.118 1.060 1.006	4700 4800 4900 5000 5100	1300.9 1331.5 1362.2 1392.9 1423.6	978.73 1002.5 1026.3 1050.1 1074.0	1.18232 1.18876 1.19508 1.20129 1.20738	6701 7362 8073 8837 9658	.2598 .2415 .2248 .2096 .1956
3200 3250 3300 3350 3400	849.48 864.24 879.02 893.83 908.66	630.12 641.46 652.81 664.20 675.60	1.06676 1.07134 1.07585 1.08031 1.08470	1242 1328 1418 1513 1613	0.9546 0.9069 0.8621 0.8202 0.7807	5200 5300	1454.4 1485.3	1098.0 1122.0	1.21336 1.21923	10539 11481	.1828 .1710
3450 3500 3550 3600 3650	923.52 938.40 953.30 968.21 983.15	687.04 698.48 709.95 721.44 732.95	1.08904 1.09332 1.09755 1.10172 1.10584	1719 1829 1946 2068 2196	0.7436 0.7087 0.6759 0.6449 0.6157						
Tabla A-3 Propiedades termoquímicas de sustancias seleccionadas a 298K y 1 atm (Moran, 2006).

				Función de		Valor d	e calor
Sustancia	Formula	Masa molar, <i>M</i> (kg/kmol)	Entalpia de formación h [°] (kJ/kmol)	formación de Gibbs g [°] _f (kJ/kmol)	Entropía absoluta, <i>s</i> ° (kJ/kmol [‡] K)	Mayor, HHV (kJ/kg)	Inferior LHV (kJ/kg)
Carbon	C(s)	12.01	0	0	5.74	32,770	32,770
Hydrogen Nitrogen	$H_2(g)$ $N_2(g)$	2.016	0	0	130.57	141,780	119,950
Oxygen	$O_2(g)$	28.01	0	0	191 50		
Carbon monoxide Carbon dioxide	CO(g)	28.01	110,530	137,150	197.54	—	—
Water	$H_2O(g)$	44.01	393,520	394,380	213.69		—
Water	$H_2O(1)$	18.02	241,820	228,590	188.72	—	—
Hydrogen peroxide	$H_2O_2(g)$	34.02	136,310	105,600	232.63		_
Ammonia	O(g)	17.03	46,190	16,590	192.33	—	—
Hydrogen	H(g)	16.00	249,170	231,770	160.95	_	
Nitrogen	N(g)	14.01	472,680	455,510	153.19		—
Methane	$CH_4(g)$	17.01	39,460	34,280	183.75		—
Acetylene	$C_2H_2(g)$	16.04	74,850	50,790	186.16	55,510	50,020
Ethylene	$C_2H_2(g)$	28.05	52,280	68,120	219.83	50,300	47,160
Ethane	$\begin{array}{c} C_2H_6(g) \\ C_3H_6(g) \end{array}$	30.07	84,680	32,890	229.49	51,870	47,480
Propane	$C_3H_8(g)$	42.08	20,410	62,720	266.94	48,920	45,780
Butane	$C_4H_{10}(g)$	58.12	126,150	15,710	310.03	49,500	45,720
Octane	$C_5H_{12}(g)$ $C_8H_{18}(g)$	72.15	146,440	8,200	348.40	49,010	45,350
Octane Benzene	$C_8H_{18}(l)$ $C_6H_6(g)$	114.22	208,450	17,320	463.67	48,260	44,790
	0 0.0	114.22	249,910	6,610	360.79	47,900	44,430
Methyl alcohol	$CH_3OH(g)$	32.04	200,890	162,140	239.70	23,850	21,110
Methyl alcohol	$CH_{3}OH(1) C_{2}H_{5}OH(g)$	32.04	238,810	166,290	126.80	22,670	19,920
Ethyl alcohol	$C_2H_5OH(l)$	46.07	235,310	168,570	282.59	30,590	27,720

Tabla A-4 Propiedades termoquímicas de sustancias seleccionadas a 537 R y 1 atm (Moran, 2006).

				Función de	Entropía	Valor de	calor
Substancia	Formula	Masa Molar,	Entalpia de	Gibbs, $g_{\rm f}^{\circ}$	$absoluta, s^{\circ}$ (Btu/lbmol \ddagger R)	Mayor,	Inferior
		M (lb/lbmol)	formation, $h_{\rm f}^{\circ}$ (Btu/lbmol)	(Btu/lbmol)		HHV (Btu/lb)	LHV (Btu/lb)
Carbon	C(s)	12.01	0	0	1.36	14,100	14,100
Hydrogen Nitrogen	$H_2(g)$ $N_2(g)$	2.016	0	0	31.19	61,000	51,610
Oxygen	$O_2(g)$	28.01	0	0	45.74		—
Carbon monoxide	CO(g) $CO_2(g)$	28.01	47,540	59,010	47.27	_	
Water	$H_2O(g)$ $H_2O(l)$	44.01	169,300	169,680	51.03	—	
Water		18.02	104,040	98,350	45.08	—	—
Hydrogen peroxide	$H_2O_2(g)$	34.02	58,640	45,430	55.60	—	—
Ammonia	O(g)	17.03	19,750	7,140	45.97		—
Hvdrogen	H(g)	16.00	107,210	99,710	38.47		—
Nitrogen Hydroxyl	N(g) OH(g)	14.01	203,340	195,970	36.61	_	—
Methane	$CH_4(g)$	17.01	16,790	14,750	43.92	—	—
Acetylene	$C_2H_2(g)$	16.04	32,210	21,860	44.49	23,880	21,520
Ethylene	$C_2H_4(g)$	28.05	22,490	29,306	52.54	21,640	20,290
Ethane Propylene	$C_{2}H_{6}(g)$ $C_{3}H_{6}(g)$	30.07	36,420	14,150	54.85	22,320	20,430
Propane	$C_3H_8(g)$	42.08	8,790	26,980	63.80	21,050	19,700
Butane	$C_4H_{10}(g) \\ C_5H_{12}(g)$	58.12	54,270	6,760	74.11	21,300	19,670
Octane	$C_8H_{18}(g)$ $C_9H_{18}(l)$	72.15	62,960	3,530	83.21	21,090	19,510
Octane Benzene	$C_6H_6(g)$	114.22	89,680	7,110	111.55	20,760	19,270
Methyl alcohol	$CH_3OH(g)$	32.04	86,540	69,700	57.29	10,260	9,080
Ethyl alcohol	$CH_3OH(1)$ $C_2H_5OH(g)$	32.04	102,670	71,570	30.30	9,760	8,570
Ethyl alcohol	$C_2H_5OH(1)$	46.07	101,230	72,520	67.54	13,160	11,930

Tabla A-5 propiedades de gases ideales en sistema internacional (Moran, 2006).

T(K), h and u(kJ/kmol), s°(kJ/kmol⁺K)

	$_{(h_{\rm f}^{\circ})}$ Carbo	on Dioxide, 393,520 k.	, CO ₂ J/kmol)	<u>Carbor</u> $(h_{\rm f}^{\circ})$	n Monoxio 110,530 l	de, CO ¢J/kmol)	$\overline{(h_{\rm f}^{\circ})}$ Wat	er Vapor, H 241,820 k	I₂O J/kmol)	$(\overline{h}_{\rm f}^{\circ})$	Oxygen, O 0 kJ/kn	nol)	$_(h_{\rm f}^{\circ})$	Vitrogen, N 0 kJ/kr	N ₂ nol)	
Т	h	и	s°	h	и	s°	h	и	s°	h	и	s°	h	и	s°	Т
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
220	6,601	4,772	202.966	6,391	4,562	188.683	7,295	5,466	178.576	6,404	4,575	196.171	6,391	4,562	182.638	220
230	6,938	5,026	204.464	6,683	4,771	189.980	7,628	5,715	180.054	6,694	4,782	197.461	6,683	4,770	183.938	230
240	7,280	5,285	205.920	6,975	4,979	191.221	7,961	5,965	181.471	6,984	4,989	198.696	6,975	4,979	185.180	240
250	7,627	5,548	207.337	7,266	5,188	192.411	8,294	6,215	182.831	7,275	5,197	199.885	7,266	5,188	186.370	250
260	7,979	5,817	208.717	7,558	5,396	193.554	8,627	6,466	184.139	7,566	5,405	201.027	7,558	5,396	187.514	260
270	8,335	6,091	210.062	7,849	5,604	194.654	8,961	6,716	185.399	7,858	5,613	202.128	7,849	5,604	188.614	270
280	8,697	6,369	211.376	8,140	5,812	195.173	9,296	6,968	186.616	8,150	5,822	203.191	8,141	5,813	189.673	280
290	9,063	6,651	212.660	8,432	6,020	196.735	9,631	7,219	187.791	8,443	6,032	204.218	8,432	6,021	190.695	290
298	9,364	6,885	213.685	8,669	6,190	197.543	9,904	7,425	188.720	8,682	6,203	205.033	8,669	6,190	191.502	298
300	9,431	6,939	213.915	8,723	6,229	197.723	9,966	7,472	188.928	8,736	6,242	205.213	8,723	6,229	191.682	300
310	9,807	7,230	215.146	9,014	6,437	198.678	10,302	7,725	190.030	9,030	6,453	206.177	9,014	6,437	192.638	310
320	10,186	7,526	216.351	9,306	6,645	199.603	10,639	7,978	191.098	9,325	6,664	207.112	9,306	6,645	193.562	320
330	10,570	7,826	217.534	9,597	6,854	200.500	10,976	8,232	192.136	9,620	6,877	208.020	9,597	6,853	194.459	330
340	10,959	8,131	218.694	9,889	7,062	201.371	11,314	8,487	193.144	9,916	7,090	208.904	9,888	7,061	195.328	340
350	11,351	8,439	219.831	10,181	7,271	202.217	11,652	8,742	194.125	10,213	7,303	209.765	10,180	7,270	196.173	350
360	11,748	8,752	220.948	10,473	7,480	203.040	11,992	8,998	195.081	10,511	7,518	210.604	10,471	7,478	196.995	360
370	12,148	9,068	222.044	10,765	7,689	203.842	12,331	9,255	196.012	10,809	7,733	211.423	10,763	7,687	197.794	370
380	12,552	9,392	223.122	11,058	7,899	204.622	12,672	9,513	196.920	11,109	7,949	212.222	11,055	7,895	198.572	380
390	12,960	9,718	224.182	11,351	8,108	205.383	13,014	9,771	197.807	11,409	8,166	213.002	11,347	8,104	199.331	390
400	13,372	10,046	225.225	11,644	8,319	206.125	13,356	10,030	198.673	11,711	8,384	213.765	11,640	8,314	200.071	400
410	13,787	10,378	226.250	11,938	8,529	206.850	13,699	10,290	199.521	12,012	8,603	214.510	11,932	8,523	200,794	410
420	14,206	10,714	227.258	12,232	8,740	207.549	14,043	10,551	200.350	12,314	8,822	215.241	12,225	8,733	201.499	420
430	14,628	11,053	228.252	12,526	8,951	208.252	14,388	10,813	201.160	12,618	9,043	215.955	12,518	8,943	202.189	430
440	15,054	11,393	229.230	12,821	9,163	208.929	14,734	11,075	201.955	12,923	9,264	216.656	12,811	9,153	202.863	440
450	15,483	11,742	230.194	13,116	9,375	209.593	15,080	11,339	202.734	13,228	9,487	217.342	13,105	9,363	203.523	450
460	15,916	12,091	231.144	13,412	9,587	210.243	15,428	11,603	203.497	13,535	9,710	218.016	13,399	9,574	204.170	460
470	16,351	12,444	232.080	13,708	9,800	210.880	15,777	11,869	204.247	13,842	9,935	218.676	13,693	9,786	204.803	470
480	16,791	12,800	233.004	14,005	10,014	211.504	16,126	12,135	204.982	14,151	10,160	219.326	13,988	9,997	205.424	480
490	17,232	13,158	233.916	14,302	10,228	212.117	16,477	12,403	205.705	14,460	10,386	219.963	14,285	10,210	206.033	490
500	17,678	13,521	234.814	14,600	10,443	212.719	16,828	12,671	206.413	14,770	10,614	220.589	14,581	10,423	206.630	500
510	18,126	13,885	235.700	14,898	10,658	213.310	17,181	12,940	207.112	15,082	10,842	221.206	14,876	10,635	207.216	510
520	18,576	14,253	236.575	15,197	10,874	213.890	17,534	13,211	207.799	15,395	11,071	221.812	15,172	10,848	207.792	520
530	19,029	14,622	237.439	15,497	11,090	214.460	17,889	13,482	208.475	15,708	11,301	222.409	15,469	11,062	208.358	530
540	19,485	14,996	238.292	15,797	11,307	215.020	18,245	13,755	209.139	16,022	11,533	222.997	15,766	11,277	208.914	540
550 560 570 580 590	19,945 20,407 20,870 21,337 21,807	15,372 15,751 16,131 16,515	239.135 239.962 240.789 241.602 242.405	16,097 16,399 16,701 17,003 17,307	11,524 11,743 11,961 12,181 12,401	215.572 216.115 216.649 217.175 217.693	18,601 18,959 19,318 19.678 20,039	14,028 14,303 14,579 14,856 15,134	209.795 210.440 211.075 211.702 212.320	16,338 16,654 16,971 17,290 17,609	11,765 11,998 12,232 12,467 12,703	223.576 224.146 224.708 225.262 225.808	16,064 16,363 16,662 16,962 17,262	11,492 11,707 11,923 12,139 12,356	209.461 209.999 210.528 211.049 211.562	550 560 570 580 590

	$_{(h_{\rm f}^{\circ})}$ Carbo	on Dioxide 393,520 k	, CO ₂ J/kmol)	\underline{Carbon} $(h_{\rm f}^{\circ})$	n Monoxio 110,530 ł	de, CO kJ/kmol)	$\overline{(h_{\rm f}^{\circ})}$ Wa	ter Vapor, H 241,820 k.	∃2O J∕kmol)	$\begin{array}{c c} & & & \\ \hline & & \\ \text{Oxygen, O_2} \\ \hline & & & \\ \hline & & & \\ \hline \\ & & \\ & & \\ \end{pmatrix} & & \\ \hline & & \\ \\ \hline$			$\overline{(h_{\mathrm{f}}^{\mathrm{o}})}$	Nitrogen, 1 0 kJ/ki	N ₂ mol)	
Т	h	и	s°	h	и	s°	h	и	s°	h	и	s°	h	и	s°	Т
600	22,280	17,291	243.199	17,611	12,622	218.204	20,402	15,413	212.920	17,929	12,940	226.346	17,563	12,574	212.066	600
610	22,754	17,683	243.983	17,915	12,843	218.708	20,765	15,693	213.529	18,250	13,178	226.877	17,864	12,792	212.564	610
620	23,231	18,076	244.758	18,221	13,066	219.205	21,130	15,975	214.122	18,572	13,417	227.400	18,166	13,011	213.055	620
630	23,709	18,471	245.524	18,527	13,289	219.695	21,495	16,257	214.707	18,895	13,657	227.918	18,468	13,230	213.541	630
640	24,190	18,869	246.282	18,833	13,512	220.179	21,862	16,541	215.285	19,219	13,898	228.429	18,772	13,450	214.018	640
650	24,674	19,270	247.032	19,141	13,736	220.656	22,230	16,826	215.856	19,544	14,140	228.932	19,075	13,671	214.489	650
660	25,160	19,672	247,773	19,449	13,962	221.127	22,600	17,112	216.419	19,870	14,383	229.430	19,380	13,892	214.954	660
670	25,648	20,078	248.507	19,758	14,187	221.592	22,970	17,399	216.976	20,197	14,626	229.920	19,685	14,114	215.413	670
680	26,138	20,484	249.233	20,068	14,414	222.052	23,342	17,688	217.527	20,524	14,871	230.405	19,991	14,337	215.866	680
690	26,631	20,894	249.952	20,378	14,641	222.505	23,714	17,978	218.071	20,854	15,116	230.885	20,297	14,560	216.314	690
700	27,125	21,305	250.663	20,690	14,870	222.953	24,088	18,268	218.610	21,184	15,364	231.358	20,604	14,784	216.756	700
710	27,622	21,719	251.368	21,002	15,099	223.396	24,464	18,561	219.142	21,514	15,611	231.827	20,912	15,008	217.192	710
720	28,121	22,134	252.065	21,315	15,328	223.833	24,840	18,854	219.668	21,845	15,859	232.291	21,220	15,234	217.624	720
730	28,622	22,552	252.755	21,628	15,558	224.265	25,218	19,148	220.189	22,177	16,107	232.748	21,529	15,460	218.059	730
740	29,124	22,972	253.439	21,943	15,789	224.692	25,597	19,444	220.707	22,510	16,357	233.201	21,839	15,686	218.472	740
750	29,629	23,393	254.117	22,258	16,022	225.115	25,977	19,741	221.215	22,844	16,607	233.649	22,149	15,913	218.889	750
760	30,135	23,817	254.787	22,573	16,255	225.533	26,358	20,039	221.720	23,178	16,859	234.091	22,460	16,141	219.301	760
770	30,644	24,242	255,452	22,890	16,488	225.947	26,741	20,339	222.221	23,513	17,111	234.528	22,772	16,370	219.709	770
780	31,154	24,669	256.110	23,208	16,723	226.357	27,125	20,639	222.717	23,850	17,364	234.960	23,085	16,599	220.113	780
790	31,665	25,097	256.762	23,526	16,957	226.762	27,510	20,941	223.207	24,186	17,618	235.387	23,398	16,830	220.512	790
800	32,179	25,527	257.408	23,844	17,193	227.162	27,896	21,245	223.693	24,523	17,872	235.810	23,714	17,061	220.907	800
810	32,694	25,959	258.048	24,164	17,429	227.559	28,284	21,549	224.174	24,861	18,126	236.230	24,027	17,292	221.298	810
820	33,212	26,394	258.682	24,483	17,665	227.952	28,672	21,855	224.651	25,199	18,382	236.644	24,342	17,524	221.684	820
830	33,730	26,829	259.311	24,803	17,902	228.339	29,062	22,162	225.123	25,537	18,637	237.055	24,658	17,757	222.067	830
840	34,251	27,267	259.934	25,124	18,140	228.724	29,454	22,470	225.592	25,877	18,893	237.462	24,974	17,990	222.447	840
850	34,773	27,706	260.551	25,446	18,379	229,106	29,846	22,779	226.057	26,218	19,150	237.864	25,292	18,224	222.822	850
860	35,296	28,125	261.164	25,768	18,617	229,482	30,240	23,090	226.517	26,559	19,408	238.264	25,610	18,459	223.194	860
870	35,821	28,588	261.770	26.091	18,858	229.856	30,635	23,402	226.973	26,899	19,666	238.660	25,928	18,695	223.562	870
880	36,347	29,031	262.371	26,415	19,099	230.227	31,032	23,715	227.426	27,242	19,925	239.051	26,248	18,931	223.927	880
890	36,876	29,476	262.968	26,740	19,341	230.593	31,429	24,029	227.875	27,584	20,185	239.439	26,568	19,168	224.288	890
900	37,405	29,922	263.559	27,066	19,583	230.957	31,828	24,345	228.321	27,928	20,445	239.823	26,890	19,407	224.647	900
910	37,935	30,369	264.146	27,392	19,826	231.317	32,228	24,662	228.763	28,272	20,706	240.203	27,210	19,644	225.002	910
920	38,467	30,818	264.728	27,719	20,070	231.674	32,629	24,980	229.202	28,616	20,967	240.580	27,532	19,883	225.353	920
930	39,000	31,268	265.304	28,046	20,314	232.028	33,032	25,300	229.637	28,960	21,228	240.953	27,854	20,122	225.701	930
940	39,535	31,719	265.877	28,375	20,559	232.379	33,436	25,621	230.070	29,306	21,491	241.323	28,178	20,362	226.047	940
950	40,070	32,171	266.444	28,703	20,805	232.727	33,841	25,943	230.499	29,652	21,754	241.689	28,501	20,603	226.389	950
960	40,607	32,625	267.007	29,033	21,051	233.072	34,247	26,265	230.924	29,999	22,017	242.052	28,826	20,844	226.728	960
970	41,145	33,081	267.566	29,362	21,298	233.413	34,653	26,588	231.347	30,345	22,280	242.411	29,151	21,086	227.064	970
980	41,685	33,537	268.119	29,693	21,545	233.752	35,061	26,913	231.767	30,692	22,544	242.768	29,476	21,328	227.398	980
990	42,226	33,995	268.670	30,024	21,793	234.088	35,472	27,240	232.184	31,041	22,809	243.120	29,803	21,571	227.728	990

	$Carbo (h_{\rm f}^{\circ})$	on Dioxide, 393,520 k.	CO ₂ J/kmol)	<u>Carbor</u> $(h_{\rm f}^{\circ})$	n Monoxic 110,530 k	le, CO cJ/kmol)	Water Vapor, H2O $(h_{\rm f}^{\circ} 241,820 \text{ kJ/kmol})$ h u s°			$(\overline{h}_{\mathrm{f}}^{\mathrm{o}})$	Oxygen, O 0 kJ/kn	nol)	$\frac{h}{(h_{\rm f}^{\circ})}$	N ₂ nol)		
Т	h	и	s°	h	и	s°	h	и	s°	h	и	s°	h	и	s°	Т
1000	42,769	34,455	269.215	30,355	22,041	234.421	35,882	27,568	232.597	31,389	23,075	243.471	30,129	21,815	228.057	1000
1020	43,859	35,378	270.293	31,020	22,540	235.079	36,709	28,228	233.415	32,088	23,607	244.164	30,784	22,304	228.706	1020
1040	44,953	36,306	271.354	31,688	23,041	235.728	37,542	28,895	234.223	32,789	24,142	244.844	31,442	22,795	229.344	1040
1060	46,051	37,238	272.400	32,357	23,544	236.364	38,380	29,567	235.020	33,490	24,677	245.513	32,101	23,288	229.973	1060
1080	47,153	38,174	273.430	33,029	24,049	236.992	39,223	30,243	235.806	34,194	25,214	246.171	32,762	23,782	230.591	1080
1100	48,258	39,112	274.445	33,702	24,557	237.609	40,071	30,925	236.584	34,899	25,753	246.818	33,426	24,280	231.199	1100
1120	49,369	40,057	275.444	34,377	25,065	238.217	40,923	31,611	237.352	35,606	26,294	247.454	34,092	24,780	231.799	1120
1140	50,484	41,006	276.430	35,054	25,575	238.817	41,780	32,301	238.110	36,314	26,836	248.081	34,760	25,282	232.391	1140
1160	51,602	41,957	277.403	35,733	26,088	239.407	42,642	32,997	238.859	37,023	27,379	248.698	35,430	25,786	232.973	1160
1180	52,724	42,913	278.362	36,406	26,602	239.989	43,509	33,698	239.600	37,734	27,923	249.307	36,104	26,291	233.549	1180
1200	53,848	43,871	279.307	37,095	27,118	240.663	44,380	34,403	240.333	38,447	28,469	249.906	36,777	26,799	234.115	1200
1220	54,977	44,834	280.238	37,780	27,637	241.128	45,256	35,112	241.057	39,162	29,018	250.497	37,452	27,308	234.673	1220
1240	56,108	45,799	281.158	38,466	28,426	241.686	46,137	35,827	241.773	39,877	29,568	251.079	38,129	27,819	235.223	1240
1260	57,244	46,768	282.066	39,154	28,678	242.236	47,022	36,546	242.482	40,594	30,118	251.653	38,807	28,331	235.766	1260
1280	58,381	47,739	282.962	39,884	29,201	242.780	47,912	37,270	243.183	41,312	30,670	252.219	39,488	28,845	236.302	1280
1300	59,522	48,713	283.847	40,534	29,725	243.316	48,807	38,000	243.877	42,033	31,224	252.776	40,170	29,361	236.831	1300
1320	60,666	49,691	284.722	41,266	30,251	243.844	49,707	38,732	244.564	42,753	31,778	253.325	40,853	29,878	237.353	1320
1340	61,813	50,672	285.586	41,919	30,778	244.366	50,612	39,470	245.243	43,475	32,334	253.868	41,539	30,398	237.867	1340
1360	62,963	51,656	286.439	42,613	31,306	244.880	51,521	40,213	245.915	44,198	32,891	254.404	42,227	30,919	238.376	1360
1380	64,116	52,643	287.283	43,309	31,836	245.388	52,434	40,960	246.582	44,923	33,449	254.932	42,915	31,441	238.878	1380
1400	65,271	53,631	288.106	44,007	32,367	245.889	53,351	41,711	247.241	45,648	34,008	255.454	43,605	31,964	239.375	1400
1420	66,427	54,621	288.934	44,707	32,900	246.385	54,273	42,466	247.895	46,374	34,567	255.968	44,295	32,489	239.865	1420
1440	67,586	55,614	289.743	45,408	33,434	246.876	55,198	43,226	248.543	47,102	35,129	256.475	44,988	33,014	240.350	1440
1460	68,748	56,609	290.542	46,110	33,971	247.360	56,128	43,989	249.185	47,831	35,692	256.978	45,682	33,543	240.827	1460
1480	69,911	57,606	291.333	46,813	34,508	247.839	57,062	44,756	249.820	48,561	36,256	257.474	46,377	34,071	241.301	1480
1500	71,078	58,606	292.114	47,517	35,046	248.312	57,999	45,528	250.450	49,292	36,821	257.965	47,073	34,601	241.768	1500
1520	72,246	59,609	292.888	48,222	35,584	248.778	58,942	46,304	251.074	50,024	37,387	258.450	47,771	35,133	242.228	1520
1540	73,417	60,613	292.654	48,928	36,124	249.240	59,888	47,084	251.693	50,756	37,952	258.928	48,470	35,665	242.685	1540
1560	74,590	61,620	294.411	49,635	36,665	249.695	60,838	47,868	252.305	51,490	38,520	259.402	49,168	36,197	243.137	1560
1580	76,767	62,630	295.161	50,344	37,207	250.147	61,792	48,655	252.912	52,224	39,088	259.870	49,869	36,732	243.585	1580
1600	76,944	63,741	295.901	51,053	37,750	250.592	62,748	49,445	253.513	52,961	39,658	260.333	50,571	37,268	244.028	1600
1620	78,123	64,653	296.632	51,763	38,293	251.033	63,709	52,240	254.111	53,696	40,227	260.791	51,275	37,806	244.464	1620
1640	79,303	65,668	297.356	52,472	38,837	251.470	64,675	51,039	254.703	54,434	40,799	261.242	51,980	38,344	244.896	1640
1660	80,486	66,592	298.072	53,184	39,382	251.901	65,643	51,841	255.290	55,172	41,370	261.690	52,686	38,884	245.324	1660
1680	81,670	67,702	298.781	53,895	39,927	252.329	66,614	52,646	255.873	55,912	41,944	262.132	53,393	39,424	245.747	1680
1700	82,856	68,721	299.482	54,609	40,474	252.751	67,589	53,455	256.450	56,652	42,517	262.571	54,099	39,965	246.166	1700
1720	84,043	69,742	300.177	55,323	41,023	253.169	68,567	54,267	257.022	57,394	43,093	263.005	54,807	40,507	246.580	1720
1740	85,231	70,764	300.863	56,039	41,572	253.582	69,550	55,083	257.589	58,136	43,669	263.435	55,516	41,049	246.990	1740

	$\frac{\text{Carb}}{(h_{\rm f}^{\circ})}$	on Dioxide 393,520 k	n Dioxide, CO ₂ Carbon 393,520 kJ/kmol) $(h_{\rm f}^{\circ} \ 1)$			le, CO kJ/kmol)	$\overline{(h_{\rm f}^{\circ})}$ Wa	ter Vapor, H 241,820 k	I₂O J/kmol)	$(\overline{h}_{\rm f}^{\circ})$	Oxygen, C 0 kJ/kr	nol)	_Nitrogen, N ₂ $(h_{\rm f}^{\circ} 0 \text{ kJ/kmol})$			
Т	h	и	s°	h	и	s°	h	и	s°	h	и	s°	h	и	s°	Т
1760	86,420	71,787	301.543	56,756	42,123	253.991	70,535	55,902	258.151	58,800	44,247	263.861	56,227	41,594	247.396	1760
1780	87,612	72,812	302.271	57,473	42,673	254.398	71,523	56,723	258.708	59,624	44,825	264.283	56,938	42,139	247.798	1780
1800	88,806	73,840	302.884	58,191	43,225	254.797	72,513	57,547	259.262	60,371	45,405	264.701	57,651	42,685	248.195	1800
1820	90,000	74,868	303.544	58,910	43,778	255.194	73,507	58,375	259.811	61,118	45,986	265.113	58,363	43,231	248.589	1820
1840	91,196	75,897	304.198	59,629	44,331	255.587	74,506	59,207	260.357	61,866	46,568	265.521	59,075	43,777	248.979	1840
1840 1860 1880 1900 1920 1940	92,394 93,593 94,793 95,995 97,197	76,929 77,962 78,996 80,031 81,067	304.198 304.845 305.487 306.122 306.751 307 374	60,351 61,072 61,794 62,516 63,238	44,331 44,886 45,441 45,997 46,552 47,108	255.976 256.361 256.743 257.122 257.497	75,506 76,511 77,517 78,527 79,540	60,042 60,880 61,720 62,564 63,411	260.337 260.898 261.436 261.969 262.497 263.022	62,616 63,365 64,116 64,868 65,620	40,308 47,151 47,734 48,319 48,904 49,490	265.925 266.326 266.722 267.115 267.505	59,075 59,790 60,504 61,220 61,936 62,654	44,324 44,873 45,423 45,973 46,524	248.979 249.365 249.748 250.128 250.502 250.874	1840 1860 1880 1900 1920
1960 1980 2000 2050 2100	98,401 99,606 100,804 103,835 106,864	82,105 83,144 84,185 86,791 89,404	307.992 308.604 309.210 310.701 312.160	63,961 64,684 65,408 67,224 69,044	47,665 48,221 48,780 50,179 51,584	257.868 258.236 258.600 259.494 260.370	80,555 81,573 82,593 85,156 87,735	64,259 65,111 65,965 68,111 70,275	263.542 264.059 264.571 265.838 267.081	66,374 67,127 67,881 69,772 71,668	50,078 50,665 51,253 52,727 54,208	267.891 268.275 268.655 269.588 270.504	63,381 64,090 64,810 66,612 68,417	47,075 47,627 48,181 49,567 50,957	251.242 251.607 251.969 252.858 253.726	1940 1960 1980 2000 2050 2100
2150	109,898	92,023	313.589	70,864	52,988	261.226	90,330	72,454	268.301	73,573	55,697	271.399	70,226	52,351	254.578	2150
2200	112,939	94,648	314.988	72,688	54,396	262.065	92,940	74,649	269.500	75,484	57,192	272.278	72,040	53,749	255.412	2200
2250	115,984	97,277	316.356	74,516	55,809	262.887	95,562	76,855	270.679	77,397	58,690	273.136	73,856	55,149	256.227	2250
2300	119,035	99,912	317.695	76,345	57,222	263.692	98,199	79,076	271.839	79,316	60,193	273.981	75,676	56,553	257.027	2300
2350	122,091	102,552	319.011	78,178	58,640	264.480	100,846	81,308	272.978	81,243	61,704	274.809	77,496	57,958	257.810	2350
2400	125,152	105,197	320.302	80,015	60,060	265.253	103,508	83,553	274.098	83,174	63,219	275.625	79,320	59,366	258.580	2400
2450	128,219	107,849	321.566	81,852	61,482	266.012	106,183	85,811	275.201	85,112	64,742	276.424	81,149	60,779	259.332	2450
2500	131,290	110,504	322.808	83,692	62,906	266.755	108,868	88,082	276.286	87,057	66,271	277.207	82,981	62,195	260.073	2500
2550	134,368	113,166	324.026	85,537	64,335	267.485	111,565	90,364	277.354	89,004	67,802	277.979	84,814	63,613	260.799	2550
2600	137,449	115,832	325.222	87,383	65,766	268.202	114,273	92,656	278.407	90,956	69,339	278.738	86,650	65,033	261.512	2600
2650	140,533	118,500	326.396	89,230	67,197	268.905	116,991	94,958	279,441	92,916	70,883	279.485	88,488	66,455	262.213	2650
2700	143,620	121,172	327.549	91,077	68,628	269.596	119,717	97,269	280.462	94,881	72,433	280.219	90,328	67,880	262.902	2700
2750	146,713	123,849	328.684	92,930	70,066	270.285	122,453	99,588	281.464	96,852	73,987	280.942	92,171	69,306	263.577	2750
2800	149,808	126,528	329.800	94,784	71,504	270.943	125,198	101,917	282.453	98,826	75,546	281.654	94,014	70,734	264.241	2800
2850	152,908	129,212	330.896	96,639	72,945	271.602	127,952	104,256	283.429	100,808	77,112	282.357	95,859	72,163	264.895	2850
2900	156,009	131,898	331.975	98,495	74,383	272.249	130,717	106,605	284.390	102,793	78,682	283.048	97,705	73,593	265.538	2900
2950	159,117	134,589	333.037	100,352	75,825	272.884	133,486	108,959	285.338	104,785	80,258	283.728	99,556	75,028	266.170	2950
3000	162,226	137,283	334.084	102,210	77,267	273.508	136,264	111,321	286.273	106,780	81,837	284.399	101,407	76,464	266.793	3000
3050	165,341	139,982	335.114	104,073	78,715	274.123	139,051	113,692	287.194	108,778	83,419	285.060	103,260	77,902	267.404	3050
3100	168,456	142,681	336.126	105,939	80,164	274.730	141,846	116,072	288.102	110,784	85,009	285.713	105,115	79,341	268.007	3100
3150	171,576	145,385	337.124	107,802	81,612	275.326	144,648	118,458	288.999	112,795	86,601	286.355	106,972	80,782	268.601	3150
3200	174,695	148,089	338.109	109,667	83,061	275.914	147,457	120,851	289.884	114,809	88,203	286.989	108,830	82,224	269.186	3200
3250	177,822	150,801	339.069	111,534	84,513	276.494	150,272	123,250	290.756	116,827	89,804	287.614	110,690	83,668	269.763	3250

Tabla A-6 Propiedades de los gases ideales en Sistema inglés (Moran, 2006).

	$h_{\rm f}^{\circ}$ Carbo	on Dioxide, 169,300 Btu	CO ₂ 1/lbmol)	Carbor $(\overline{h}_{\rm f}^{\circ})$	n Monoxid 47,540 Btu	e, CO 1/lbmol)	$\overline{(h_{\rm f}^{\circ})}$ Wat	Water Vapor, H2O (\bar{h}_{f}°) 104,040 Btu/lbmol) \bar{h} \bar{u} s°		$(\overline{h}_{\mathrm{f}}^{\mathrm{o}})$	Oxygen, O ₂ 0 Btu/lbr	nol)	$(\overline{h}_{\mathrm{f}}^{\circ})$	itrogen, N 0 Btu/lb	2 mol)	
Т	h	и	s°	h	\overline{u}	s°	\overline{h}	\overline{u}	s°	\overline{h}	\overline{u}	s°	h	и	s°	Т
300	2108.2	1512.4	46.353	2081.9	1486.1	43.223	2367.6	1771.8	40.439	2073.5	1477.8	44.927	2082.0	1486.2	41.695	300
320	2256.6	1621.1	46.832	2220.9	1585.4	43.672	2526.8	1891.3	40.952	2212.6	1577.1	45.375	2221.0	1585.5	42.143	320
340	2407.3	1732.1	47.289	2359.9	1684.7	44.093	2686.0	2010.8	41.435	2351.7	1676.5	45.797	2360.0	1684.4	42.564	340
360	2560.5	1845.6	47.728	2498.8	1783.9	44.490	2845.1	2130.2	41.889	2490.8	1775.9	46.195	2498.9	1784.0	42.962	360
380	2716.4	1961.8	48.148	2637.9	1883.3	44.866	3004.4	2249.8	42.320	2630.0	1875.3	46.571	2638.0	1883.4	43.337	380
400	2874.7	2080.4	48.555	2776.9	1982.6	45.223	3163.8	2369.4	42.728	2769.1	1974.8	46.927	2777.0	1982.6	43.694	400
420	3035.7	2201.7	48.947	2916.0	2081.9	45.563	3323.2	2489.1	43.117	2908.3	2074.3	47.267	2916.1	2082.0	44.034	420
440	3199.4	2325.6	49.329	3055.0	2181.2	45.886	3482.7	2608.9	43.487	3047.5	2173.8	47.591	3055.1	2181.3	44.357	440
460	3365.7	2452.2	49.698	3194.0	2280.5	46.194	3642.3	2728.8	43.841	3186.9	2273.4	47.900	3194.1	2280.6	44.665	460
480	3534.7	2581.5	50.058	3333.0	2379.8	46.491	3802.0	2848.8	44.182	3326.5	2373.3	48.198	3333.1	2379.9	44.962	480
500	3706.2	2713.3	50.408	3472.1	2479.2	46.775	3962.0	2969.1	44.508	3466.2	2473.2	48.483	3472.2	2479.3	45.246	500
520	3880.3	2847.7	50.750	3611.2	2578.6	47.048	4122.0	3089.4	44.821	3606.1	2573.4	48.757	3611.3	2578.6	45.519	520
537	4027.5	2963.8	51.032	3725.1	2663.1	47.272	4258.0	3191.9	45.079	3725.1	2658.7	48.982	3729.5	2663.1	45.743	537
540	4056.8	2984.4	51.082	3750.3	2677.9	47.310	4282.4	3210.0	45.124	3746.2	2673.8	49.021	3750.3	2678.0	45.781	540
560	4235.8	3123.7	51.408	3889.5	2777.4	47.563	4442.8	3330.7	45.415	3886.6	2774.5	49.276	3889.5	2777.4	46.034	560
580	4417.2	3265.4	51.726	4028.7	2876.9	47.807	4603.7	3451.9	45.696	4027.3	2875.5	49.522	4028.7	2876.9	46.278	580
600	4600.9	3409.4	52.038	4168.0	2976.5	48.044	4764.7	3573.2	45.970	4168.3	2976.8	49.762	4167.9	2976.4	46.514	600
620	4786.6	3555.6	52.343	4307.4	3076.2	48.272	4926.1	3694.9	46.235	4309.7	3078.4	49.993	4307.1	3075.9	46.742	620
640	4974.9	3704.0	52.641	4446.9	3175.9	48.494	5087.8	3816.8	46.492	4451.4	3180.4	50.218	4446.4	3175.5	46.964	640
660	5165.2	3854.6	52.934	4586.6	3275.8	48.709	5250.0	3939.3	46.741	4593.5	3282.9	50.437	4585.8	3275.2	47.178	660
680	5357.6	4007.2	53.225	4726.2	3375.8	48.917	5412.5	4062.1	46.984	4736.2	3385.8	50.650	4725.3	3374.9	47.386	680
700	5552.0	4161.9	53.503	4866.0	3475.9	49.120	5575.4	4185.3	47.219	4879.3	3489.2	50.858	4864.9	3474.8	47.588	700
720	5748.4	4318.6	53.780	5006.1	3576.3	49.317	5738.8	4309.0	47.450	5022.9	3593.1	51.059	5004.5	3574.7	47.785	720
740	5946.8	4477.3	54.051	5146.4	3676.9	49.509	5902.6	4433.1	47.673	5167.0	3697.4	51.257	5144.3	3674.7	47.977	740
760	6147.0	4637.9	54.319	5286.8	3777.5	49.697	6066.9	4557.6	47.893	5311.4	3802.2	51.450	5284.1	3774.9	48.164	760
780	6349.1	4800.1	54.582	5427.4	3878.4	49.880	6231.7	4682.7	48.106	5456.4	3907.5	51.638	5424.2	3875.2	48.345	780
800	6552.9	4964.2	54.839	5568.2	3979.5	50.058	6396.9	4808.2	48.316	5602.0	4013.3	51.821	5564.4	3975.7	48.522	800
820	6758.3	5129.9	55.093	5709.4	4081.0	50.232	6562.6	4934.2	48.520	5748.1	4119.7	52.002	5704.7	4076.3	48.696	820
840	6965.7	5297.6	55.343	5850.7	4182.6	50.402	6728.9	5060.8	48.721	5894.8	4226.6	52.179	5845.3	4177.1	48.865	840
860	7174.7	5466.9	55.589	5992.3	4284.5	50.569	6895.6	5187.8	48.916	6041.9	4334.1	52.352	5985.9	4278.1	49.031	860
880	7385.3	5637.7	55.831	6134.2	4386.6	50.732	7062.9	5315.3	49.109	6189.6	4442.0	52.522	6126.9	4379.4	49.193	880
900	7597.6	5810.3	56.070	6276.4	4489.1	50.892	7230.9	5443.6	49.298	6337.9	4550.6	52.688	6268.1	4480.8	49.352	900
920	7811.4	5984.4	56.305	6419.0	4592.0	51.048	7399.4	5572.4	49.483	6486.7	4659.7	52.852	6409.6	4582.6	49.507	920
940	8026.8	6160.1	56.536	6561.7	4695.0	51.202	7568.4	5701.7	49.665	6636.1	4769.4	53.012	6551.2	4684.5	49.659	940
960	8243.8	6337.4	56.765	6704.9	4798.5	51.353	7738.0	5831.6	49.843	6786.0	4879.5	53.170	6693.1	4786.7	49.808	960
980	8462.2	6516.1	56.990	6848.4	4902.3	51.501	7908.2	5962.0	50.019	6936.4	4990.3	53.326	6835.4	4889.3	49.955	980
1000	8682.1	6696.2	57.212	6992.2	5006.3	51.646	8078.9	6093.0	50.191	7087.5	5101.6	53.477	6977.9	4992.0	50.099	1000
1020	8903.4	6877.8	57.432	7136.4	5110.8	51.788	8250.4	6224.8	50.360	7238.9	5213.3	53.628	7120.7	5095.1	50.241	1020
1040	9126.2	7060.9	57.647	7281.0	5215.7	51.929	8422.4	6357.1	50.528	7391.0	5325.7	53.775	7263.8	5198.5	50.380	1040
1060	9350.3	7245.3	57.861	7425.9	5320.9	52.067	8595.0	6490.0	50.693	7543.6	5438.6	53.921	7407.2	5302.2	50.516	1060

 $T(\mathbf{R}), h \text{ and } u(\text{Btu/lbmol}), s^{\circ}(\text{Btu/lbmol}^{\dagger} \mathbf{R})$

	$\frac{1}{(h_{c}^{\circ})}$ Carbo	on Dioxide, 169 300 Btu	CO_2	Carbon (\overline{h}°)	n Monoxid 47 540 Bti	e, CO 1/lbmol)	$\frac{1}{(h_{c}^{\circ})}$ Wat	er Vapor, H 104 040 Bt	H ₂ O Oxygen, O ₂ tu/lbmol) $(\overline{h}_{f}^{\circ} \ 0 \ Btu/lbm$			nol)	$\frac{N}{(h_c^\circ)}$	itrogen, N 0 Btu/lb	2 mol)	
Т	h	и	s°	h	u u	s°	h	и и	s°	h	u u	s°	h	u u	s°	Т
1080	9575.8	7431.1	58.072	7571.1	5426.4	52.203	8768.2	6623.5	50.854	7696.8	5552.1	54.064	7551.0	5406.2	50.651	1080
1100	9802.6	7618.1	58.281	7716.8	5532.3	52.337	8942.0	6757.5	51.013	7850.4	5665.9	54.204	7695.0	5510.5	50.783	1100
1120	10030.6	7806.4	58.485	7862.9	5638.7	52.468	9116.4	6892.2	51.171	8004.5	5780.3	54.343	7839.3	5615.2	50.912	1120
1140	10260.1	7996.2	58.689	8009.2	5745.4	52.598	9291.4	7027.5	51.325	8159.1	5895.2	54.480	7984.0	5720.1	51.040	1140
1160 1180 1200 1220 1240 1260	10490.6 10722.3 10955.3 11189.4 11424.6 11661.0	8187.0 8379.0 8572.3 8766.6 8962.1	58.889 59.088 59.283 59.477 59.668 59.858	8156.1 8303.3 8450.8 8598.8 8747.2 8896.0	5851.5 5960.0 6067.8 6176.0 6284.7 6303.8	52.726 52.852 52.976 53.098 53.218 53.337	9467.1 9643.4 9820.4 9998.0 10176.1 10354.9	7163.5 7300.1 7437.4 7575.2 7713.6 7852.7	51.478 51.630 51.777 51.925 52.070 52.212	8314.2 8469.8 8625.8 8782.4 8939.4 9096 7	6010.6 6126.5 6242.8 6359.6 6476.9 6594.5	54.614 54.748 54.879 55.008 55.136 55.262	8129.0 8274.4 8420.0 8566.1 8712.6 8859.3	5825.4 5931.0 6037.0 6143.4 6250.1 6357.2	51.167 51.291 51.413 51.534 51.653 51 771	1160 1180 1200 1220 1240 1260
1280 1280 1300 1320 1340 1360	11898.4 12136.9 12376.4 12617.0 12858.5	9356.5 9555.3 9755.0 9955.9 10157.7	60.044 60.229 60.412 60.593 60.772	9045.0 9194.6 9344.6 9494.8 9645.5	6503.1 6613.0 6723.2 6833.7 6944.7	53.455 53.571 53.685 53.799 53.910	10534.9 10534.4 10714.5 10895.3 11076.6 11258.7	7992.5 8132.9 8274.0 8415.5 8557.9	52.354 52.494 52.631 52.768 52.903	9254.6 9412.9 9571.6 9730.7 9890.2	6712.7 6831.3 6950.2 7069.6 7189.4	55.386 55.508 55.630 55.750 55.867	9006.4 9153.9 9301.8 9450.0 9598.6	6464.5 6572.3 6680.4 6788.9 6897.8	51.887 51.001 52.114 52.225 52.335	1200 1280 1300 1320 1340 1360
1380	13101.0	10360.5	60.949	9796.6	7056.1	54.021	11441.4	8700.9	53.037	10050.1	7309.6	55.984	9747.5	7007.0	52.444	1380
1400	13344.7	10564.5	61.124	9948.1	7167.9	54.129	11624.8	8844.6	53.168	10210.4	7430.1	56.099	9896.9	7116.7	52.551	1400
1420	13589.1	10769.2	61.298	10100.0	7280.1	54.237	11808.8	8988.9	53.299	10371.0	7551.1	56.213	10046.6	7226.7	52.658	1420
1440	13834.5	10974.8	61.469	10252.2	7392.6	54.344	11993.4	9133.8	53.428	10532.0	7672.4	56.326	10196.6	7337.0	52.763	1440
1460	14080.8	11181.4	61.639	10404.8	7505.4	54.448	12178.8	9279.4	53.556	10693.3	7793.9	56.437	10347.0	7447.6	52.867	1460
1480	14328.0	11388.9	61.800	10557.8	7618.7	54.522	12364.8	9425.7	53.682	10855.1	7916.0	56.547	10497.8	7558.7	52.969	1480
1500	14576.0	11597.2	61.974	10711.1	7732.3	54.665	12551.4	9572.7	53.808	11017.1	8038.3	56.656	10648.0	7670.1	53.071	1500
1520	14824.9	11806.4	62.138	10864.9	7846.4	54.757	12738.8	9720.3	53.932	11179.6	8161.1	56.763	10800.4	7781.9	53.171	1520
1540	15074.7	12016.5	62.302	11019.0	7960.8	54.858	12926.8	9868.6	54.055	11342.4	8284.2	56.869	10952.2	7893.9	53.271	1540
1560	15325.3	12227.3	62.464	11173.4	8075.4	54.958	13115.6	10017.6	54.117	11505.4	8407.4	56.975	11104.3	8006.4	53.369	1560
1580	15576.7	12439.0	62.624	11328.2	8190.5	55.056	13305.0	10167.3	54.298	11668.8	8531.1	57.079	11256.9	8119.2	53.465	1580
1600	15829.0	12651.6	62.783	11483.4	8306.0	55.154	13494.4	10317.6	54.418	11832.5	8655.1	57.182	11409.7	8232.3	53.561	1600
1620	16081.9	12864.8	62.939	11638.9	8421.8	55.251	13685.7	10468.6	54.535	11996.6	8779.5	57.284	11562.8	8345.7	53.656	1620
1640	16335.7	13078.9	63.095	11794.7	8537.9	55.347	13877.0	10620.2	54.653	12160.9	8904.1	57.385	11716.4	8459.6	53.751	1640
1660	16590.2	13293.7	63.250	11950.9	8654.4	55.411	14069.2	10772.7	54.770	12325.5	9029.0	57.484	11870.2	8573.6	53.844	1660
1680	16845.5	13509.2	63.403	12107.5	8771.2	55.535	14261.9	10925.6	54.886	12490.4	9154.1	57.582	12024.3	8688.1	53.936	1680
1700	17101.4	13725.4	63.555	12264.3	8888.3	55.628	14455.4	11079.4	54.999	12655.6	9279.6	57.680	12178.9	8802.9	54.028	1700
1720	17358.1	13942.4	63.704	12421.4	9005.7	55.720	14649.5	11233.8	55.113	12821.1	9405.4	57.777	12333.7	8918.0	54.118	1720
1740	17615.5	14160.1	63.853	12579.0	9123.6	55.811	14844.3	11388.9	55.226	12986.9	9531.5	57.873	12488.8	9033.4	54.208	1740
1760	17873.5	14378.4	64.001	12736.7	9241.6	55.900	15039.8	11544.7	55.339	13153.0	9657.9	57.968	12644.3	9149.2	54.297	1760
1780	18132.2	14597.4	64.147	12894.9	9360.0	55.990	15236.1	11701.2	55.449	13319.2	9784.4	58.062	12800.2	9265.3	54.385	1780
1800	18391.5	14816.9	64.292	13053.2	9478.6	56.078	15433.0	11858.4	55.559	13485.8	9911.2	58.155	12956.3	9381.7	54.472	1800
1820	18651.5	15037.2	64.435	13212.0	9597.7	56.166	15630.6	12016.3	55.668	13652.5	10038.2	58.247	13112.7	9498.4	54.559	1820
1840	18912.2	15258.2	64.578	13371.0	9717.0	56.253	15828.7	12174.7	55.777	13819.6	10165.6	58.339	13269.5	9615.5	54.645	1840
1860	19173.4	15479.7	64.719	13530.2	9836.5	56.339	16027.6	12333.9	55.884	13986.8	10293.1	58.428	13426.5	9732.8	54.729	1860

	$(\overline{h}_{\rm f}^{\circ})$	on Dioxide, 169,300 Bt	, CO ₂ u/lbmol)	Carbo $(\overline{h}_{\rm f}^{\circ})$	n Monoxid 47,540 Btu	e, CO ı/lbmol)	$\overline{(h_{\rm f}^{\circ})}$ Wat	ter Vapor, I 104,040 B	H ₂ O tu/lbmol)	$\frac{1}{s^{\circ}} \frac{\text{Oxygen, O}_2}{h_{\text{f}}^{\circ} 0 \text{ Btu/lbmol}}$			$(\overline{h}_{\mathrm{f}}^{\circ})$	Nitrogen, N 0 Btu/lł	N ₂ omol)	
Т	h	и	s°	h	и	s°	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			h	и	s°	h	и	s°	Т
1900	19,698	15,925	64.999	13,850	10,077	56.509	16,428	12,654	56.097	14,322	10,549	58.607	13,742	9,968	54.896	1900
1940	20,224	16,372	65.272	14,170	10,318	56.677	16,830	12,977	56.307	14,658	10,806	58.782	14,058	10,205	55.061	1940
1980	20,753	16,821	65.543	14,492	10,560	56.841	17,235	13,303	56.514	14,995	11,063	58.954	14,375	10,443	55.223	1980
2020	21,284	17,273	65.809	14,815	10,803	57.007	17,643	13,632	56.719	15,333	11,321	59.123	14,694	10,682	55.383	2020
2060	21,818	17,727	66.069	15,139	11,048	57.161	18,054	13,963	56.920	15,672	11,581	59.289	15,013	10,923	55.540	2060
2100	22,353	18,182	66.327	15,463	11,293	57.317	18,467	14,297	57.119	16,011	11,841	59.451	15,334	11,164	55.694	2100
2140	22,890	18,640	66.581	15,789	11,539	57.470	18,883	14,633	57.315	16,351	12,101	59.612	15,656	11,406	55.846	2140
2180	23,429	19,101	66.830	16,116	11,787	57.621	19,301	14,972	57.509	16,692	12,363	59.770	15,978	11,649	55.995	2180
2220	23,970	19,561	67.076	16,443	12,035	57.770	19,722	15,313	57.701	17,036	12,625	59.926	16,302	11,893	56.141	2220
2260	24,512	20,024	67.319	16,722	12,284	57.917	20,145	15,657	57.889	17,376	12,888	60.077	16,626	12,138	56.286	2260
2300	25,056	20,489	67.557	17,101	12,534	58.062	20,571	16,003	58.077	17,719	13,151	60.228	16,951	12,384	56.429	2300
2340	25,602	20,955	67.792	17,431	12,784	58.204	20,999	16,352	58.261	18,062	13,416	60.376	17,277	12,630	56.570	2340
2380	26,150	21,423	68.025	17,762	13,035	58.344	21,429	16,703	58.445	18,407	13,680	60.522	17,604	12,878	56.708	2380
2420	26,699	21,893	68.253	18,093	13,287	58.482	21,862	17,057	58.625	18,572	13,946	60.666	17,932	13,126	56.845	2420
2460	27,249	22,364	68.479	18,426	13,541	58.619	22,298	17,413	58.803	19,097	14,212	60.808	18,260	13,375	56.980	2460
2500	27,801	22,837	68.702	18,759	13,794	58.754	22,735	17,771	58.980	19,443	14,479	60.946	18,590	13,625	57.112	2500
2540	28,355	23,310	68.921	19,093	14,048	58.885	23,175	18,131	59.155	19,790	14,746	61.084	18,919	13,875	57.243	2540
2580	28,910	23,786	69.138	19,427	14,303	59.016	23,618	18,494	59.328	20,138	15,014	61.220	19,250	14,127	57.372	2580
2620	29,465	24,262	69.352	19,762	14,559	59.145	24,062	18,859	59.500	20,485	15,282	61.354	19,582	14,379	57.499	2620
2660	30,023	24,740	69.563	20,098	14,815	59.272	24,508	19,226	59.669	20,834	15,551	61.486	19,914	14,631	57.625	2660
2700	30,581	25,220	69.771	20,434	15,072	59.398	24,957	19,595	59.837	21,183	15,821	61.616	20,246	14,885	57.750	2700
2740	31,141	25,701	69.977	20,771	15,330	59.521	25,408	19,967	60.003	21,533	16,091	61.744	20,580	15,139	57.872	2740
2780	31,702	26,181	70.181	21,108	15,588	59.644	25,861	20,340	60.167	21,883	16,362	61.871	20,914	15,393	57.993	2780
2820	32,264	26,664	70.382	21,446	15,846	59.765	26,316	20,715	60.330	22,232	16,633	61.996	21,248	15,648	58.113	2820
2860	32,827	27,148	70.580	21,785	16,105	59.884	26,773	21,093	60.490	22,584	16,905	62.120	21,584	15,905	58.231	2860
2900	33,392	27,633	70.776	22,124	16,365	60.002	27,231	21,472	60.650	22,936	17,177	62.242	21,920	16,161	58.348	2900
2940	33,957	28,118	70.970	22,463	16,625	60.118	27,692	21,853	60.809	23,288	17,450	62.363	22,256	16,417	58.463	2940
2980	34,523	28,605	71.160	22,803	16,885	60.232	28,154	22,237	60.965	23,641	17,723	62.483	22,593	16,675	58.576	2980
3020	35,090	29,093	71.350	23,144	17,146	60.346	28,619	22,621	61.120	23,994	17,997	62.599	22,930	16,933	58.688	3020
3060	35,659	29,582	71.537	23,485	17,408	60.458	29,085	23,085	61.274	24,348	18,271	62.716	23,268	17,192	58.800	3060
3100	36,228	30,072	71.722	23,826	17,670	60.569	29,553	23,397	61.426	24,703	18,546	62.831	23,607	17,451	58.910	3100
3140	36,798	30,562	71.904	24,168	17,932	60.679	30,023	23,787	61.577	25,057	18,822	62.945	23,946	17,710	59.019	3140
3180	37,369	31,054	72.085	24,510	18,195	60.787	30,494	24,179	61.727	25,413	19,098	63.057	24,285	17,970	59.126	3180
3220	37,941	31,546	72.264	24,853	18,458	60.894	30,967	24,572	61.874	25,769	19,374	63.169	24,625	18,231	59.232	3220
3260	38,513	32,039	72.441	25,196	18,722	61.000	31,442	24,968	62.022	26,175	19,651	63.279	24,965	18,491	59.338	3260
3300	39,087	32,533	72.616	25,539	18,986	61.105	31,918	25,365	62.167	26,412	19,928	63.386	25,306	18,753	59.442	3300
3340	39,661	33,028	72.788	25,883	19,250	61.209	32,396	25,763	62.312	26,839	20,206	63.494	25,647	19,014	59.544	3340
3380	40,236	33,524	72.960	26,227	19,515	61.311	32,876	26,164	62.454	27,197	20,485	63.601	25,989	19,277	59.646	3380
3420	40,812	34,020	73.129	26,572	19,780	61.412	33,357	26,565	62.597	27,555	20,763	63.706	26,331	19,539	59.747	3420
3460	41,338	34,517	73.297	26,917	20,045	61.513	33,839	26,968	62.738	27,914	21,043	63.811	26,673	19,802	59.846	3460

$\frac{(h_{\rm f}^{\circ} 169,300 \text{ Btu/lbmol})}{h} (\overline{h}_{\rm f}^{\circ} 47,540 \text{ Btu/lbmol}) (h_{\rm f}^{\circ} 104,040 \text{ Btu/lbmol}) (h_{\rm f}^{\circ} 0 \text{ Btu/lbmol})}{h} u s^{\circ}$	
Thus°hus°hus°	$\begin{array}{c cccc} h & u & s^{\circ} & T \\ \hline 27,016 & 20,065 & 59.944 & 350 \end{array}$
	27,016 20,065 59.944 350
3500 41,965 35,015 73.462 27,262 20,311 61.612 34,324 27,373 62.875 28,273 21,323 63.914 27	
3540 42,543 35,513 73.627 27,608 20,576 61.710 34,809 27,779 63.015 28,633 21,603 64.016 27	27,359 20,329 60.041 354
3580 43,121 36,012 73.789 27,954 20,844 61.807 35,296 28,187 63.153 28,994 21,884 64.114 27	27,703 20,593 60.138 358
3620 $43,701$ $36,512$ 73.951 $28,300$ $21,111$ 61.903 $35,785$ $28,596$ 63.288 $29,354$ $22,165$ 64.217 $28,3660$ 44.280 37.012 74.110 28.647 21.378 61.008 36.274 20.006 63.423 20.716 22.447 64.316 25	28,046 20,858 60.234 362
3700 44 861 37 513 74 267 28 994 21 646 62 093 36 765 29 418 63 557 30 078 22 730 64 415 28	28,331 21,122 00.328 300
3740 45 442 38 014 74 423 29 341 21 914 62 186 37 258 29 831 63 690 30 440 23 013 64 512 20	29 080 21 653 60 515 374
3780 46.023 38.517 74.578 29.688 22.182 62.279 37.752 30.245 63.821 30.803 23.296 64.609 29	29.425 21.919 60.607 378
3820 46,605 39,019 74.732 30,036 22,450 62.370 38,247 30,661 63.952 31,166 23,580 64.704 29	29,771 22,185 60.698 382
3860 47,188 39,522 74.884 30,384 22,719 62.461 38,743 31,077 64.082 31,529 23,864 64.800 30	30,117 22,451 60.788 386
3900 47,771 40,026 75.033 30,733 22,988 61.511 39,240 31,495 64.210 31,894 24,149 64.893 30	30,463 22,718 60.877 390
3940 48,355 40,531 75.182 31,082 23,257 62.640 39,739 31,915 64.338 32,258 24,434 64.986 30	30,809 22,985 60.966 394
3980 48,939 41,035 75.330 31,431 23,527 62.728 40,239 32,335 64.465 32,623 24,720 65.078 31	31,156 $23,252$ 61.053 398
4020 49,524 41,541 75.477 51,780 25,797 02.810 40,740 52,757 04.591 52,989 25,000 05.109 51	31,505 23,520 01.159 402
4100 50 605 42 552 75 765 22 470 24 207 62 088 41 745 22 602 64 820 22 722 25,272 65 250 65 250 27	22 108 24 056 61 210 410
4100 50,095 $42,555$ 75.705 52,479 24,557 02.988 41,745 55,005 04.859 55,722 25,580 05.550 52 4140 51 282 43 060 75 907 32 829 24 608 63 072 42 250 34 028 64 962 34 089 25 867 64 439 30	32,198 24,050 01.510 410
4140 $51,202$ $43,000$ 75.007 $52,027$ $24,008$ 05.072 $42,250$ $54,028$ 04.022 $54,007$ $25,007$ 04.457 52	32,894 $24,593$ 61.479 418
4220 52,456 44,075 76.188 33,530 25,149 63.240 43,267 34,881 65.204 34,824 26,444 65.615 33	33,242 24,862 61.562 422
4260 53,044 44,584 76.327 33,880 25,421 63.323 43,769 35,310 65.325 35,192 26,733 65.702 33	33,591 25,131 61.644 426
4300 53,632 45,093 76.464 34,231 25,692 63.405 44,278 35,739 65.444 35,561 27,022 65.788 33	33,940 25,401 61.726 430
4340 54,221 45,602 76.601 34,582 25,934 63.486 44,788 36,169 65.563 35,930 27,312 65.873 34	34,289 25,670 61.806 434
4380 54,810 46,112 76.736 34,934 26,235 63.567 45,298 36,600 65.680 36,300 27,602 65.958 34	34,638 25,940 61.887 438
4420 55,400 46,622 76.870 35,285 26,508 63.647 45,810 37,032 65.797 36,670 27,823 66.042 34 4460 55,000 47,122 77,002 25,627 26,780 63,726 46,222 27,465 65,012 27,041 28,184 66,125 25	34,988 26,210 61.966 442
4400 55,550 47,155 77.005 55,057 20,780 05.720 40,522 57,405 05.915 57,041 28,184 00.125 55 4500 56,591 47,645 77.125 25,090 27.052 62,905 46,926 27.000 66,029 27.412 29,475 66,009 26	25 (28) 26 751 (2122) 450
4500 50,581 47,645 77.155 55,989 27,052 65.805 46,856 57,900 60.028 57,412 28,475 60.208 55 4540 57 172 48 156 77 266 36 341 27 325 63 883 47 350 38 334 66 142 37 783 28 768 66 290 36	35,088 20,751 02.125 450 36.038 27.022 62.201 454
4540 $57,764$ $48,668$ $77,395$ $36,693$ $27,598$ $63,960$ $47,866$ $38,770$ $66,255$ $38,155$ $29,060$ $66,372$ $36,493$	36,389 27,022 62.201 454
4620 58,356 49,181 77.581 37,046 27,871 64.036 48,382 39,207 66.368 38,528 29,353 66.453 36	36,739 27,565 62.354 462
4660 58,948 49,694 77.652 37,398 28,144 64.113 48,899 39,645 66.480 38,900 29,646 66.533 37	37,090 27,836 62.429 466
4700 59,541 50,208 77.779 37,751 28,417 64.188 49,417 40,083 66.591 39,274 29,940 66.613 37	37,441 28,108 62.504 470
4740 60,134 50,721 77.905 38,104 28,691 64.263 49,936 40,523 66.701 39,647 30,234 66.691 37	37,792 28,379 62.578 474
4780 60,728 51,236 78.029 38,457 28,965 64.337 50,455 40,963 66.811 40,021 30,529 66.770 38 4020 61,232 51,236 78,029 38,457 28,965 64.337 50,455 40,963 66.811 40,021 30,529 66.770 38 4020 61,232 51,236 78,029 38,457 28,965 64.337 50,455 40,963 66.811 40,021 30,529 66.770 38	38,144 28,651 62.652 478
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38,495 28,924 62.725 482
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20,100 20,469 62,970 400
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39,199 29,408 62.8/0 490 40.080 30.151 63.040 500
5000 - 65,000 - 54,000 - 54,001 - 70,000 - 40,403 - 50,413 - 04,753 - 55,527 - 45,596 - 07,401 - 42,000 - 52,157 - 07,195 - 40,5100 - 65,491 - 55,363 - 78,994 - 41,289 - 31,161 - 64,910 - 54,640 - 44,512 - 67,662 - 43,021 - 32,901 - 67,380 - 40,510 - 54,640 - 54,640 - 54,650 - 54,650 - 54,050 - 54	40 962 30 834 63 223 510
5200 - 66.984 - 56.658 - 79.284 - 42.176 - 31.849 - 65.082 - 55.957 - 45.631 - 67.918 - 43.974 - 33.648 - 67.562 - 41.265 - 41.	41.844 31.518 63.395 520
5300 68,471 57,954 79.569 43,063 32,538 65.252 57,279 46,754 68.172 44,922 34,397 67.743 42	42,728 32,203 63.563 530