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Abstract

Rotorcraft Unmanned Aerial Vehicles (UAV) with take-o� and vertical landing capabilities or multi-
rotors have proved to be an e�cient and low-cost solution for civil �ight applications due to signi�cant
advances in the development of robust and more e�cient altitude and attitude control strategies, plan-
ning and re-planning algorithms capable of detecting and evading obstacles and Fault Diagnosis & Fault
Tolerant Control methods.

In most applications where multirotors are used, they develop di�erent task as exploration, photogram-
metry, �lming, mapping and more recently all those dedicated to precision agriculture such as irrigation
and crop monitoring. During the development task, the multirotor executes a mission which consists to
�y through a set of paths connected by n reference points or way-points inside a known or unknown
area. However, during the mission development, di�erent negative factors decrease the multirotor �ight
performance such as environmental conditions, occurrence of faults or failures in actuators/sensors and
energetic limitations due to the power source constraints. The energetic limitation problem in a multirotor
are due to power capabilities that on-board battery can supply.

Due to power and energy requirements, the multirotors are powered by Lithium Polymer batteries which
are rechargeable batteries of Lithium-Ion technology. They possess a polymer electrolyte instead of a
liquid electrolyte and provide high power and energy densities. However, according to the use due to
the number of charge/discharge cycles and other factors like damage provoked by over-discharges, the
battery performances tend to decrease. Such decrease or aging causes a reduction in the e�ciency of the
UAV multirotor �ight by decrease the total mission time or �ight endurance, and leads to maneuverability
problem, which increases the risk of crash and collision.

This thesis topic addresses the issues concerning to battery performances and its in�uence into the mission
and path planning tasks. By considering model-based prognosis techniques and path planning methods, a
hierarchy mission planning strategy based on energy consumption is proposed and validated at simulation
level considering di�erent �ight situations. The UAV performances, as well as its capability to execute and
ful�ll a mission is weighted by determine the battery State of Health (SoH) which is an index to measure
the degradation level of the battery. The SoH helps to estimate the battery Remaining Useful Life (RUL)
and establishes the energy limitation by the computation of the Maximum Flight Endurance (MFE). Such
information is necessary to path planning generation which not only consider the constraints related to
the power source but also the scopes and limitations of the mission to be executed. In addition, the main
concern of this thesis are long time-distance missions e.g. exploration or inspection of remote areas where
it is fundamental to have a proper use of energy aboard the multirotor.
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Chapter 1

Generalities of topic thesis

1.1 Introduction

Nowadays, Unmanned Aerial Vehicles (UAV) with take-o� and vertical landing capabilities or multiro-
tors have proved to be an e�cient and low-cost solution in civil �ight applications due to signi�cant
advances in the development of more e�ective control, planning and make decision methodologies. For
such applications, multirotors develop di�erent task as exploration, photogrammetry, �lming, mapping
and more recently all those dedicated to precision agriculture such as irrigation and crop monitoring
[40, 57, 65, 108, 130, 141, 199].

During the development task, the multirotor executes a mission which consists to �y through a set of
paths connected by n reference points or way-points inside a known or unknown area. However, during
the mission ful�llment, di�erent negative factors a�ect the vehicle performance as environmental condi-
tions, occurrence of faults or failures and energetic limitations due to the power source constraints. The
energetic limitation problem in a multirotor are due to power capabilities that on-board battery can supply.

The UAV multirotors are powered by Lithium Polymer batteries which are rechargeable batteries of
Lithium-Ion technology. They possess a polymer electrolyte instead of a liquid electrolyte and provide
high power and energy densities. However, according to the use due to the number of charge/discharge
cycles and other factors like damage provoked by over-discharges, the battery performances tend to de-
crease. Such decrease or aging causes a reduction in the e�ciency of the UAV multirotor �ight by decrease
the total mission time or �ight endurance, and leads to maneuverability problem, which increases the risk
of crash and collision.

This thesis topic addresses the issues concerning to battery performances and its in�uence into the mission
and path planning tasks. By considering model-based prognosis techniques and path planning methods, a
hierarchy mission planning strategy based on energy consumption is proposed and validated at simulation
level considering di�erent �ight situations. The UAV performances, as well as its capability to carry out
and ful�ll a mission, is weighted by determine the battery State of Health (SoH) which is an index to
measure the degradation level of the battery. The SoH helps to estimate the battery Remaining Useful
Life (RUL) and establishes the energy limitation by the computation of the Maximum Flight Endurance
(MFE). Such information is necessary to path planning generation which not only consider the constraints
related to the power source but also the scopes and limitations of the mission to be executed.

1
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1.2 Motivation

Usually, a mission for any multirotor UAV powered by a Li-Po battery consists of take-o�, �ying through
a set of paths connected by n way-points inside a constraint workspace which can be also completely
known or unknown and �nally landing. At the beginning of the mission the on-board battery is consid-
ered fully charged and as the �ight time elapses the battery is discharged until reach the minimum voltage
or End of Discharge (EoD). Before the EoD is reached, the mission is expected to be completed and the
multirotor has landed. The time between the beginning of mission and the EoD is usually referred as
Flight Endurance (FE). An example of the expected development and ful�llment of a mission can be seen
in Figure 1.1-(a) where E0 represents the total energy at the beginning of the mission, Ec is the energy
consumption measured during the mission development and Ef represents the remainder energy at the
end of the mission.

In addition, during the mission development di�erent negative factors a�ecting the �ight performances are
encountered as environmental conditions, the occurrence of faults or failures in vehicle components and
energetic limitations due to the power source capabilities as it is shown in Figure 1.1-(b). Problems related
to the mitigation of the fault and failure e�ects in vehicle components such as actuators and sensors, as
well as disturbances due to environmental conditions as wind gusts are addressed by means of robust
position and orientation controllers ([53, 187, 209]) and Fault Tolerant Control ([77, 127, 151]). However,
those problems related to energy consumption and maximization of �ight time have become more popular
due to the interest to increase the vehicle Flight Endurance (FE) in order to perform long time missions.

(a) (b)

Figure 1.1: (a) Expectation of the ful�llment of a mission and (b) negative factors a�ecting the �ight
performance during mission.

Di�erent solutions dedicated to increase the FE have been presented in the context of path planing, e.g.
the authors in [113, 114, 196] presented a minimum energy path generation methodology based on the
minimization of energy consumption considering the vehicle displacement from an initial to a �nal point.
The authors in [161] and [164] reopen the generation of minimum energy paths problem by adding the
dynamics of the battery discharge and its dependency of power source State of Health. On the other hand
in [1, 2, 44, 59, 86] empirical mathematical models to compute and maximize the �ight endurance taking
into account the vehicle geometry and energetic requirements to keep the lift during the �ight have been
proposed and validated.

The Li-Po batteries used to supply the energy to powered the propulsion system of multirotor (the ensemble
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propeller - BrushLess DC motors (BLDCM) - Electronic Control Speed or ESC) as well as other elements
(such as �ight controller and di�erent sensors like GPS, gyroscope, accelerometers and RF & Wireless
Communication system) is composed for several cells with high capacity in Amperes-hours (Ah) in series
connection. Usually they possess a voltage operational range of 2.5 V (Vmin)to 4.2 V (Vmax) [173] and a
nominal voltage of 3.7 V. Generally, the BLDCM and ESC require an operating voltage level between 10
V and 17 V [45]. In that sense it is possible to �nd batteries with three, four or even six cells in series
connection to generate nominal voltages levels between 11.1 V to 22.2 V. In order to generate su�cient
thrust force for the vehicle take-o� and to keep the vehicle in hover position, the BLDCMs generates
a signi�cant amount of current whose magnitude increase the battery discharge rate. In Figure 1.2 the
current (blue line) generated by four BLDCM of a quadrotor and battery voltage response (red line) are
shown. During the take-o� (between 0-25 sec) the current increase to reach a value of 14 A and the battery
discharge rate increase causing a voltage drop from initial voltage 11.6 V to 11.2 V. Two altitude changes
increase the current from 14 A to 18 between 25- 50 sec and 75 - 100 sec and their e�ects cause an instant
drop in the battery voltage followed by a recovery e�ect. Finally, when the quadrotor lands, the current
drops to zero and the voltage is recovered close to initial voltage.

Figure 1.2: Example of battery discharge of a quadrotor in hover position.

The battery used in Figure 1.2 has a maximum capacity of 2.2 Ah which means that if the battery is fully
charged and a current of 2.2 A is applied during one hour the battery will be completely discharged. If
the current is increased to double or triple, the discharge time decreases. Such e�ect is represented by
battery discharge rate and it is called as C-rate [119]. Usually, it is possible to compute the maximum FE
and energy according to demanded current by evaluate the relationship between the C-rate and discharge
time as it can be seen in Figure 1.3. However, such relationship is just valid at the battery Begin of Life
(BoL), and according to battery aging the maximum capacity decreases. In addition the battery aging is
evaluated by computing the State of Health (SoH) and according to SoH levels, it is possible to determines
the actual battery degradation. The ongoing use of the battery (interpreted as charge/discharge cycles)
and extreme operating conditions like high discharge C-rate and temperature, and deep discharges, a
damage is provoked in the battery causing an accelerated degradation by reducing the ability to store
energy and supply a required power. A such degradation also tends to decrease the battery useful life and
make it impossible to determinate the �ight endurance or even if a mission can be launched and ful�lled.
Likewise, a degraded battery leads to generation of maneuverability problems and a high risk of crash
and collision during the development mission. The increase of battery performance means the increase
of multirotor �ight capabilities. In that sense it is necessary to take into account the di�erent negative
aspects a�ecting the battery SoH and integrate it in a mission planning framework.
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Figure 1.3: Relationship of C-rate and charge/discharge time.

1.3 Objectives and aims of topic thesis

With the aim to establish an appropriate energy consumption during the mission development for multi-
rotor vehicle with vertical take o� and landing capabilities and at the same time to maximize the useful
life time of the battery, the present investigation has as a general objective:

To develop a mission planning and re-planning methodology based on energy consumption

and battery State of Health (SoH).

The mission planning and re-planning encompasses from the de�nition of the requirements of the mission
(maximum �ight height, speed of displacement, stop and follow), the path planning task for trajectory
generation and way-points de�nition. Within of mission planning routines, the main target is the path
planning task which addresses the generation of minimum energy paths. Such paths are considered in
order to execute e�cient low energy consumption �ights. In addition, the mission planning methodology
ensure:

• Identify the energy limitations of multirotor UAV during mission development

• Improve the multirotor �ight capabilities by taking into account the energy consumption.

• Maximize the Flight Endurance (FE) in order to have long-time mission for general applications
(surveillance, exploring, mapping and photogrammetry).

On the other hand, the battery State of Health (SoH) is evaluated by developing empirical degradation
models which are will be able to:

• Establish the basics of battery health in UAV applications.

• Model the two main degradation phenomena a�ecting battery life: capacity loss and power fade.

• Determine the Remaining Useful Life (RUL) of battery associated to number of �ights.

Considering that the mission planning has the objective to maximize the FE while the analysis of battery
SoH is to determine the RUL, it is necessary to establish the link between both objectives. In that sense,
a PHM is proposed and developed considering model-based Prognosis techniques. The PHM scheme (also
called Prognosis Module or PM) execute the following tasks:
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• Estimation of battery State of Charge (SoC).

• Computation of battery SoH by using degradation models.

• Prediction of FE during mission development and computation of Remaining Mission Time (RMT).

1.4 Scope

The main scope of this thesis is to evaluate at mission and path planning level the e�ect of the energy
consumption by considering the modeling of the power source and the evaluation of its State of Health
and use such information to create a hierarchy control structure able to re-planning the mission or path
according to energy constraints. Likewise, the proposed methodology is validated at simulation level con-
sidering realistic �ight situations.

1.5 Contributions and publications

The main contributions of this topic thesis are:

1. Generation of empirical degradation models able to predict the RUL and EoL of Lithium Polymer
battery.

2. Development of a mission planning and re-planning strategy able to consider the energy minimization
and battery SoH.

Along of thesis developments, several publications were made both international congress and journals.
Such works describe the main elements of general contribution that this research presents:

Journals

• Schacht-Rodríguez, R., Ponsart, J. C., García-Beltrán, C. D., Astorga-Zaragoza, C. M., Theilliol,
D., & Zhang, Y. (2018). Path planning generation algorithm for a class of uav multirotor based on
state of health of lithium polymer battery. Journal of Intelligent & Robotic Systems, 91(1), 115-131.

• Schacht-Rodríguez, R., Ortiz-Torres, G., Garcia-Beltran, C. D., Astorga-Zaragoza, C. M., Pon-
sart, J. C., & Perez-Estrada, A. J. (2018). Design and development of an UAV Experimental
Platform. IEEE Latin America Transactions, 16(5), 1320-1327.

• Torres-Ortíz, G., Schacht-Rodríguez, R., Reyes-Reyes, J., Garcia-Beltran, C. D., Sanchez-Guerrero,
M. E., & Astorga-Zaragoza, C. M. (2018). Development of Experimental Platform for Control Sys-
tem of a Planar Vertical Take-o� and Landing Unmanned Aerial Vehicle. IEEE Latin America
Transactions, 16(2), 342-349.

Conferences

• Schacht-Rodríguez, R., Ortiz-Torres, G., Garcia-Beltran, C. D., Astorga-Zaragoza, C. M., Pon-
sart, J. C., & Theilliol, D. (2017, June). SoC estimation using an Extended Kalman �lter for UAV
applications. In 2017 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 179-
187). IEEE.
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• Schacht-Rodríguez, R., Ponsart, J. C., Theilliol, D., García-Beltrán, C. D.,& Astorga-Zaragoza,
C. M. (2018, September). Path Planning Based on State-of-Health of the Power Source for a Class
of Multirotor UAVs. In 2018 UKACC 12th International Conference on Control (CONTROL) (pp.
309-314). IEEE.

• Schacht-Rodríguez, R., Ponsart, J. C., García-Beltrán, C. D., Astorga-Zaragoza, C. M., (2018,
August). Prognosis & health management for the prediction of UAV �ight endurance. In 10th IFAC
Symposium on Fault Detection, Supervision and Safety for Technical Processes, SAFEPROCESS
2018.

• Schacht-Rodríguez, R., Ponsart, J. C., García-Beltrán, C. D., Astorga-Zaragoza, C. M., & Theil-
liol, D. (2019, June). Mission Planning Strategy for Multirotor UAV Based on Flight Endurance
Estimation. In 2019 International Conference on Unmanned Aircraft Systems, ICUAS 2019. IEEE

• Schacht-Rodríguez, R., Ponsart, J. C., García-Beltrán, C. D. & Astorga-Zaragoza, C. M (2019
September). Analysis of energy consumption in multirotor UAV under actuator fault e�ects. In 4th
International Conference on Control and Fault-Tolerant Systems (SysToL 2019). IEEE

Awards

• BEST STUDENT PAPER AWARD - 12th UKACC International Conference on Control (Control
2018), She�eld, UK

1.6 Thesis organization

The thesis document is organized as follows:

• Chapter 2: This chapter presents the actual State of the Art around the mission planning and path
planning based on energy consumption, PHM methodology particularly model based Prognosis.

• Chapter 3: This chapter presents the mathematical model of multirotor UAV and also introduce
the mathematical model of propulsion system: battery and motors. A cascade control loop is de-
signed to control the vehicle position and orientation taking into account the relationship between
the angular speed of motor and the battery discharge rate.

• Chapter 4: This chapter introduces the development of Prognosis and Health Management module
to estimate the SoC and SoH and determines the FE for mission planning objectives.

• Chapter 5: This chapter describes the proposed mission planning and describes all elements inte-
grated it. In addition the generation of minimum energy paths is established considering the battery
health and its limitations considering also the e�ect of fault in actuators and the introduction of an
ideal FTC strategy based on control allocation method. Finally, this chapters concludes with the
simulation results at di�erent �ight conditions.

• Chapter 6: This chapter enlists the perspectives and future works of topic thesis and highlighting
the contributions.
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1.7 Conclusion

This chapter presented the general context of topic thesis by establishing the main problems of multiro-
tors UAV speci�cally those related to energy consumption during the mission development. In addition,
the reached objectives as well as the contributions (conference and journals papers) of this research were
enlisted. In the next Chapter the State of the Art around topic research will be presented.



Chapter 2

State of the Art

In this chapter the more recent works about Prognosis and Health Management (PHM) and Mission
Planning in multirotors UAV are described. Such works constitute the core of the thesis State of Art,
and they allow to locate the problem as well as the explored solutions that thesis topic is addressing. In
Figure. 2.1 the main such topics and their relationship between them are shown. As it can be observed,
the link between the mission planning and PHM techniques allows to increase the mission reliability in
multirotor UAV and to improve the �ight capabilities. The more recent developments around the Progno-
sis and Health Management as Model-based Prognosis techniques, State of Health (SoH) computation and
Remaining Useful Life (RUL) prediction dedicate to power source of multirotor UAVs will be described
in Section 2.1. On the other hand, in Section 2.2 the di�erent elements comprising of Mission planning
problem as mission requirements, motion and path planning as well as the di�erent proposed algorithms
around the context of multirotor UAV are presented.

Figure 2.1: State of Art organization.

9
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2.1 Prognosis and Health Management

The Prognosis and Health Management ([62, 74, 84]) or PHM has recently emerged as a key technology
which uses data analysis or model based techniques to assess the actual health conditions of an engineered
system (health reasoning) and predict how and when the system is likely to fail (health prognosis) by
evaluate the lifetime of the system. In addition, the necessity of PHM is being considered by the growing
demand of Condition based Maintenance (CBM) and extension of operational life in high-value engineered
systems like nuclear power plants, wind turbines, pipelines, satellites and aircraft. One of the main
objectives of the PHM is to predict how the system will behave in the future in order to know if more
stress or changes in the nominal operations on the system will likely cause an acceleration towards a certain
undesirable event or failure condition, and the time when such event will occurs. The obtained prediction
is used to compute the Remaining Useful Life (RUL) of the component and/or system. According to [73]
the PHM is developed by executing four basic functions:

• Health Sensing: acquire sensor signals for an engineered system by in-situ monitoring techniques
and to ensure a high likelihood of damage detection.

• Health Reasoning: extract health-relevant system information from the acquire sensor signals us-
ing feature extraction techniques and to classify system health states by using health classi�cation
techniques.

• Health Prognosis: de�ne a threshold for each unusual or abnormal state and predict the RUL, i.e.,
the amount of time remaining before the system can not longer performance its required functions.

• Health Management: enable optimal decision making on maintenance of the system based on the
RUL prediction to minimize the Life Cycle Cost (LCC).

In addition, other works like [84] de�ne that the necessary steps to develop the PHM includes:

• Data acquisition: collect measurements data from sensors and process them to extract useful features
for diagnosis.

• Diagnostics: a fault is detected for any abnormal state, isolated to determine which component is
failing and identi�ed in order to know how severe it is with respect to the failure threshold.

• Prognostics: predict how long it will take until failure under the current operating conditions.

• Health Management: manage in optimal manner the maintenance scheduling and logistics support.

Among previous steps, prognostics is the key enabler that permits the reliability of a system to be evaluated
in its actual life cycle conditions. In other works, it predicts the time at which a system or a component
will no longer perform its intended function, thus giving users the opportunity to mitigate system level
risks while extending its useful life.

Nowadays, most maintenance systems applied to engineered systems are either corrective (repairing or
replacing a system after it fails) or preventive (inspecting a system on a routine schedule regardless of
whether inspection is actually needed). The former strategy is called corrective maintenance (CM) and
the latter is called preventive maintenance (PM). Both approaches are expensive and incur high LCCs.
PHM meanwhile, uses sensor signals from a system in operation to assess the actual health of the system
and predict when and how the system is likely to fail. The health and life information provide by PHM
enables �eld engineers to take a maintenance action only when needed. This is referred to as a condition
based maintenance (CBM) strategy. CBM often results in a lower LCC than CM and/or PM strategies
as it can be seen in Figure 2.2.
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Figure 2.2: Cost associated with di�erent maintenance strategies [74].

2.1.1 Prognosis methods

Generally, PHM methods can be classi�ed into [172]: physics model-based, data-driven, reliability-based
and probability-based methods. The applicability of each of these methods depends mainly on the knowl-
edge of the system. However the main methods emerging today and o�ering a high prediction level of
future health state are physics based and data driven approaches [9] as it can be seen in Figure. 2.3.

Figure 2.3: Classi�cation of di�erent prognosis methods [84].

Model-based Prognosis methods

Model-based Prognosis or Physics-based approaches ([41, 78, 94, 133]) combine a mathematical model
(also called physics model in PHM literature) describing the behavior of the system degradation and mea-
sured data containing information about usage conditions. The data allows to identify model parameters
to predict the future behavior. The �nal result is a degradation model describing the main aging phe-
nomena and failure modes. Once a degradation model is developed, it can be reused for di�erent systems
or di�erent designs by tuning model parameters. The method is generally considered as computationally
e�cient that data-driven method. however, model development requires a thorough understanding of the
system. If any important physical phenomenon is missed, then it can lead to failure of predicting degra-
dation behavior. Also, high �delity models, especially for numerical models can be computational intensive.
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Since the behavior of damage depends on model parameters in Model-based Prognosis approaches, identi-
fying them is the most important issue in predicting future damage behaviors. Due to uncertainty in usage
conditions and noise in data, most algorithms identify model parameters as probability distributions rather
than deterministic values based on Bayesian inference ([21]) that is a statistical method in which obser-
vations are used to estimate and update unknown model parameters in the form of a probability density
function. The most typical technique is the particle �lter ([124, 125, 190]) that expresses the distribution
of parameters with a number of particles and their weights based on sequential Bayesian updating. The
Kalman �lter is also a �ltering method based on the sequential Bayesian updating, which gives the exact
posterior distribution in the case of a linear system with Gaussian noise. Other Kalman �lter family
techniques, such as extended/unscented Kalman �lter have been developed to improve the performance
for nonlinear systems ([27, 97, 207]). Finally, the nonlinear least squares ([54]) that is a nonlinear version
of the least squares is often used, but in which the parameters are estimated with deterministic values and
their variances.

Data-driven methods

Data-driven approaches use informations from collected data at current and previous usage conditions
(usually called training data) to identify the characteristics of the currently measured degradation state
and to predict the future trend ([13, 63, 72, 116, 166]). The conceptual understanding for data-driven
approaches is an extrapolation with mathematical functions based on identi�ed coe�cients. Since this
approach simply �ts the trend of data, there is no guarantee that the extrapolation will be meaningful
since failure progression from current state forward may be unrelated to prior failure progression. The
success of data-driven methods depends on collecting statistics of failure as a function of current state,
which requires large volume of data. Without having a comprehensive understanding of the system, it is
di�cult to know how much data are su�cient for the purpose of prognosis.

The most common techniques in data-driven approaches, is the arti�cial neural network (so-called neural
network) as an arti�cial intelligence method, in which a network model learns a way to produce a desired
output, such as the level of degradation or lifespan, by reacting to given inputs, such as time and usage
conditions ([150, 167, 170]). Also, the Gaussian process (GP) regression ([89, 156]) is a commonly used
method among regression-based data-driven approaches, which is a linear regression like the least squares
method with the assumption that errors between a regression function and data are correlated. Including
the least squares regression, there are a wide variety of algorithms such as the fuzzy logic ([159, 169]),
relevance/support vector machine (RVM/SVM) ([23, 43]), gamma process ([64, 201]), Wiener processes
([192, 202]), hidden Markov model ([47, 206]) and deep-learning ([82, 204]).

In the viewpoint of practicality, data-driven approaches are easy and fast to implement. In fact, several
o�-the-shelf packages are available for data mining and machine learning. By collecting enough data, it is
possible to identify relationships that were not previously considered. Also, since the method works with
objective data, it can consider all relationships without any prejudice. However, this method requires a
lot of data that include all possible modes of failure for the same or similar systems. Since no physical
knowledge is involved, the results may be counter-intuitive and it is dangerous to accept a result without
understanding the cause of the problem. The method can be computationally intensive, in both analysis
and implementation. In addition, the application domains of both model-based and data-driven methods
can be illustrated in terms of reliability of physics model and availability of data, as shown in Figure 2.4.
When a highly reliable physics model is available, physics-based approaches will work well even with a
small number of data. When much data are available, both methods can be applied. The issue is when a
reliable physics model is not available. In this case, if much data are available, then data-driven approach
can be applied without requiring physics model. However, if a small number of data are available, there
is no reliable prognostics approaches and thus health assessment will be unreliable.
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Figure 2.4: Application domains of physics-based and data-driven prognostics algorithms [84].

On the other hand, hybrid approaches ([55, 56, 134]) integrate advantages of both physics-based and
data-driven methods to improve the prediction capability. For practical complex systems, it might not
be e�cient to use physics-based or data-driven approaches alone. Instead, both approaches are used
together to maximize the prediction capability. For example, the knowledge on physical behavior can
be used to determine the mathematical model (e.g., determining the order of polynomial or exponential
functions) in data-driven method. It is also possible to use data-driven system model in conjunction with
a physics-based fault model, or vice versa.

2.1.2 Short and Long term predictions

As it was mentioned in previous paragraph, the main objective of PHM is to increase the system perfor-
mances by improving the system maintenance time. Such task is carried out by monitoring the actual
health state of the system and to determine possible future deviations of its nominal operation. Usually,
two fundamental situations make that the system is out of its nominal operations, the fault occurrence
and degradation caused by fatigue due to constant usage or operation. The e�ect of fault occurrence can
be addressed by �rstly using fault diagnosis methods to detect, isolate and identify the fault. Then the
fault e�ect can be mitigated by generate fault tolerant control system in order to guarantee the system
operation. On the other hand, the degradation caused by continuous use is determined by computing the
actual health state of the system and compare it with the Begin of Life (BoL) value. With this, it is pos-
sible to de�ne what is the degradation level and its evolution. Once the actual degradation trend and its
causes are known, it is possible to make progression and to predict its future evolution for both short and
long term predictions. The use of short or long term predictions depends on the system dynamics, lifetime
of the system or component and accuracy of the prediction ([131, 175]). Figure 2.5 shows the prediction
of the possible trend that the performance of a system could have. The solid dark blue line represents the
past evolution of the system behavior until present time ta, and the brown area is the Safety Zone (SZ)

or the nominal operational limit. According to di�erent factors such as the inputs of the system, aging,
or even external disturbances, the system behavior could be progressed until reach values outside of its
nominal operation. In that sense, if such factors are known, the future trajectory of the system behavior
can be predicted until reaching the SZ (segmented blue lines).

When the system behavior reaches or exceed the upper limit of the SZ at some time tfi , it is stated that
the system has reached its End of Life (EoLi). Then, the Remaining Useful Time (RULi) until reach the
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Figure 2.5: Evolution of the system behavior.

EoLi is computed as

RULi = tfi(EoLi)− ta. (2.1)

2.1.3 PHM in multirotor UAV

In addition, the PHM is useful to determine the actual and future evolutions of system performances con-
sidering short and long term predictions. However the predictions executed around the PHM approaches
are not limited to evaluate only the system health. In UAV applications, the PHM have been used to
improve the �ight performance by developing health management systems which allows designers to ex-
amine optimal fault accommodation techniques that can increase availability, improve safety, and optimize
maintenance resource planning for complex vehicle systems ([48, 60, 107, 208]). On the other hand, one
emerging application for UAV PHM electrically powered is the prognosis of battery performance and pre-
diction of �ight endurance.

PHM of UAV power source

The application of PHM techniques to monitor the health and to evaluate the performances of power
source in UAVs has enabled a better use of energy on-board. Usually Lithium batteries have been used for
UAV electrically powered because they are able to provide high power and energy densities. The prediction
of battery performance has been addressed considering model-based and data driven techniques. However,
some e�orts have been dedicated to evaluate the battery health without considering the �nal application
as:

• Model-based:

� Particle �lter [3, 104, 110, 154, 177, 194, 195, 200]

� Empirical aging model [12, 38, 71, 98, 99, 101]

� Kalman �lter [10, 70, 197]

� Bayes model [30, 111, 121, 205]

� Observers [61]

• Data-driven
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� Neural networks [39, 103, 160, 203]

� Gaussian Process [100, 198]

� Wiener process [179]

� Support vector regression [102, 188, 191]

� Deep learning [82].

On the other hand, other works have made e�orts to integrate PHM strategies into the UAV operations
focused in the prediction of battery End of Discharge and �ight endurance.

Flight endurance prediction

Nowadays, the use of Lithium Polymer (Li-Po) battery as powertrain for UAV multirotor with capabilities
of vertical take-o� and landing (VTOL) has become in a power source capable and economical, due to its
high energy and power densities, discharge rate (C-rate), and zero emission of pollutants ([46]). By con-
sidering a new and fully charged battery, the �ight endurance is between 10 to 30 minutes ([26, 114, 148]),
where 85% of the energy is consumed by the propulsion system. The remaining consumption is caused by
the sensors, (such as GPS, accelerometers, compass, gyroscope ([6])), the �ight control computer, and for
some payload (gimbals system, cameras, and other kind of sensors).

However, the �ight endurance is gradually reduced over timer due to aging of the battery. The e�ect
of aging is characterized by a capacity loss and immediately power fade. The aging is caused by several
factors such as high-rate cycling, overdischarge and overcharge, and drastically changes of operation tem-
perature ([193]). To avoid damages and reduce the aging rate during the charge/discharge cycles of the
battery, it is necessary to monitor the State of Charge (SoC) and to establish safety limits around the
End of Discharge (EoD) (also called cut-o� voltage). At a given time, the SoC is the proportion of the
available charge, compared to the total charge available when the battery is fully charged, it is analog
to a car gas fuel gauge. On the other hand, the EoD indicates that the battery is fully discharged. In
the literature of Electrical Cars, such concepts are the main criterion in the design of Battery Manage
Systems (BMS) ([155]), where the main objective is to de�ne adequate operation regimes to extend the
life of the battery and maximize the energy supplied. In the case of UAVs, the monitoring of SoC battery
during the development of a mission will allow to establish a voltage safety limit before reaching the EoD
to ensure the ful�llment of the mission, safeguard the integrity of the battery, and have an adequate use
of the energy supplied to maximize the �ight endurance.

Several researches have addressed the problem of �ight endurance for di�erent types of UAV considering
mainly three types of powertrain such as batteries, fuel cells, and solar cells ([109, 155, 178, 181]). The
main objectives of such researches were the development of methodologies and strategies to improve and
extend the �ight endurance taking into account the geometry of the UAV, disturbance as the wind, the
type of trajectory, the maximum altitude and the power requirement to perform a mission. In the speci�c
case of UAV multirotor powered by Li-Po batteries, the e�orts have been focused to generate strategies
to ensure the ful�llment of a mission and increase �ight time, e.g. ([42]) are presented an integrated
planning and control approach to increase the probability of completion of �y-by missions by battery-
powered UAV quadrotor. The authors in ([1]) proposed a technique to extend the endurance of battery-
powered rotorcraft by sub-diving the monolithic battery into multiple smaller capacity batteries which are
sequentially discharged and released. Also, in ([2]) the authors characterized the power consumption of
multirotor and derived an endurance estimation model. ([114]) are presented two optimal control problems
with respect to the angular accelerations of four electrical motors of an UAV quadrotor to improve its
�ight endurance. More recently ([44]) are presented experimental results of an analysis of the energy
consumption and derivation and validation of empirical formulas to estimate the power consumption and
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the remaining �ight time. The works mentioned above were mainly engaged in developing strategies to
improve the consumption of the energy supply, which allows the battery to extend the power consumption
for UAV applications, to extend the �ight endurance and to ensure the ful�llment of a mission.

2.2 Mission planning

The mission planning concept comprise all those items related to operation modes during a �ight and how
they enable to increase the �ight e�cient and to reduce the risk to humans ([168]). Such operation modes
demand more versatility in the face of changing objectives and environment speci�cations, adaptability to
uncertain events in the immediate and broader environments and good performances and robustness in
changing operating conditions. In that sense, the main requirement is to have an autonomous vehicle able
to execute a task selection and a decision making to perform a motion for a given objective and execute
them. During the task selection, the UAV must make plans taking into account the available information
about the course of the mission and consequently take decisions. Decision making determines the main
most important requirements as the choice of the way-points and evaluates possible environment uncer-
tainties. In sequential, decision making, the UAV seeks to choose the best actions based on its observations
of the world. On the other hand, path planning deals with the trajectory algorithmic development based
on the available information of the mission. Depending on mission requirements, it can contain slow or
fast speed parts, short or long distance between way-points, and in special cases, the UAV should stay in
a particular position for certain period of time.

Based on the previous de�nitions an autonomous UAV must be capable to performance mission without
human intervention considering:

• Perceive its environment, consequently update its activity and response to changes in its own state,

• Control the actuators and keep as close as possible to the planned trajectory despite un-modeled
dynamics, parametric uncertainties and sensor noise,

• Regulate its motion with respect to the local environment,

• Be able to avoid obstacles and other UAV and assess the information from the multi-sensor environ-
ment,

• Follow mission plans, account for changing weather and changes in its operating environments,

• Be able to assess its current condition and determine if that condition meets the requirements of the
mission on course.

The implementation of previous requirements is made by considering a hierarchical structure of the UAV
system, which also permits to reduce the complexity of large scale systems depending on if it is a single
or multi-vehicle system:

• Single-vehicle (Figure 2.6). The lowest level is the reference trajectory tracking. The computer con-
trol (also called autopilot) uses as references the trajectory and path generated by the second level
(from the bottom), while satisfying vehicle constraints and clearance. Such paths and trajectories
have been calculated using the set of way-points or �ight plan that has been determined depending
on the assigned mission. The highest level is the mission planning, it determines the mission targets
areas, probable obstacles and restricted areas of �ight. This level uses decision making either deter-
ministic or under uncertainty.
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• Multi-vehicle (Figure 2.7), trajectory generation and tracking are still considered in the lowest level.
While the highest level is still the mission planning, the fourth level (from bottom) is the multi-
objective decision making level. The team must be able to plan its mission, to choose what goal
it will address among those proposed, in what order and how it will perform its operations. The
cooperation of the vehicle teams is on the third level while resource allocation and way-point selection
have to be executed on the second level. The vehicles must be able to generate a new plan in response
to events occurring during the mission that could invalidate the mission in progress.

Figure 2.6: Single-vehicle mission planning hierarchy [168].

Figure 2.7: Multi-vehicles mission planning hierarchy [168].

Multiple objectives can be de�ned and reached considering single or multi vehicle hierarchy. They depend
on the application and the mission complexity. This thesis focuses in mission planning for a single-vehicle
taking into account the hierarchy structure in Figure 2.6 and its impact in UAV.

Di�erent works have considered a hierarchy control structure for a single-UAV vehicle taking into from the
possible structural design to the necessary software to carry out di�erent types of missions autonomously.
In ([182]) the authors presented an integrated/hierarchical approach to vehicle instrumentation, comput-
ing, modeling and control to enable an autonomy degree able to allow that the vehicle operate safely in
unstructured environments within their �ight envelope, to accommodate subsystems/component failure
modes without major performance degradation or loss of vehicles and perform extreme maneuvers without
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violating stability limits. Such hierarchical control structure for mission intelligent �ow is presented in
Figure 2.8 where the main routine to execute consist to determine if the mission can be ful�llment or
not according to UAV state. Likewise the authors presented in Figure 2.9 the expected UAV autonomy
capabilities according to the U.S. DoD's UAV autonomy roadmap ([147]).

Figure 2.8: Mission intelligent �ow [182].

Figure 2.9: Autonomous control level trend [182].

In ([183]), the authors presented techniques to improve mission level functional reliability through bet-
ter system self-awareness and adaptive mission planning in the context of multiple vehicle operations
and autonomous multi-agent teams. The mission planning technique is based on the health management
information (Figure 2.10). Each mission system component is used to improve the mission system's self-
awareness and adapt vehicle, guidance, task and mission plans.

The schemes in Figures 2.9 and 2.10 consider the main components and routines necessaries to execute the
corresponding task evolving the mission planning concept. Other works like ([50, 149, 176]) have added
elements related to contingency management during the fault occurrence by penalty the health conditions
of the system components. In addition, other problem addressed in the context of mission planning is
the obstacle avoidance [14, 184] which requires to have an adequate understanding and knowledge of
environment and equip the UAV with di�erent sensor able to collect data for decision making. As it
can be noted in the previous works, the mission planning encompass di�erent routines and techniques to
increase the autonomous capabilities to guarantee the surveillance of the UAV and reduce human risk.
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Figure 2.10: Health management-based hierarchical architecture model for multi-vehicle mission system
[183].

2.3 Path planning

The multirotors are usually controlled remotely while some of them can �y autonomously based on pre-
programmed �ight paths. Missions currently undertaken by the UAV systems are prede�ned. In that
sense, the UAV follows a �ight plan initially developed as a commercial aircraft with a Flight Management

System. The �ight plan is a sequence of reference points or way points usually de�ned by latitude and
longitude which describes the UAV position around 3D plane. The number of way-points and their loca-
tion depends on the application and mission type. The way points are assumed to be joined by straight
line segments, originating just after take-o� phase and terminating at the landing phase.

According to [106], the main issues that a path planning algorithm for UAV multirotors must consider
are: the autonomous navigation in three dimensions (3D) inside a cluttered or uncluttered environment,
the obstacle avoidance, and the dynamical constraints of the UAV. In order to solve such issues, di�erent
path planning algorithms have been developed. In [17], a path planning algorithm for autonomous robotic
exploration and inspection based on an on-line planning method in a receding horizon fashion by sampling
possible future con�guration in geometric random tree was introduced. The authors in [122] presented a
method to path de�nition based on a Cascaded control architecture and using a nonlinear control tech-
nique for both control loops (position and attitude) taking into account obstacles perceived in real-time
and avoids collisions. In [144], the authors focused on the analysis of di�erent algorithms dedicated to
path planning considering the �ight time and the distance traveled from one point to another one and
evaluating the autonomously avoiding obstacles. In [145], an algorithm for trajectory generation based on
the di�erentially �at quadrotor model through complex real-world environments with an optimizing poly-
nomial path segments was presented. As it can be noticed, in these works the path planning is developed
with the consideration of the trajectory characteristics and the UAV dynamics constraints. However, they
do not take into account the dependency between the energy consumed during the �ight and the battery
performance. In this work we are focused on path planning algorithms dedicated to minimize the energy
consumption.

One way to consider the dependency between energy consumed during the �ight and the battery perfor-
mances is to determine the maximum �ight endurance. According to [33], the �ight endurance is mainly
determinate by two power-related factors: the required power to sustain the desired �ight pro�le and the
battery discharge performances. The power required is associated to the total energy necessary to take-
o�, move between way-points and landing, i.e. the elements which de�ne the trajectory, and the battery
discharge performances which depend on the actual condition of the battery or State of Health (SoH) and
determine the battery aging rate. The battery aging is mainly caused by two factors: the storage and the
use (cyclic charge/discharge) ([22]). However, other factors contribute to increase the battery aging such
as deep discharges, inadequate charging methods, and operating temperature variations. In that sense, it
is necessary to quantify the battery aging by de�ning the SoH between �ights in order to use this informa-
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tion in a complete path planning strategy to guarantee the ful�llment of the mission and the UAV integrity.

Di�erent solutions have been presented to overcome the problems associated with the path planning based
on energy supplied. Such solutions have focused into generate strategies to optimize the energy con-
sumption, and improve the e�ciency of the �ight performances considering two approaches: mechanics
and analytics. The mechanics approaches are associated to geometric characteristics of the UAV, e.g.
in ([139]) an experimental platform based on quadrotor was designed to maximize the thrust using an
aero-elastic blade design was presented. In ([49]), the authors introduce a four-rotor con�guration that
merges the simplicity of a quadrotor with the energy e�ciency of a helicopter, while improving maneuver-
ing rotor bandwidth. The authors in ([185]) conceived a compound multirotor con�guration speci�cally
for �ight through narrow corridors, and the design combines the contradictory requirements of limited
width, high agility and long endurance while carrying a signi�cant payload. On the other hand, the an-
alytics approaches are dedicated to generate optimal path planning or �ight pro�les, e.g. in ([114]), a
path planning method based on two optimal control with respect to the angular accelerations of the motor
for a quadrotor is presented, and the solution was yielded in to �nd minimum energy and �xed-energy
paths. In ([44]) was presented the results of an analysis of the energy consumption in various discrete
movement states of a multirotor. A systematic relationship between the system and movement parameters
and the energy consumption was established, and �nally a generic energy consumption pro�le model was
generated and validated. The authors in ([86]) investigated three prominent types of smooth trajecto-
ries (minimum acceleration, minimum jerk and minimum snap), and evaluate their energetic e�ciency
through the total energy consumption. The energy consumed by each trajectory type was determined
via aerodynamics-based expressions for power consumption of rotorcraft. In ([25]), a �atness-based �ight
trajectory planning/re-planing strategy considering the occurrence of faults in actuators is presented, and
the trajectory planning/re-planning problem is formulated as a constrained optimization problem. As it
can be seen, di�erent analytically solutions have been proposed to address the path planning problem
along the energy consumption. However, these works do not take into account the in�uence of the battery
performance and the variations of SoH in the path planning problem.

2.4 Conclusions

In this Chapter, the main elements forming the core of State of Art of this work as Prognosis, mission and
path planning were presented as well as the more recently works. In addition, the introduction of energy
dependency into mission and path planning problem are one of main interest to generate more safety
and reliable autonomous vehicles as well as the increase of the �ight capabilities. While some works have
focused on addressing the problem from the point of view of the multirotor and its energy requirements due
to the aerodynamics of the vehicle at the simulation level, others have presented results using a practical
approach by conducting experimental tests and trying to characterize the main energy phenomena in the
vehicle during �ight. However, such studies show the e�ect of energy consumption at the beginning of
the battery life without taking into account the phenomena of aging or the e�ect of discharge. In that
sense, in this research it is proposed to integrate all the elements related to the mission and path planning
together with the e�ects of aging that a�ect the performances of the battery. This will provide a uni�ed
framework for mission planning taking into account energy dependence. In the following chapters, the
main elements integrating the methodology proposed will be developed. The next chapter is dedicated to
the presentation of multirotor mathematical model and it propulsion system as well as the development
of a control strategy taking into account the dynamics of battery discharge.



Chapter 3

Mathematical model of UAV hexarotor

In this Chapter, the nonlinear dynamics around the position and orientation of the multirotor UAV is
described as well as the elements which integrating the propulsion system that are the Lithium Polymer (Li-
Po) Battery and BrushLess DC Motors (BLDCMs). Firstly, the most common multirotor �ight and design
con�guration will be presented in Section 3.1 following by the nonlinear mathematical model describing
the dynamics around the multirotor, described in Section 3.2. Then the nonlinear mathematical model
of the propulsion system is described in Section 3.3. Finally, a cascade control loop derived from linear
hexarotor dynamics and based on PID (Proportional Integrative-Derivative) controllers both position and
orientation is introduced in Section 3.4. In addition, the coupling between the Li-Po battery and BLDCMs
is analyzed in this section as well as the e�ect of discharge rate into the controller performance.

3.1 Multirotor con�gurations

A multirotor is a particular helicopter lifted and propelled by two or more BLDCMs with vertical take
o� and landing capabilities ([58]). Usually, the multirotors are classi�ed as rotorcraft, as opposed to
�xed-wing aircraft, because their lift is generated by a set of revolving narrow-chord airfoils. Unlike most
helicopters, multirotors generally have symmetrically pitched blades. Control of vehicle motion (position
and orientation) is achieved by modifying the rotation rate and/or the axis of rotation direction of one
or more BLDCMs, thereby changing its torque load and thrust/lift characteristics. According to number
of BLDCMs it is possible to get di�erent design con�gurations and �ight modes, e.g. in Figure 3.1 two
Trirotors �ight con�guration are shown where (a) all rotors are co-rotating or (b) one of the rotors (green
one) counter-rotates.

Figure 3.1: Trirotor �ight con�gurations ([58]).

Usually, multirotors with more than three rotors as quadrotor (Figure 3.2), hexarotor (Figure 3.3) and
octorotors (Figure 3.4) can be controlled to �y either in + �ight con�guration, i.e. pointing an arm in the

21



22 CHAPTER 3. MATHEMATICAL MODEL OF UAV HEXAROTOR

navigation zone (according to x-y-z directions), or in X �ight con�guration where the navigation direction
is in the middle plane between two arms. In addition, other less common design con�gurations are more
suitable for heavier payload and major safety demanding �ight mission such as V design in which the eight
rotors are equally split on two divergent bars as it can be seen in Figure 3.4-(b). On the other hand, the
Y and X design con�gurations where the multirotor is lifted by a con�guration of coaxially coupled rotors
can be generated for both hexarotor and octorotor vehicles as it can be seen in Figures 3.3-(b) and 3.4-(c)
respectively.

Figure 3.2: Quadrotor + and X �ight con�gurations ([58]) .

(a) (b)

Figure 3.3: (a) Hexarotor + and X �ight con�guration. (b) Hexarotor coaxial-rotor design con�guration
([58]).

In this work, the considered multirotor con�guration is the hexarotor X due to redundancy of BLDCM
contained to generate the enough thrust force to lift the vehicle during the �ight. However the results
obtained in the development of mission planning and re-planning as well as the generation of minimum
energy paths can be easily extended to the others con�guration. In the next sections, the nonlinear model
around hexarotor dynamics as well as the elements integrating the propulsion system will be developed.

3.2 Hexarotor dynamics

The considered multirotor is composed by six BrushLess DC Motors (BLDCMs) attached to a rigid and
symmetrical six-arm frame as it can be seen in Figure 3.5. In turn, each BLDCM has a rigid propeller
connected to its rotor and generates a positive thrust fi and torques τi, i = 1, · · · , 6, proportionally to
the square angular speed of the propeller. The sum of the individuals forces produces the total thrust
Tthr to lift, and the di�erence generates the torques acting on the hexarotor. Moreover, the BLDCMs 1,
3, and 5 rotate in clockwise whiles BLDCMs 2, 4, and 6 rotate in counterclockwise given the so-called X
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(a) (b)

(c)

Figure 3.4: (a) Octorotor + and X �ight con�guration. (b) Octorotor V design con�guration. (c)
Octorotor X �ight and coaxial-rotor design con�guration ([58]).

Figure 3.5: Reference frames of the UAV hexarotor.
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con�guration. Such con�guration allows to cancel gyroscopic e�ects and aerodynamic torques. In addi-
tion, it is important to remark that the hexarotor is considered an over-actuated system, i.e. the amount
of actuators is greater than control inputs.

The movement of the hexarotor is performed around two reference frames: the �xed inertial frame, denoted
by Ee (hexarotor position), and the non-inertial frame or rigid body frame, denoted by Eb (hexarotor
orientation), and assuming that the non-inertial frame coincides with the center of gravity of the hexarotor.
By adopting the Euler angles parametrization, the orientation of the hexarotor in the space is given by
the rotation from Eb to Ee by the rotation matrix R(φ, θ, ψ) ∈ S0(3) de�ned as:

R =

 cψcθ cψsθsφ− sψcφ cψsθcφ+ sψsφ
sψcθ sψsθsφ+ cψcφ sψsθcφ− cψcφ
−sθ cθcφ cθcφ

 , (3.1)

where c and s are the trigonometric functions cos and sin respectively. By considering the Newton-Euler
formalism, the dynamic of the hexarotor considered as a rigid body under external forces applied to the
center of mass expressed on the non-inertial frame is expressed as ([24, 128]):

ξ̇ = v

mv̇ = f

Ṙ = R ˆ̄ω

I ˆ̄ω = −ω̄ × Iω̄ + τ,

(3.2)

where ξ = [x y z]T ∈ R3 is the position of the hexarotor with respect to the inertial frame Ee relative to
a �xed origin, v ∈ Ee is the linear velocity expressed in the inertial frame, ω̄ ∈ Eb is the angular velocity
of the hexarotor expressed in the body frame Eb, m is the total mass, I ∈ R3×3 denotes the constant
inertia matrix around the center of mass, ˆ̄ω is the skew-symmetric matrix of the vector ω̄. f ∈ Ee is the
vector of the principal non-conservative forces and includes the thrust Tthr and drag terms associated with
the BLDCMs. τ ∈ Eb is derived from di�erential thrust associated with pairs of BLDCMs along with
aerodynamics e�ects and gyroscopic e�ects.

Translational and gravitational forces. The forces acting on the hexarotor are given by the trans-
lational force Tthr and the gravitational force g. The translational force is de�ned as:

Tthr =

6∑
i=1

fi, (3.3)

where the thrust fi produced by the ith-BLDCM in free air is modeled as fi = bω2
i in the z-direction,

where b > 0 is a constant associated to propeller geometry and ωi is the angular speed of the ith-BLDCM.
In that sense, (3.3) is rewritten as :

Tthr = b

(
6∑
i=1

ω2
i

)
, (3.4)

and the gravitational force applied to the hexarotor is:

fg = −mgE(3), (3.5)
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where E(3) = [0 0 1]T is an unitary vector in Ee. Finally, the force applied to hexarotor is de�ned as:

F = RE(3)Tthr + fg, (3.6)

where RE(3) = RE(3), with R as the rotation matrix (3.1).

Torques. The torque generated by each BLDCM is denoted by τBLDCMi, moreover the torque of the
BLDCM is opposed by an aerodynamic drag τd = dω2

i , where d > 0 is a constant associated for the
quasi-stationary maneuvers (near hover) in free �ight. In a steady stable condition, i.e. ω̇i = 0 it it is
assumed that τBLDCMi = τd and the generalized torques considering the hexarotor geometry are de�ned
as:

τ (Eb) =

 bl
2

(
−ω2

1 − 2ω2
2 − ω2

3 + ω2
4 + 2ω2

5 + ω2
6

)
bl
√
3

2

(
−ω2

1 + ω2
3 + ω2

4 − ω2
6

)
d
(
−ω2

1 + ω2
2 − ω2

3 + ω2
4 − ω2

5 + ω2
6

)
 , (3.7)

where τ (Eb) = [τφ τθ τψ]T are the generalized torques around roll, pitch and yaw movements, l is the
distance from each BLDCM to the center of mass of the hexarotor, and c =

√
3 is a constant associated

with hexarotor geometry. It is also assumed that each rotor can be considered as a rigid disc rotating
around the z-axis in the body frame with angular speed ωi, and furthermore the rotary shaft of the rotor
is considered itself moving with the angular speed of the frame, which leads to gyroscopic torques (also
called gyroscopic e�ect [20]) applied to the hexarotor:

τGb
= − (ω̄ × E(3))

6∑
i=1

Jmωi, (3.8)

where Jm is the inertial of the rotor. Finally the di�erential thrust associated with the torques is expressed
as:

τ = τ (Eb) + τGb
. (3.9)

By considering equations (3.6) and (3.9), system (3.2) is rewriting as

ξ̇ = v

mv̇ = RE(3)Tthr −mgE(3)

Ṙ = R ˆ̄ω

I ˆ̄ω = −ω̄ × Iω̄ + τ (Eb) + τGb
.

(3.10)

In order to express the �nal representation of the model describing the dynamics of hexarotor movement in
the inertial and rigid body reference frames, the system (3.2) is separated into position dynamics (denoted
as ξ) and orientation dynamics (denoted as η). In that sense, the system (3.2) with respect to ξ is de�ned
as

ξ̈ =
1

m
(RE(3)Tthr −mgE(3)) (3.11)

where
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RE(3) =

 sφsψ+cφcψsθ
cφsψsθ − cψsφ

cθcφ

 (3.12)

and de�ning U1 = Tthr the following equation system describing the hexarotor position around x− y − z
axis is obtained:

ẍ = (cφsθcψ + sφsψ)
U1

m

ÿ = (cφsθsψ − sφcψ)
U1

m

z̈ = −g + (cφcθ)
U1

m
.

(3.13)

Likewise, the system equation describing the hexarotor orientation around Euler angles is obtained by
considering that the angular velocity of the hexarotor expressed in the body frame describes the orientation
dynamics, i.e. ω̄ ≈ η̇ and the torques around body frame are represented as τφ = U2, τθ = U3, and τψ = U4

as follows

φ̈ =
Iy − Iz
Ix

θ̇ψ̇ +
Jm
Ix
ωGθ̇ +

U2

Ix

θ̈ =
Iz − Ix
Iy

φ̇ψ̇ − Jm
Iy
ωGφ̇+

U3

Iy

ψ̈ =
Ix − Iy
Iz

θ̇φ̇+
U4

Iz
,

(3.14)

where Ix, Iy and Iz are the body inertial constants, respectively and ωG is the gyroscopic e�ect. According
to equations (3.6) and (3.9), the inputs of the system are de�ned as:

U1 = b
(
ω2
1 + ω2

2 + ω2
3 + ω2

4 + ω2
5 + ω2

6

)
U2 =

bl

2

(
−ω2

1 − 2ω2
2 − ω2

3 + ω2
4 + 2ω2

5 + ω2
6

)
U3 =

bl
√

3

2

(
−ω2

1 + ω2
3 + ω2

4 − ω2
6

)
U4 = d

(
−ω2

1 + ω2
2 − ω2

3 + ω2
4 − ω2

5 + ω2
6

)
ωG = −ω1 + ω2 − ω3 + ω4 − ω5 + ω2

6

(3.15)

Finally, by grouping of (3.13) and (3.14) the following nonlinear set equations is established:

ẍ = (cφsθcψ + sφsψ)
U1

m

ÿ = (cφsθsψ − sφcψ)
U1

m

z̈ = −g + (cφcθ)
U1

m

φ̈ =
Iy − Iz
Ix

θ̇ψ̇ +
Jm
Ix
ωT θ̇ +

U2

Ix

θ̈ =
Iz − Ix
Iy

φ̇ψ̇ − Jm
Iy
ωT φ̇+

U3

Iy

ψ̈ =
Ix − Iy
Iz

θ̇φ̇+
U4

Iz
,

(3.16)
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In addition, the nonlinear system (3.16) can be written in a state space form Ẋ = f (X,U) as

Ẋ = f (X, U) =



x2
(cx7sx9cx11 + sx7sx11)

U1
m

x4
(cx7sx9sx11 − sx7cx11) U1

m
x6

−g + (cx7cx9)
U1
m

x8
Iy−Iz
Ix

ẋ10ẋ12 + Jm
Ix
ωGẋ10 + U2

Ix
x10

Iz−Ix
Iy

ẋ8ẋ12 − Jm
Iy
ωGẋ8 + U3

Iy

x12
Ix−Iy
Iz

ẋ8ẋ10 + U4
Iz



, (3.17)

where X =
[
x ẋ y ẏ z ż φ φ̇ θ θ̇ ψ ψ̇

]T
= [x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12]

T is the state vector, and

U = [U1 U2 U3 U4]
T is the input vector.

Linear representation. According to [25], even though the hexarotor model (3.16) with the inputs
(3.15) is a simple and deterministic representation of the real system behavior, it remains a relatively
complex model to deal with. Nevertheless, several simpli�ed models can be derived to design a controller
able to stabilize the orientation dynamics and control the position dynamics by tracking a reference
position around x-y-z axis. In that sense, a linear model will be derived from nonlinear dynamics in
order to generate the cascade control loop for both position and orientation hexarotor. The following
assumptions are considered over nonlinear hexarotor model (3.16) ([58]):

• The variation around roll (φ ) and pitch (θ) angles are considered very small and yaw (ψ) angle is
keeping constant i.e. φ = 0.

• The drag coe�cient d is negligible by establishing low rotational speed.

• The dynamics around x-y is decoupled from z dynamics by considering hovering conditions i.e.
U1 = g.

Remark. The assumptions considered in the linear representation of nonlinear hexarotor dynamics al-
lows to derived a model able to characterize the movement around internal and non inertial frame consid-
ering no-aggressive movements or big changes in hexarotor orientation. i.e. the Euler angles are limited
to ±π

2 for roll and pitch angles and ±π. In addition, the linear model will be used to derive the control
loop associated to hexarotor position and orientation using the classic control technique as the PID con-
troller. The development of a PID controller requires a tunning process to adjust the controller gains. In
that sense, a linear model is usually useful to carry out the tunning process according to control objectives.

Then, by taking into account the previous considerations the following linear model describing the position
and orientation dynamics in hovering condition is obtained:

ẍ = gθ φ̈ = U2
Ix

ÿ = −gφ θ̈ = U3
Iy

z̈ = −g + U1
m ψ̈ = U4

Iz
,

(3.18)
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As it can be noted, the relationship between the position around x-y and orientation around φ− θ Euler
angles is established in this linear representation. This characteristic will be used in the design of cascade
control loop developed in Section 3.4. In addition, the equation system (3.18) can be rewrite in state space

for ˙̄X = AX̄ +BU as

˙̄X = AX̄ +BU =



x2
gx9
x4
−gx7
x6

−g + U1
m

x8
U2
Ix
x10
U3
Iy

x12
U4
Iz



, (3.19)

where X̄ =
[
x ẋ y ẏ z ż φ φ̇ θ θ̇ ψ ψ̇

]T
= [x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12]

T is the state vector, and

U = [U1 U2 U3 U4]
T is the input vector.

Remark. As it can be note from (3.18) the linear model leads to the development of a linear controller
around hovering conditions. Usually, the procedure to follow for controller development is to design it
using the line model and then validate its performance with the non-linear model. This methodology
although it allows to generate a controller using linear control techniques could result in the generation of
modeling uncertainties because the controller does not take into account the non-linearity present in the
model. In Section (3.4) the design of control loop associated to position and orientation controller will be
described taking into account the linear model representation of hexarotor dynamics.
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3.3 Propulsion system

The propulsion system of any UAV multirotor with vertical take o� and landing capabilities is composed
by a set of BrushLess DC Motors (BLDCM) with a propeller attached to its shaft. The BLDCMs are
powered by a Lithium Polymer battery through an Electronic Speed Control (ESC) as it can be seen in
Figure 3.6.

Figure 3.6: Propulsion system of multirotor.

In Figure 3.7 the connection Li-Po battery - ESC - BLDCM is detailed for one motor. The ESC adjusts
the angular speed of the BLDCM through a Pulse-With Modulation (PWM) signal. In this study the
dynamic around the ESC is neglected and it is assumed that the voltage supply by the battery and the
generated current by the motors are averaged with respect to the duty cycle value produced by the control
signal.

Figure 3.7: Connexion of Li-Po battery - ESC - BLDCM.

3.3.1 Lithium Polymer battery dynamics

Lithium Polymer (Li-Po) batteries are devices converting the energy released by spontaneous chemical
reaction to electricity work. Due to their rechargeable capability they belong to the Secondary Lithium
batteries family and possess properties such as high discharge rate (C-rate), high energy and power den-
sities. The Lithium Polymer (Li-Po) battery is made of several individual cells connected to each other
in series (to have a high voltage value) or parallel (to have a high capacity in Ah) ([80]). In Figure 3.8 a
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typical Li-Po battery used in aeromodelling applications ([35]) with four cells in series, a capacity of 6300
mAh, C-rate of 35C and operational voltage of 2.7 V to 4.2 V per cell.

Figure 3.8: Typically Li-Po battery used in multirotor UAV applications.

Electrical dynamics

The battery model describes the mathematical relationship and evolution of voltage and State of Charge
(SoC), which is the proportion of the charge available at a given time compared to the total charge available
when the battery is fully charged. The range of the SoC is SoC ∈

[
0 1

]
, where 1 corresponds to 100

% of the charge, i.e. the battery is fully charged, and 0 indicates that the battery is fully discharge, i.e.
the End of Discharge (EoD) or cut-o� voltage value has been reached. In lithium battery literature, there
are di�erent methods or techniques to determines the battery SoC. The so-called Ampere Hour Counting

or Coulomb Counting ([61, 120]), which just takes into account the evolution of demanded current and its
relationship with the nominal battery capacity:

SoC = SoCt0 −
1

3600 · CT

t∫
to

Ibattdt, (3.20)

where to represents the initial time, CT is the total capacity of the battery expressed in (Ah). Other
methods are based on the development of a state estimator like Luenberger observers ([16, 75]), Kalman
Filters ([69, 136]) and sliding mode observers ([29, 83]). In Chapter 4, the development of SoC estimation
will be developed as well as the proposed method.

Figure 3.9: Electrical equivalent circuit of Li-Po battery.
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The mathematical model of the Li-Po battery is based on an Equivalent Circuit Representation (ECR)
according to Figure 3.9 ([28]). In Figure 3.9, (on the left-side of the circuit), the voltage VSoC(t) models
the state of charge SoC(t) of the battery from the capacity CT . The voltage VOCV (VSoC) is the Open
Circuit Voltage (OCV), i.e. it is the e�ective voltage in the battery terminals, and it is modeled as a
function of the state of charge of the battery. The voltage VRint(t) characterizes the ohmic over-potential
due to the internal resistance of the battery Rint. Vd(t) represents the transitory response of the voltage
when a current is demanding to the battery. It is characterized by a �rst order response and its time
constant depends on the value of parameters Rd and Cd. The mathematical model of the battery is given
by:

V̇SoC = − Ibatt
3600 · CT

V̇d = − Vd
Rd · Cd

+
Ibatt
Cd

VBatt = VOCV (VSoC)− Vd −Rint Ibatt,

(3.21)

where, the VOCV (VSoC) is experimentally de�ned as:

VOCV (VSoC) =

n∑
i=0

λiV
i
SoC + ln(VSoC)VSoC . (3.22)

n determines the order of the polynomial, and λi are the polynomial coe�cients. It can be noted that
the nonlinear function (3.22) is not unique and its formulation is obtained through experimental tests. In
Appendix A, the characterization of Li-Po battery through experimental data is developed.

Thermal dynamics

The temperature of the battery is modeled by the Newton's law of cooling ([19]), and it is assumed that
the heat is generated and distributed uniformly in the battery:

Qb = Rint · I2batt,

Ṫbatt =
hA

c
(Tair − Tbatt) +

Qb
c
,

(3.23)

where Tbatt is the battery temperature, h is the heat transfer coe�cient, A is the surface area of the
battery, c is the heat capacity of the battery, Tair is the temperature of the cooling air, and Qbatt is the
heat generated in the battery.

3.3.2 BrushLess DC Motor dynamics

The BrushLess DC motor is a type of permanent magnet synchronous motor. It is drive by a DC voltage
source and a current commutation achieved by solid-state switches. The main advantages that render this
type of motor suitable for aerial robotic applications are a long operating life, high dynamic response,
better speed and torque characteristics and higher torque-weight ratio ([52]). The mathematical model
that describes the dynamics of the angular speed is divided into the electrical and the mechanical sub-
models described by the following equations ([117]):

v̄batti = Rībatti +KEωi,

ω̇i =
1

Jm
(KE ībatti − dω

2 −Dfωi − Tfric),
(3.24)
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where R = 2
3(
∑3

j=1Rj) is the equivalent electric resistance of each coil, KE is the back electromotive force,
ωi(t) is the angular velocity of the ith BLDCM, Tfric is the friction torque, Df is the viscous damping
coe�cient, d is the drag constant, associated to the geometry of the propeller, and Jm is the inertia of the
BLDCM. The average voltage v̄batti (t) and current ībatti (t) are the voltage and current generated by the
ESC and they are computed as follows:

v̄batti = Vbatt ·Dci
IBLDCM i = ībatti ·Dci,

(3.25)

where Vbatt is the battery voltage, IBLDCM i is the current generated by the ith BLDCM and Ibatt =∑6
i=1 IBLDCM i . Dci is the duty cycle of Pulse-Width Modulation (PWM) signal, which corresponds to

control signal of the BLDCM speed. Dci ∈ [0 1] is de�ned as function of the reference angular speed of
the ith-BLDCM and it is determined through experimental correlations, such as:

Dci = f(ω2
ref i

). (3.26)

where ωref i is the reference angular speed of the ith BLDCM.

In Figure 3.10 the interaction between the propulsion system and hexarotor dynamics is presented. As
it can be noted, the dynamic of battery discharge a�ects directly the angular speed generated by each
BLDCM according to mathematical relationship between duty cycle (3.26) and battery voltage (3.25).
In addition the control loop must adjust the duty cycle in order to generate the angular speed of each
BLDCM to keep the lift of hexarotor. In the following section, such considerations will be explained in
the design of control loop for both hexarotor position and orientation.

Figure 3.10: Interaction between propulsion system and hexarotor dynamics.
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3.4 Position and orientation controller design

In order to keep the orientation of the vehicle stable during the �ight and at the same time to follow a
reference trajectory around x-y-z axis describing the �xed inertial frame, several control strategies have
been developed using di�erent methods and techniques which are based on the mathematical model of
the vehicle. Generally such control techniques can be classi�ed in two types: linear ([93, 112, 174]) and
nonlinear ([67, 95, 96, 129]) controllers.

According to [174], multirotors are multivariable highly coupled nonlinear systems. The use of linear con-
trol for this system consists of an algebraic manipulation for state variables of linear model under certain
environmental conditions. For trajectory tracking, the linear control can be applied only if the trajectory
and the �ying conditions for the quadrotor are not complex and di�cult. In such cases, the coupled nature
of the system requires high variations in the angular velocities and fast variations in the altitude, which
cannot be realized by such controllers. For such linear controller techniques, the most common are the
Proportional Integral Derivative (PID) controller ([5, 11, 91, 118, 142]), the Linear Quadratic Regulator
(LQR) ([8, 66, 79, 87, 88, 171]) and H-In�nity controller ([7, 126, 143]).

On the other hand, the nonlinear controller are based on nonlinear mathematical representation of mul-
tirotor vehicle. They are able to manage the stabilization problem taking into account the nonlinear
coupling of orientation dynamics around Euler angles, and the trajectory tracking considering complex
�ying conditions as well as obstacle avoidance. Among nonlinear controller techniques applied to multi-
rotor the following are the most common: Sliding Mode Control, Backstepping Control ([32, 92, 146]),
Feedback Linearization ([18, 92, 186]), Neural Network and Fuzzy Logic ([81, 157, 189]), Model Based
Predictive Control (MBPC) ([85, 135, 140]), Adaptive Control ([76, 115, 123]) and Robust Control Algo-
rithms ([4, 15, 90]).

In the next section, the development of a Cascade Control Loop (CCL) for both stabilization of hexaro-
tor orientation and tracking of a reference position based on a classical PID controller strategy will be
explained. In addition, the e�ect of the battery discharge will be analyzed considering the impact on the
control signals and the angular speed of BLDCM by adding the dynamics of propulsion system.

3.4.1 Cascade Control Loop (CCL) development

Since the objective of this work is not to develop an advanced control law, the trajectory tracking controller
is based on a position and orientation classical Cascade Control Loop (CCL) as it can be seen in Figure
3.11. The implementation of this control loop is developed by split the hexarotor dynamics described by
(3.17) into translational and rotational dynamics. The rotational dynamics describes the orientation of
the vehicle from Euler angles [φ θ ψ]T and the translational dynamics represents the position around the
x − y − z axis of �xed inertial frame and it also depends on the Euler angles variation. As it can be not
from Figure 3.11 on left side, the position and orientation controllers generates the reference control signals
(thrust force and torques) denoted by Ūi. In addition, the position controller also generates the roll (φr)
and pitch (θr) reference angles (inputs of the orientation controller) by considering that a variation on
roll and pitch angles generate a movement around and y and x position respectively. On the other hand,
the yaw (ψ) reference angle is generated externally. The reference control signals are distributed around
of BLDCMs and the angular speed generated by them produce the control inputs denoted by Ui. The
coupling between the propulsion system and the reference control signals will be explained in Subsection
3.4.2.
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Figure 3.11: Hexarotor Cascade Control Loop.

Stabilization of hexarotor UAV

The stabilization of hexarotor UAV is performed by mean of orientation controller considering a PID
control. The PID controller exhibits a simple structure with easy implementation. The general form of
PID controller is

e = xd − x

u = KP e+KI

∫ t

0
e dt+KD

d e

dt
,

(3.27)

where u is the control input, e is the di�erence between the desired state xd and the present state x
and KP , KI and KD are the gains for the proportional, integral and derivative actions of PID controller.
The computation of PID gains is explained in Appendix B by considering the hexarotor linear model (3.18).

In hexarotor, there are six states positions ξ and angles η, but only four control inputs. The interaction
between the states and the total thrust and torques created by the BLDCMs are visible from nonlinear
hexarotor dynamics de�ned by equations (3.13), (3.14) and (3.15). The total thrust U1 a�ects the acceler-
ation in the direction of the z-axis and holds the hexarotor in the air. The torques U2, U3 and U4 have an
e�ect on the acceleration of angles φ, θ, and ψ respectively. In that sense, the PID controllers to generate
the control inputs are de�ned as follows ([105]):

U1 =

(
g +KP,z(zd − z) +KI,z

∫
(zd − z) +KD,z(żd − ż)

)
m

cosφ cos θ

U2 =

(
KP,φ(φd − φ) +KI,φ

∫
(φd − φ) +KD,φ(φ̇d − φ̇)

)
Ix

U3 =

(
KP,θ(θd − θ) +KI,θ

∫
(θd − θ) +KD,θ(θ̇d − θ̇)

)
Iy

U4 =

(
KP,ψ(ψd − ψ) +KI,ψ

∫
(ψd − ψ) +KD,ψ(ψ̇d − ψ̇)

)
Iz,

(3.28)

where g is the constant associated to gravity, m is the mass of hexarotor and Ix, Iy, Iz are the inertia
moments around body frame. The result of hexarotor stabilization is shown in Figure 3.12 where all Euler
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angles and z position have an initial condition at 0 rad and a reference of 0.25, 0.35, 0.5 rad and 1.5 m
respectively. As it can be noted, the controller is capable to change the position and orientation from an
initial state to a �nal state within a time window of 5 sec without static error. On the other hand, the
control signals are plotted in Figure 3.13 where thrust (U1) increase to 45 N at the take o� and the torques
(U2,3,4) are limited to ± 4 Nm without sudden changes.

Figure 3.12: Result of hexarotor stabilization.

Figure 3.13: Control inputs.

The control inputs are used to determine the angular speed of BLDCM which are necessary to make the
link between the propulsion system and hexarotor dynamics. Then, the relationship between the control
inputs and angular speeds is established by considering (3.15) in matrix form U = Bω̄ as
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B =


b b b b b b

− bl
2

bl
2 bl bl

2 − bl
2 −bl√

3bl
2

√
3bl
2 0 −

√
3bl
2 −

√
3bl
2 0

−d d −d d −d d

 , (3.29)

where b and d are the thrust and drag constants and l is the distance from each motor to the center of
mass of the hexarotor. From here, the control inputs generated by PID controllers (3.28) will be called
as reference control inputs denoted as Ūi. Then, the relationship between the reference control inputs Ūi
and the e�ective control inputs actuating on the hexarotor Ui are determined by computing the reference
angular speed of BLDCM ω̄. The angular speed for each BLDCM denoted by ω̄ is computed by Moonro-
Penrose inverse of matrix B as ω̄ = B+Ū as:

B+ =



1
6b −

1
6bl

√
3

6bl − 1
6d

1
6b

1
6bl

√
3

6bl
1
6d

1
6b

1
3bl 0 − 1

6d
1
6b

1
6bl −

√
3

6bl
1
6d

1
6b −

1
6bl −

√
3

6bl −
1
6d

1
6b −

1
3bl 0 1

6d


. (3.30)

Position Controller

Once the hexarotor stabilization is done by orientation controller, the next step is to generate the position
controller around x-y axis. The relationship between the position and orientation in the hexarotor is
established by linear model (3.18) where a change in roll and pitch angles generate a change in y and x
position respectively. In that sense the PID controllers to generate the reference for roll and pitch angles
are de�ned as:

θd = KP,x(xd − x) +KI,x

∫
(xd − x) +KD,x(ẋd − ẋ)

φd = (KP,y(yd − y) +KI,y

∫
(yd − y) +KD,y(ẏd − ẏ),

(3.31)

The result of CCL considering the initial and �nal references as [x0 y0 z0 φ] = [0 0 00] [xf yf zf φ] = [2 2 2 0.5]
is shown in Figure 3.14 (a)-(b). According to (3.31) the controller around x-y axis generates the reference
for pitch and roll angles as it can be noted in Figure 3.14 (b). Such changes are re�ected in the control
inputs in Figure 3.15 - (a) where the thrust is a�ected by the movement around x-y axis in addition the
thrust in hover position is 18.64 N. On the other hand, the angular speed of the BLDCMs is shown in
Figure 3.15 - (b) where angular speed per each BLDCMs in hover position is 454.7 rad/s.

In order to avoid unrealistic changes in BLDCM dynamics, a physical constraint is added in the angular
speed of each motor as ωi ∈ [0 1200] rad/s. Such values are associated to parameters used in the simulation
of BLDCM and according to motor characteristics, the angular speed limit can be di�erent. In addition
the hexarotor orientation has also constraint associated to maximum and minimum angular change as ±π

2
for roll and pitch angles and ±π for yaw angle.
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(a) (b)

Figure 3.14: (a) Hexarotor position x− y − z axis. (b) Hexarotor orientation φ− θ − ψ angles.

(a) (b)

Figure 3.15: (a) Control inputs. (b) Angular speed of BLDCMs.

3.4.2 Integration of Propulsion system in CCL

In order to analyze the e�ect of battery discharge on control loop and to establish the relationship be-
tween the maximum endurance and mission performance, the propulsion system (battery and BLDCM) is
integrated in the CCL. Considering the reference control inputs Ūi (computed by PID controllers) and the
matrix relationship established in (3.30) the reference angular speed ω̄i is computed to generate the real
control inputs Ui. Then considering the relationship established between the angular speed and BLDCM
duty cycle:

Dci = f(ω2
ref i

), (3.32)

the reference angular speed allows to de�ne the link between the BLDCM dynamics and CCL to generate
the thrust force and torques actuating in the hexarotor dynamics. In addition, by considering that current
generated by each BLDCM is proportional to duty cycle, i.e.
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v̄batti = Vbatt ·Dci
IBLDCM i = ībatti ·Dci,

(3.33)

the dependence between reference control signals and battery discharge is established and integrated in the
CCL. In Figures (3.16) - (3.20) the result of CCL with propulsion system is shown considering the same
reference position than Figure (3.14). As it can be seen in Figure (3.16) there is no change in the position
and orientation dynamics considering the e�ect of propulsion system and battery discharge. However, the
reference control inputs Ūi (black line) has a variation in comparison with the real control inputs Ūi (red
line), particularly the thrust force. This is due to reference control inputs generating the thrust force Ūi
increase to compensate the e�ect of battery discharge. Such phenomena is also presented in reference
angular speed ω̄i (black line) in comparison with the angular speed generated by each BLDCM ωi (red
line) to produce the real control inputs Ui.

(a) (b)

Figure 3.16: (a) Hexarotor position x− y − z axis. (b) Hexarotor orientation φ− θ − ψ angles.

The evolution of BLDCM duty cycle and current generated according to position changes is shown in
Figures (3.19) (a)-(b). Considering the position change in x-y-z axis and orientation in yaw angle the
CCL adjusts the reference angular speed of BLDCM and consequently such changes modify the duty cycle
and increase or decrease the current demanded for each BLDCM to the battery. In addition, as it can be
noted in (3.19)-(b), the initial current for all BLDCM has an initial value of 2.48 A. This is due to the
propulsion system considering the hovering condition which establishes that the BLDCM needs to produce
the enough angular speed to generate the nominal thrust force necessary to compensate the gravity e�ect
which is always actuating on hexarotor.
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On the other hand, the current demanded by all BLDCMs presents di�erent variations due to position
changes as it can be seen in Figure (3.20). In hovering conditions, the total current is approximate 16 A
and during the take o�, the current increase to reach a value close to 21 A. In addition such variations
causes that battery to discharge and the SoC be decreased in a small range.

Figure 3.17: Control inputs.

Figure 3.18: Angular speed of BLDCMs.
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(a) (b)

Figure 3.19: (a) Duty Cycle per BLDCM. (b) Demanded current per BLDCM.

Figure 3.20: Battery response: current, voltage and State of Charge.

In order to analyze the battery discharge in a wide range of State of Charge, the hexarotor is required to
follow a trajectory of longer duration as it can bee seen in Figures 3.21- 3.22. The height during the �ight
is kept constant and the position around x-y axis change according to reference position. The position
change is directly re�ected in hexarotor orientation around roll and pitch angles and the reference of yaw
angle is kept at 0 rad. The thrust force and torques generated by the BLDCMs are plotted in Figure 3.23
where it can be observed that as the time passes and the battery is discharged the reference thrust force Ū1

(black line) tends to increase in order to compensate the battery discharge and to maintain the hexarotor
lift during the �ight. Such e�ect is also present in the evolution of BLDCM angular speed in Figure 3.24,
where the reference angular speed ω̄i (black line) increase according to battery discharge. In addition, by
considering the relationship between the reference angular speed, Duty Cycle and battery current de�ned
in (3.26) and (3.25) the e�ect of battery discharge produces that Duty Cycle of each BLDCM increase
which also increases the demanded current per BLDCM as it can bee seen in Figure 3.25. Finally, the
battery response is plotted in Figure 3.26 where the current tends to increase according the discharge e�ect
and it tends to exhibits di�erent picks due to the position changes of hexarotor and the voltage decreases
until reach a value around ≈ 14.87 V from its initial value of 16.74 V and reaching a �nal SoC value of
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0.5 which means that the battery was discharged of 50 % of total charge.

Figure 3.21: Hexarotor position in 3D view for a complete path.

(a) (b)

Figure 3.22: (a) Hexarotor position x− y − z axis. (b) Hexarotor orientation φ− θ − ψ angles.
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Figure 3.23: Control inputs.

Figure 3.24: Angular speed of BLDCMs.
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(a) (b)

Figure 3.25: (a) Duty cycle per BLDCM. (b) Demanded current per BLDCM.

Figure 3.26: Battery response: current, voltage and State of Charge.

3.5 Conclusion

In this Chapter, the nonlinear mathematical model of hexarotor and propulsion system were presented.
The position and orientation of hexarotor is mainly constrained to battery characteristics due to the
e�ect of battery discharge on angular speed in each BLDCM. In order to compensate such e�ect and at
the same time to stabilize the hexarotor orientation a Cascade Control Loop (CCL) based on classical
PID controllers was proposed. The CCL allowed the interaction between the hexarotor dynamics and
propulsion system by generating a dependency on control inputs generated by PID controllers with the
angular speed of BLDCMs and its duty cycle. The CCL was initially designed around the linear model
of hexarotor dynamics which was obtained by assuming hovering conditions and small angular changes.
Such considerations leads to canceled di�erent nonlinear terms, however the simulation results showed
that the CCL is able to follow a reference trajectory and at the same time to compensate the e�ect of
battery discharge take into account the minimum End of Discharge. In the next Chapter, the development
of Prognosis and Health Management System will be presented considering the elements related to CCL
described in this Chapter.



Chapter 4

Prognosis and Health Management of

multirotor UAV

In this Chapter, the main elements integrating the Prognosis and Health Management module designed
for the UAV hexarotor are presented. Such elements are summarized in Figure 4.1. In the top level
the implementation of cascade control loop and its interaction with the propulsion system and multirotor
dynamics is presented. On low level the Prognosis module and reference path link is shown. The Prognosis
module takes information from battery as current (Ibatt) and voltage (Vbatt) in order to the mission time
(tm) be de�ned and the Remaining Useful Life (RUL) of battery be determined. The mission time is
obtained through of the Flight Endurance (FE) prediction by considering the estimation of battery State
of Charge (SoC). The FE predicted is evaluated by comparing the result with an empirical endurance
model proposed in this research. This endurance model is determined according to battery characteristics
as nominal voltage and capacity. Once the FE is obtained, the Remaining Mission Time (RMT) can be
computed during mission execution. On the other hand, the battery RUL is computed by considering
the battery State of Health (SoH) and evaluated through degradation models able to model the aging
phenomena in the battery according to the number of charge/discharge cycles (ncycles). In the following
sections, the methodology used to develop such tasks will be explained.

4.1 Prognosis module

According to Figure 4.1, several characteristics of the system could be predicted, such as:

1. Battery SoC at a given time.

2. Ful�llment of a mission before to reach the EoD.

3. Flight endurance of multirotor and Remaining Mission Time (RMT).

4. SoH level and RUL for any degradation stage.

Depending on the accuracy level of the prediction and the complexity of the system behavior, di�erent
approaches have been used to perform prognosis ([34, 62]). The Model-based Prognosis or Condition-
based Prediction assess the behavior of individual components of a system as well as the entire system
based on a mathematical model that describe the evolution of some system variables (i.e. temperature,
voltage, position, speed) over time. If such mathematical model exists, the future behavior of the system
can be determined by propagating the mathematical model in the future time. However, to determinate
a mathematical model of the interested system in order to perform a prediction of its future behavior is
not a trivial task. First, it is necessary to de�ne which system variables are necessary to evaluate the
entire system behavior, and determine if such variables are directly measured or not. If such variables are

45
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Figure 4.1: Prognosis and Health Management scheme in multirotor UAV.

measured, a mathematical model can be de�ned and used to perform the prediction in the future time.
Otherwise, if such variables are unmeasured, they must be estimated. In that sense, this work presents
in Figure 4.2 a Model-based Prognosis methodology based on an estimation of the battery SoC in order
to predict the �ight endurance of the UAV. The prediction is developed in three sequential steps: 1)
estimation of unmeasured states of the system, 2) propagation and prediction of the estimated states, and
3) update of the prediction.

4.1.1 State Estimation

In several dynamic systems, not all state variables can be measured. For such cases, an observer needs to
be designed in order to estimate the unmeasured states considering the system model and the available
input-output signals. In this work, an Extended Kalman Filter (EKF) is used to estimate the battery SoC.
The EKF has demonstrated to be an adequately tool to estimate the battery states as well as parameters
in battery systems ([69, 136]). In this work, the EKF is developed considering a simpli�ed mathematical
model of system under study, where the unique nonlinear term is the Open Circuit Voltage. The EKF
addressed the general problem of state estimation of a nonlinear system, expressed in discrete time as:

xk+1 = f(xk, uk) + wk

yk = g(xk, uk) + vk,
(4.1)

where f(xk, uk) and g(xk, uk) are the nonlinear state transition function and nonlinear measurement
function, respectively, and they are assumed to be di�erentiable at each operating point. The random
variables w(t) and v(t) are the process and measurement noise. They are assumed to be independent,
white, and with normal probability distributions:

p(w) ∼ N(0, Q)

p(v) ∼ N(0, R).
(4.2)
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Figure 4.2: Model-based Prognosis methodology.

The matrices Q and R are the process noise covariance and measurement noise covariance, respectively.
At each sample time, f(xk, uk) and g(xk, uk) are linearized through a �rst-order Taylor-series developed
as

A =
∂f(xk, uk)

∂xk−1

∣∣∣∣
xk−1=x̂

−
k−1

(4.3)

C =
∂g(xk, uk)

∂xk

∣∣∣∣
xk=x̂

−
k

(4.4)

The completed equations of the EKF are resumed in Algorithm 1.

4.1.2 Propagation and Prediction of estimated states

Figure 4.3: Evolution of the system behavior.

As mentioned previously, if a mathematical model that describes the evolution of system behavior as a
function of the time exists, the prediction of future behavior can be determined by propagating the model
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Algorithm 1 Extended Kalman Filter algorithm [136].

1. Initial values of x̂−k−1 and Pk−1

2. To compute:

Ak =
∂f(xk, uk)

∂xk−1

∣∣∣∣
xk−1=x̂

−
k−1

Ck =
∂g(xk, uk)

∂xk

∣∣∣∣
xk=x̂

−
k

3. State estimate update:
x̂−k = f(x̂k−1, uk−1),

4. Error covariance matrix:
P−k = AkPkA

T
k +Q,

5. Kalman gain:
Kk = P−k C

T
k (CkP

−
k C

T
k +R)−1,

6. State estimate measurement update:

x̂k = x̂−k +Kk(yk − g(x−k , uk)),

7. Error covariance matrix update:
Pk = (I −KkCk)P

−
k .

in the future time. However if the system involves unmeasured variables, they must be estimated �rst,
and the prediction of their future behavior is based on the propagation of the estimated variables in the
future. In order to illustrate how the propagation and prediction are performed, let us consider Figure 4.3
where the trend of the past evolution of system behavior at time ta is known. It is possible to de�ne a
function that approximate the trend with the time, and propagate the function in the future until reaches
the STZ. This function is called prediction function, and the accuracy of the prediction will depend on the
amount of past data measure. On the other hand, the prediction function can be updated by using new
data of the system. Due to the fact that there are no abrupt changes or discontinuities in the evolution of
estimation SoC, the prediction function is de�ned as a polynomial function of the time, such as [162]:

η (t, α) =

m∑
j=0

αj·t
j = α0 + α1 · t+ · · ·+ αm · tm, (4.5)

where η(t) represents the predicted variable, t is the time, αi are identi�ed parameters associated to
measured data trend and m is the order of the polynomial function. The method of Weighted Least

Squares (WLS) is considered to estimate the parameters (αi) of function (4.5). The WLS is de�ned as:

H =
[

1 t · · · tm
]
,

α̂ = [HTR−1H]−1HTR−1Y,
(4.6)

where H contains the information of the relationship between the time and the polynomial order, α̂ is the
vector with the estimated parameters αi, R is the measurement covariance matrix, and Y is the vector of



4.2. MULTIROTOR FLIGHT ENDURANCE 49

the measured data (variable to be identi�ed). The approximation is evaluated according to the coe�cient
of determination R2, which is limited as R2 ∈

[
0.9 1

]
in this study, and the polynomial order depends

on the accuracy between the data and the identi�ed function. The iterative sequence of propagation and
prediction is given in the Algorithm 2, where tp is the so-called prediction time and it is larger than
sampling time for SoC estimation.

Algorithm 2 Propagation and prediction algorithm.

1. Delay (tp)

2. Recollect data until ˆSoC(ta)

3. De�ne H and m for
H =

[
1 t · · · tm

]
and

η (t, α) =

m∑
j=0

αj·t
j = α0 + α1 · t+ · · ·+ αm · tm

4. Estimate α̂ with Y = ˆSoC(t0 : ta)

α̂ = [HTR−1H]−1HTR−1Y

5. Verify R2 to Y = ˆSoC(t0 : ta) with η (t0 : ta, α̂)

6. Propagate η (t0 : ta, α̂) until t(SV T )

7. Compute Remaining mission Time (RMT)

RMT = t(SV T )− ta

4.2 Multirotor Flight Endurance

4.2.1 Endurance model

The �ight endurance is directly related to energy and power capabilities of the battery. One way to
determine the time when the battery is fully discharge is by mean the C-rate discharge properties ([119]),
and it is expressed as

Crate =
Ic/d

C0
, (4.7)

where C0 is the nominal battery capacity and Ic/d is charge/discharge current. Crate = 1 means that
a charge/discharge current similar to nominal capacity is applied to the battery, it will be charged or
discharged in approximately one hour. Then considering such e�ect, the relationship between the current
magnitude and time is described in Figure 4.4.

From Figure 4.4 it is possible to obtain a model able to compute maximum Flight Endurance as ([163]):

FEmax = a · expb·Crate +c · C2
rate + d. (4.8)



50 CHAPTER 4. PROGNOSIS AND HEALTH MANAGEMENT OF MULTIROTOR UAV

Figure 4.4: Relationship of C-rate and time.

The C-rate is computed from the total current as a function of the angular speed of the BLDCM and
generated thrust. In that sense, the total thrust force to keep the vehicle lift in hover conditions according
to (3.29) is represented as:

T = mg =

Nm∑
i=1

bω2
i . (4.9)

From (4.9), the angular speed of each BLDCM can be computed as:

ωi =

√
T

bNm
, (4.10)

by considering the mechanical model of BLDCM (3.24) and the relationship between current and duty
cycle (3.25), the total current demanded by all BLDCMs is computed as:

Ii =
(
dω2

i −Dfωi − Tfric
) Dci
KE

, (4.11)

Finally, considering the existing relationship between the battery C-rate (4.7) and the total current, the
�ight endurance in hover condition is computed as with the equation (4.8). Such �ight endurance allows
to determine the maximum time between path and adjust the Prognosis Module to compute the �ight
endurance during the mission development.

4.2.2 Flight Endurance Prediction

During the development of a mission of some UAV, the End of Discharge (EoD) must be taking into
account to ensure the safety of the UAV, the ful�llment of the mission, and the maximization of �ight
endurance. In that sense, the total �ight endurance is considered as the time between the beginning of
the mission until reaches a Safety Voltage Threshold before EoD value. Several factors are implied in the
�ight endurance of the UAV, such as the total current demanded by the number of the BLDCM (Ibatt(t)),
and C-Rate, the rate discharge (C), the initial State of Charge SoC(t0), and the State of Health SoH.
Then, assuming a new and fully charged battery, the EoD is directly associated with the battery voltage.
The time when EoD is reached can be computed considering the demanded current (Ibatt(t)) through
relation of C-Rate discharge. However according to the number of charge/discharge, the capacity of the
battery decreases and the discharge rate is modi�ed as the aging of the battery increases. In that sense,
the computing of EoD time should consider the e�ect of the aging to obtain the total �ight endurance
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according to the battery SoH. Taking into account that the total current demanded by the set of BLDCM
is known or measure, the SoC of the battery during the mission can be computed using equation (3.20)
or estimated through EKF, and its future trajectory can be propagated and predicted in the future until
reaching the EoD, leading to prediction of the �ight endurance. The development of each step in the PHM
architecture shown in Figure 4.2 to predict the �ight endurance of the UAV is explained in the following
subsection.

4.2.3 SoC estimation

The prediction of the FE is based on the evolution of battery SoC during the UAV mission. The SoC, as
it was mentioned in Chapter 3 cannot be measured directly on the battery, in that sense, it needs to be
computed or estimated. In this work two methods are considered to determine the battery SoC: 1) the
direct computation of the SoC using the Ampere Counting method or Coulomb Counting method and
2) the estimation of the SoC using an EKF. In addition the Coulomb Counting method will be used to
determine the Real SoC and it will be compared to SoC estimated with EKF.

Coulomb Counting method. This method takes into account the evolution of demanded current and
its relationship with the nominal battery capacity:

SoC = SoC0 −
1

C0

∫ tf

t0

|Ibatt|dt, (4.12)

where SoC0 is the initial SoC conditions at any time, C0 is nominal battery capacity in Amperes per sec
and Ibatt is the battery charge/discharge current. As it can be noted, this method just depends on the
battery current. However, this method accumulates errors in measurements and may lead to large SoC
errors in real-world applications ([61]). In that sense, the estimation of SoC is considered based on the
design of an Extended Kalman Filter applied on battery model (3.21).

EKF of Li-Po battery. The estimation of battery SoC using EKF method is developed according to
Algorithm 1. Then, by considering the battery model

V̇SoC = − Ibatt
3600 · CT

V̇d = − Vd
Rd · Cd

+
Ibatt
Cd

VBatt = VOCV (VSoC)− Vd −Rint Ibatt

VOCV (VSoC) =

n∑
i=0

λiV
i
SoC + ln(VSoC)VSoC ,

(4.13)

which is discretized through forward Euler method, and rewritten in state space form as

xk+1 =

[
1 0

0 1− Ts
RdCd

]
xk +

[
− Ts
CT (Ncycle)

Ts
Cd

]
uk + wk

yk =
[

∂VOCV (VSoC)

∂V −
SoC

−1
]
xk +Rint(Ncycle)uk + vk,

(4.14)

where the discrete state space vector is x =
[
VSoC Vd

]T
, the input u = Ibatt, the output y = Vbatt,

and Ts is the sampling time. The nonlinear term is the OCV shown in equation (4.13), which is in the
matrix C. The variation in the measurement noise is established at ±0.1V , according to experimental
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data, and the variation of process noise is ±0.01V according to the registered current data. The process
and measurement covariance matrices are de�ned as:

Q =

[
1× 10−2 0

0 1× 10−2

]
R =

[
0.1

]
.

(4.15)

The propagation and prediction of the estimated SoC is developed according to Algorithm 2. It is impor-
tant to mention that the methodology shown in Figure 4.2, considers two types of sampling time during
its implementation, i.e. whiles the state estimation stage is subject to the sampling time of the system
(e.i. the sampling time will depend on the discretization stage) in order of millisec, the propagation and
evaluation could be performed in a sampling time in the order of sec, or even minutes. In addition, the
choice of sampling time for �ight endurance prediction depends on both maximum endurance provided by
battery characteristics and how often it is necessary to display the remaining mission time. In this work
the remaining mission time is used to de�ne the mission planning and re-planning strategy which will be
explained in the following chapter.

4.3 Battery Health prediction

The battery State of Health describes the actual physical conditions of the battery in comparison with
its nominal condition ([144]), and it is established in a range between 0 and 1 SoH ∈

[
0 1

]
, i.e. if

SoH = 1 the battery is considered as new and 0 ≤ SoH < 1 the battery exhibits an aging behavior. The
decrease of the battery SoH is mainly due to two aging processes: 1) the battery degradation associated
to cyclic charge/discharge, and 2) the damage due to deep discharges (under EoD limit). These two aging
processes lead to an energy loss, which is directly re�ected in the battery voltage. As it can be seen in
Figure 4.5 (a), the voltage range is ≈ 4.2 − 2.5 V. The red line represent the voltage before to reach the
concentration zone (around 3.22 V). In addition, event thought the battery SoH decreases proportionally
to the number of charges/discharges, the initial SoC does not present changes due to memory e�ect which
causes the battery to store only the charge associated with the actual capacity CT value. Additionally,
the memory e�ect inhibits the visualization of the energy loss provoked by the aging ([158]). On the
other hand, the energy loss is the result of active materials transformation in inactive phases and leading
to a reduction of battery capacity (capacity loss) at any discharge rate, and the increase of the battery
impedance (power fade). Both capacity loss and power fade are related to the internal parameters of
the battery. The capacity loss is evidenced by the reduction of the capacity CT , and the power fade by
the increase of the internal resistance Rint ([36]), and both phenomenas are proportional to the number
of battery charge/discharge (Ncycle), as it can be seen in Fig. 4.5 (b)-(c). Furthermore, the variation of
capacity and internal resistance make possible to quantify the aging level and consequently the battery
End-of-Life (EoL).

Remark 1. The EoL determines when the battery has reached its useful life, and it could be associated to
a speci�c SoH value, e.g. in ([68]) it is reported that the life of a battery cell is ended when the maximum
power of the cell decreases to 60% compared to its initial maximum power at the same operational condi-
tions. In that sense, it can be assumed that a decrease of total capacity CT and an increase of the internal
resistance Rint of 0.6 (interpreted as 60%) determines the EoL of a cell. This EoL de�nition is established
for a single battery cell, however it is possible to extend it for a battery made of several individual cells
by assuming that the operational conditions and the aging behavior caused by the use are similar for all
cells.

In this work, the energy loss is modeled by considering the capacity loss and the power fade using exper-
imental data. Both phenomena are related to number of charge/discharge cycles and modify the battery
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Figure 4.5: (a) Voltage variation of a cell subjected to discharge cycles. (b) Evolution of capacity CT and
(c) Internal resistance Rint ([153]).

parameters described in (4.13).

Capacity loss model. The Capacity loss model denoted as Closs is de�ned by considering that the
battery capacity (CT ) varies inversely proportionally according with the number of charges/discharges
(Ncycle), and it is expressed as:

Closs(Ncycle) = 1−
C0 − CT (Ncycle)

C0
, (4.16)

where C0 is the initial capacity when the battery is new, CT (Ncycle) is the capacity after each dis-
charge cycle, Closs(Ncycle) ∈

[
Closs(EoL) 1

]
, i.e. when Closs = 1 the battery is new and when

Closs(EoL) ≤ Closs ≤ 1 the battery is in a degraded state. The result of (4.16) applied to experimental
data presented in ([153]) is shown in Figure 4.7 (a). As it can be noted, the capacity loss has a decrease of
0.4 (which can be also interpreted as a decrease of 40%) after 160 charge/discharge cycles, and it is occurs
before it reaches the EoL, i.e. a SoH of 0.6 (60%) according to Remark 1. Then, using experimental
data of capacity loss, a model able to characterize the trend of capacity loss is identi�ed using polynomial
functions as it be seen in Figure 4.6.

In Figure 4.6, three polynomial functions are compared using Prediction Bounds (PB) of 90% in order to
determines which adjust the capacity loss trend. As it can be noted a polynomial fourth-order equation
allows to capture the capacity loss trend within of PB without without overdetermining the model as:

IMCloss
(Ncycle) =

4∑
i=0

αi ·N i
cycle (4.17)

where α denote the polynomial coe�cients. The comparison between the identi�ed model (4.17) and the
experimental data are shown in Figure 4.7 (b), where IM denotes the Identi�ed Model and PB are the
Prediction Boundaries.
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Figure 4.6: Fitting of capacity loss with polynomial functions.

Figure 4.7: (a) Evolution of Capacity loss CT . (b) Identi�cation of Capacity loss model.

Power fade model. The power fade model is denoted as Rinc. Considering that the battery internal
resistance Rint varies proportionally to the number of charges/discharges (Ncycle), Rint is expressed as:

Rinc(Ncycle) = 1−
Rf −Rint(Ncycle)

Rf −R0
, (4.18)

where R0 is the initial internal resistance when the battery is at the Begin of Life, Rint(Ncycle) is the
internal resistance value according to each discharge cycle, Rf is the value of the internal resistance when
the battery has reached its End of Life (EoL). Rinc(Ncycle) ∈

[
0 Rinc(EoL)

]
. In Figure 4.8 (a), the

increase of the internal resistance computed by (4.18) is shown. As it can be noted, the internal resistance
has an increase of 0.4 (interpreted as an increase of 40%) after 160 charge/discharge cycles, and it is occurs
before it reaches the EoL. Furthermore, Rf is established at 0.6 (60%) according to Remark 1. For the
degraded behavior computed by (4.18), a model is identi�ed using a polynomial second-order equation:

IMRinc(Ncycle) =
2∑
i=0

βi ·N i
cycle (4.19)

where βi denote the polynomial coe�cients. The comparison between the identi�ed model (4.19) and the
experimental data are shown in Figure 4.8 (b). Finally, the total capacity CT and the internal resistance
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Figure 4.8: (a) Evolution of internal resistance Rint according to Ncycle. (b) Identi�cation of power fade
model.

Rint in system (3.19) are rewritten as:

CT = CT (Ncycle) · IMCloss
(Ncycle)

Rint = Rint(Ncycle) · IMRinc(Ncycle).
(4.20)

Remark 2. Models (4.17) and (4.19) are computed considering only the degraded behavior of a single
battery cell, and both models are dependent on the number of charges/discharges cycles Ncycle. In that
sense, for other batteries with di�erent capacity CT and internal resistance Rint values, it is possible
to obtain similar degraded models, and the order of the polynomials was determined to best �t the
experimental data (Table 4.1).

Table 4.1: Coe�cients of identi�ed models

Capacity loss model Closs

α0 α1 α2 α3 α4 R2

0.988 −1.406× 10−3 −6.713× 10−5 7.651× 10−7 −2.435× 10−9 0.98

Power loss model Rinc

β0 β1 β2 - - R2

2.9× 10−2 4.027× 10−3 −2.604× 10−6 0.95

The algorithm proposed to predict the Flight Endurance and Remaining Mission Time is tested at simu-
lation level considering the mathematical model of hexarotor and propulsion system. The Li-Po battery
considered in the propulsion system is composed by four cells with a capacity of 6.2 Ah. Considering the
relationship between the battery voltage and the SoC, a voltage limit de�ned as Safety Voltage Threshold
(SVT) is de�ned according to Figure 4.9. As it can be observed, before the voltage reaches the EoD, there
is an abrupt exponential fall of voltage. Taking into account this phenomena, the SVT is de�ned before
the voltage reaches the EoD.

The UAV was subjected to a mission which consisted in following circular trajectory with an area of 785400
m2 around x − y axis and an altitude of 20 m (Figure 4.10). Such trajectory was developed considering
the mathematical model of UAV presented in Chapter 3. Considering that the battery is fully charged
and new, the initial SoC and SoH were established at 1 respectively.
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Figure 4.9: Safety Voltage Threshold of the Li-Po battery.

Figure 4.10: 3D Path of hexarotor UAV.

The current generated by the six motors is shown in Figure 4.11-(a). The variations in the current are due
to velocity changes of the motors caused by the UAV movement. The comparison between the voltage
battery and its estimation is observed in Figure 4.11-(b). As it can be seen, the mission is ful�lled in 20
minutes before to reach the SVT,and this avoided an overdischarge in the battery.

(a) (b)

Figure 4.11: (a) Demanded current Ibatt and (b) comparison between battery voltage and V̂batt.

The comparison between the estimated SoC through the EKF and the computed SoC by Coulomb Counted
is shown in Figure 4.12. As it can be noted, the SoC estimation through the EKF relates the SoC with
the dynamic of the battery discharge. This relationship allows to predict the �ight endurance from the
estimated SoC.
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Figure 4.12: Comparison between SoCCC and ˆSoC.

The propagation and prediction was developed over sampling time of 1 minute, and the SoC estimation
each 10 millisec to collect enough data to estimate the parameters of the prediction function (4.5). Two
1st and 2nd order polynomials were considered for the prediction function. The predictions of the total
�ight endurance for both prediction functions are plotted in Figure 4.13. The blue marks correspond
to the predicted �ight endurance with the 1st order polynomial, and the red marks with the 2nd order
polynomial. As it can be observed, the �rst predictions (1 − 4 min) with the 1st order polynomial are
closer to the real �ight endurance, whilst an approximation of the real �ight endurance is displayed from
6 minute onwards with the 2nd order polynomial. However the closest prediction of real �ight endurance
is obtained at time 8 min with the 2nd order polynomial.

Figure 4.13: Comparison between the predictions of both prediction functions.

In Figure 4.14 and Figure 4.15 the results of the prediction for the 1st and 2nd order polynomial at time
1, 6 and 8 min, and their comparison with the estimated SoC are shown. A Decision Threshold (DT) at
the 0.6% (at time 10 min of the total �ight endurance) of estimated SoC was de�ned to determine an
operation range where the predictions will be useful to take decisions on the progress of the mission. The
computation of Remaining Mission Time (RMS) was made from the �rst prediction, and the results are
shown in Figure 4.16. As it can be seen, it is possible to predict the total �ight endurance and the RMS
from the beginning of the mission considering the de�ned DT.
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Figure 4.14: Prediction of �ight endurance with 1st order polynomial.

Figure 4.15: Prediction of �ight endurance with 2st order polynomial.

Figure 4.16: RMT staring from the �rst prediction.

4.4 Conclusions

In this Chapter the Prognosis and Health Management around hexarotor was developed which is focused
on battery dynamics. The Prognosis Module executes di�erent tasks in order to determines the actual
battery conditions. The FE prediction as a function of SoC estimation allows to determines the maximum
endurance according to endurance model. In addition by taking into account the e�ect of aging into the
FE prediction it is possible to determines the mission ful�llment for all range of battery SoH. In the next
chapter, the link between the Prognosis Module and Mission Planning methodology will be presented as
well as the simulation results.



Chapter 5

Energy aware mission planning

In this Chapter, the main elements around the proposed mission planning strategy are de�ned considering
the link between the Prognosis Module developed in the previous Chapter and the path planning task
methodology. The path planning is performed considering the energy consumption during the mission.
In Section 5.1 the mission planning strategy will be explained by describing the necessary elements to
carry out the mission as mission requirements, way-point de�nition, path generation and �ight endurance
prediction. In Section 5.1.2 the path planning based on energy consumption will be developed considering
two approaches: polynomial approach generation and optimal path planning. Finally the simulation
results integrating the prognosis module are presented in Section 5.2.

5.1 Mission planning strategy

According to ([168]), the mission planning includes all those items related to operation modes during the
vehicle �ight and how them allows to increase the �ight e�ciency. Such operation modes demand more
versatility in the face of changing mission objectives and environment speci�cations, as well as adaptability
to uncertain events in the immediate and broader environments, good performance and robustness. The
main requirement is to have an autonomous vehicle able to execute a task-selection and a decision-making
to performed a motion for a given objective and executed them. During the task selection, the UAV
must make plans taking into account the available information about the course of the mission and con-
sequently takes decisions. Decision-making determines the main important requirements as the choice of
the way-points, energy available and �ight endurance, and it evaluates possible environment uncertainties.
In sequential, during decision-making, the UAV seeks to choose the best actions based on its observations
of the world.

On the other hand, path planning deals with the trajectory algorithmic development based on the available
information of the mission ([168]). Depending on mission requirements, it is possible to contain slow or
fast speed paths, short or long distance between way-points, and in special cases, the UAV should stay in
a particular position for a certain period of time. A multirotor UAV must be able to performance mission
considering:

• Perceive its environment and consequently update its activity and response to changes in its own
state,

• Control the actuators and keep as close as possible to the planned path despite un-modeled dynamics,
parametric uncertainties and sensor noise,

• Regulate its motion with respect to the local environment,

59
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• Be able to avoid obstacles and other UAV and assess the information from the multi-sensor environ-
ment,

• Be able to assess its current condition and determine if it meets the requirements of the mission on
course.

Figure 5.1: Structure of mission planning based on Prognosis module for �ight Endurance estimation.

In Figure 5.1, the proposed mission planning strategy is shown. At top level, the main elements necessary
for roadmap generation according to mission requirements are established. The mission requirements de-
�ne the �ight characteristics according to application e.g. the maximum and minimum �ight height, the
distance to cover, the minimum energy and the �ight speed. Area to cover encompass the limits of the
region to over�y, and usually it must match with the maximum distance de�ned in mission requirements.
Likewise, the area to cover allows to establish a safe �ying area which limits the �ight distance and guar-
antee that the mission will be performed inside of initial requirements. The Way-points de�nition stage
establishes the reference points inside of area to cover. They are also necessary to generates the di�erent
paths that describe the complete trajectory of the mission.

At the middle level in Figure 5.1, the Path generation determines the routs around x − y − z axis that
vehicle has to track by means a position and orientation controller. In addition, other references can
be de�ned as the orientation around the yaw angle. Finally, at the bottom level the Prognosis Module

estimates during the mission the �ight endurance by estimate the battery State of Charge considering the
current and voltage measurement. In following sections the interactions of the di�erent stages integrating
the mission strategy will be explained.

Remark. In this work, the mission planning strategy is focused into execute missions where the hexarotor
has to follows long time and distance paths along x-y-z position without aggressive movements. In that
sense, the mission requirements are mainly constrained to stop-and-go motion, i.e. the initial and �nal
speed and acceleration of the vehicle could be equal to zero between initial and �nal way-points. Such
mission are mainly associated to agricultural applications (to see Figure 5.2) where the multirotor performs
crop management tasks, e.g. irrigation, pesticide application, regular monitoring of farms as crop growth,
preparation of yield maps and soil fertility based on aerial photos and GPS guidance.
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Figure 5.2: Example of crop irrigation path for multirotors.

5.1.1 Energy consumption of hexarotor

Such as was introduced in Chapter 3, the hexarotor is a multirotor vehicle powered by Li-Po battery. The
Li-Po battery supplies the enough energy to take-o�, �ight around a path described by n way-points and
�nally landing to ful�ll a particular mission. The �ight capabilities such as movement around x-y plane
whiles keeping a constant altitude as well as the �ight endurance (FE) depends on the energy that battery
is able to supply to BLDCMs to generate the desired thrust and torques. In that sense, is it necessary
to de�ne the energy that the battery can supply and the energy that hexarotor requires to launch a mission.

Battery energy

Long time-distance �ights require that battery possess high storage capabilities and large C-rate to ensure
the ful�llment of a mission and powered the BLDCMs according to demanded current. According to
([137, 138]), the energy (in Wh) that a Li-Po battery can supply is computed as

Eb ≈ ns · np · C0 · Vnom, (5.1)

where C0 is the nominal battery capacity at its Begin-of-Life (BoL) and Vnom is the nominal battery cell
voltage, ns and np represent the number of cells in parallel and series connection of the battery. When
the battery is fully charged or discharged, the maximum and minimum energy that battery can supply is
easily deducted, e.g. considering the operational voltage range of Li-Po battery described in Chapter 3
(subsection 3.3.1), is ≈ 16.8 V (4.2 V per cell) as maximum and ≈ 10.8 V (2.7 V per cell) as minimum
(considering that the battery is composed by four cells in series connection) and the nominal capacity
is 6.2 Ah. Then the energy range is de�ned as Eb ∈ [67 , 105] Wh. In addition, note that battery total
energy is not a function of discharge range. However equation is useful to determines the maximum energy
consumption according to battery characteristics before to launch the mission.

Energy consumption by hexarotor

The energy provided by the battery is consumed entirely by the BrushLess DC motor and ESC. In that
sense, the total energy consumption from initial time t0 to �nal time tf can be computed as ([114, 180]):

Ec =

∫ tf

t0

[Vbatt · Ibatt]dt =

∫ tf

t0

Nm∑
m=1

[Vm · Im]dt, (5.2)
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where Vbatt and Ibatt are the battery voltage and the total current demanded by the BLDCMs. Vm and
Im are the voltage and current of each the BLDCM where m ∈ [1, · · · , Nm]. Nm is the number of mth
BLDCM in the hexarotor. Then, by considering the mathematical model of BLDCM

v̄batti = Rībatti +KEωi,

ω̇i =
1

Jm
(KE ībatti − dω

2 −Dfωi − Tfric)

v̄batti = Vbatt ·Dci
IBLDCM i = ībatti ·Dci,

(5.3)

and substituting equation (5.3) in (5.2), the relationship between the energy consumption and angular
speed of the BLDCMs can be established as:

Ec =

∫ tf

t0

Nm∑
m=1

[κ1 + κ2ωm + κ3ω
2
m + κ4ω

3
m + κ5ω

4
m + κ6ω̇m + κ7ω̇

2
m + κ8ωmω̇m + κ9ω

2
mω̇m]dt, (5.4)

where the constants κ1, · · · , κ9 are combinations of the BLDCMs parameters de�ned as

κ1 =
RT 2

f

K2
E

κ2 =
Tfric
KE

(
2RDf

KE
+KE

)
κ3 =

Df

KE

(
RDf

KE
+KE

)
+

2RTfricd

K2
E

κ4 = d
KE

(
2RDf

KE
+KE

)
κ5 = Rd2

K2
E

κ6 =
2RJmTfric

K2
E

κ7 = RJ2
m

K2
E

κ8 =
(
2RJ3

md
K2

E
+ Jm

)
κ9 = 2RJ2

md
K2

E

(5.5)

and ωm and ω̇m are the speed and angular acceleration of the mth BLDCM. In addition, by considering
that the initial and �nal speed are equals i.e. ω0 = ωf , (5.4) can be simpli�ed as:

Ec =

∫ tf

t0

Nm∑
m=1

[κ1 + κ2ωm + κ3ω
2
m + κ4ω

3
m + κ5ω

4
m + κ6ω̇

2
m]dt. (5.6)

Remark. Note that, the energy consumption by hexarotor (Ec) must match with battery energy (Eb)
in order to ensure the mission ful�llment. However Eb is given in Wh whiles Ec is given in Joules, in that
sense, it is necessary to express Ec in Wh.

In addition (5.6) describes the energy consumption for stop-and-go motion during the �ight whiles (5.4)
describes continuous motion. Such �ight characteristics will be explained in the following subsections.

5.1.2 Path generation based on energy consumption

The core of the proposed mission planning strategy is the path generation considering the energy con-
sumption during the �ight. In that sense, it is necessary to establish a methodology able to establish a
relationship between the hexarotor motion and the consumed energy in order to meet the mission require-
ments and guarantee the ful�llment of the mission.

The path generation is de�ned considering two important aspects: (i) to guarantee the generation of
smooth paths, i.e. the position and orientation vary smoothly with the time avoiding aggressive maneu-
vers ([37]), and (ii) the maximization of �ight endurance, i.e. the increase of the �nal �ight time tf . A
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smooth path could be associated to the system control inputs e.g. a smooth evolution of the angular
motor speed, and on the other hand, the maximization of �ight endurance can be achieved by minimize
the energy consumption during the �ight. In addition, the minimization of energy consumption leads to
extend the time and distance that vehicle can navigate during the mission execution.

In this work, two methods for path generation are considered: 1) path planning based on polynomial
approach and 2) optimal path planning based on a minimization energy criteria. Such path generation
methods lead to produce smooth and minimum energy paths, however the path de�nition via polynomial
functions does not take into account the dynamics of hexarotor whiles the path de�nition by minimization
of energy criteria considers the hexarotor dynamics and constraints associated to vehicle motion. In the
following subsections, the main characteristics and properties of both methods will be explained.

Path de�nition based on polynomial approach

Polynomial functions are suitable for generating paths due to their properties such as smoothness and
boundary conditions ([37, 86]). A polynomial function of order n is de�ned as:

p(t) =
n∑
i=0

γit
i = γ0 + γ1t+ · · ·+ γnt

n, (5.7)

where γi are the coe�cients of polynomial and t is the time. The order determines the number of derivatives
that must be resolved, i.e. for n = 3 leads to minimum position and velocity path, and for n = 5 leads
to smoother and minimum energy paths ([86]). Then, by considering a quintic (�fth-order) polynomial
function as

p(t) = γ0 + γ1t+ γ2t
2 + γ3t

3 + γ4t
4 + γ5t

5, (5.8)

where time t ∈ [0, T ]. The �rst and second derivatives are also smooth polynomials

ṗ(t) = γ1 + 2γ2t+ 3γ3t
2 + 4γ4t

3 + 5γ5t
4

p̈(t) = 2γ2 + 6γ3t+ 12γ4t
2 + 20γ5t

3.
(5.9)

The trajectory p has de�ned boundary conditions for position, velocity and acceleration according to Table
5.1 and commonly the velocity and acceleration boundary conditions are all zero.

Time p ṗ p̈

t= 0 p0 ṗ0 p̈0
t = T pT ṗT p̈T

Table 5.1: Boundary conditions of trajectory

Then, by writing (5.8) and (5.9) for the boundary t = 0 and t = T gives six equations which can be written
in matrix form as 

p0
pT
ṗ0
ṗT
p̈0
p̈T

 =



1 0 0 0 0 0
1 T T 2 T 3 T 4 T 5

0 1 0 0 0 0
0 1 2T 3T 2 4T 3 5T 4

0 0 2 0 0 0
0 0 2 6T 12T 2 20T 3





γ0
γ1
γ2
γ3
γ4
γ5

 . (5.10)
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Figure 5.3: Example of path generation with polynomial function.

In Figure 5.3, the example of a path generated by a polynomial function is shown. As it can be observed,
the path exhibits a smooth behavior from initial point to �nal point and the maximum velocity is reached
at middle of the path considering a initial and �nal velocity equals to zero. In addition, the previous
solution is able to generate smooth one-dimensional paths. In the case of multirotors, they have more
than one axis of motion or freedom degrees. In that sense, the motion can be written in vector form as
p ∈ RN , where N is the number of freedom degrees. An hexarotor has a position (x, y, z) and orientation
(φ, θ, ψ). In this work the orientation is generated by position change, i.e. roll angle depends on any
change in the position on the x y-axis ψ(y) and pitch angle depends on any change in the position on the
x-axis θ(x) (such relationship was established in Chapter 4 in subsection 3.4.1).

In this work, the mission that hexarotor must develop requires the vehicle to move smoothly along a
path through one or more intermediate way-points considering two cases: 1) stop-and-go motion or 2)
continuous motion. In that sense, hexarotor has to track a piecewise continuous path. Such problem is
formalized considering that the path is de�ned by M positions pk (also called way-points), k ∈ [1 ,M] and
there are M-1 motion segments. pk ∈ RN is a vector representing the position.

The hexarotor starts in p1 at rest and �nishes at pM at rest, but it also moves through (or close to)
intermediate con�gurations without stopping. The problem is over constrained and to attain continuous
velocity we surrender the ability to reach each intermediate position. In 1-dimensional cases described in
Figure 5.4, the motion comprises linear motion segments with polynomial blends where a 5th order poly-
nomial is considered because it is able to match boundary conditions on position, velocity and acceleration
for starting and �nal points.
In Figure 5.4, the �rst segment of the path accelerates from the initial position p1 with zero initial velocity,
and it joins to the line heading toward the second con�guration p2. The blend time is set to be a constant
denoted by the acceleration time tacc and tacc/2 before reaching p2 the path executes a polynomial blend
with a duration of tacc onto the line from p2 to p3 and the process repeats. The constant velocity ṗk can
be speci�ed for each segment. The average acceleration during the blend is de�ned as

p̈(t) =
ṗk+1 − ṗk

tacc
. (5.11)

If the maximum acceleration capability of the axis is known then the minimum blend time can be computed.
According to ([37]), in a particular motion segment each axis will have a di�erent distance to travel and
traveling at its maximum velocity, there will be a minimum time before it can reach its goal. The �rst step
in planning a path is to determine which axis will be the slowest to compute the segment, based on the
distance that each axis needs to travel for the segment and its maximum achievable velocity. For this, the
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Figure 5.4: Example of multi-segment path ([37])
.

duration of each segment can be computed and then the required velocity of each x-y-z axis position. This
ensures that all axes reach the next position at the same time. The comparison between an stop-and-go
and continuous motion is presented in Figure 5.5 with a path considering di�erent way-points.

(a) (b)

Figure 5.5: (a) Example of path in 3D. (b) Path in x-y plane.

Remark. As it can be noted in this method, the path generation does not take into account the hexaro-
tor dynamics. In addition, the main assumption considered in this method is that both hexarotor position
and orientation are properly controlled and the polynomial function provides the reference for x-y-z axis.
In addition, the minimization of energy consumption will depend on the �ight velocity between way-points
as well as the time and distance from initial to �nal point considering in the mission as well as the battery
health.

The paths shown in Figure 5.5 are applied to hexarotor considering both stop-and-go and continuous
motion, in order to demonstrate the capabilities of this method to generate smooth and minimum energy
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paths according to mission requirements. The paths shown in Figure 5.5 are used as reference that
hexarotor has to track for x-y-z position and the yaw angle is kept constant at 0 rad. The energy
consumption for both stop-and-go and continuous motion is computed considering the equations (5.4) and
(5.6). The battery response and energy consumed are shown in Figure 5.6 and 5.7 for both cases. As it
can be observed in Figure 5.6, the Stop-and-go motion (Path 1 black line) has "abrupt" changes during
the take-o� as well as during position change in comparison with continuous motion (Path 2 red line).
However, for both cases, the energy consumption for hexarotor is 160 kJ or 45 Wh. This is due to two
factors:

1. during the position change in Path 1, the hexarotor has a decrease in the current generated for all
BLDCM after take-o� and during the landing and the �nal time is constrained at 10 minutes, and

2. although the acceleration time (tacc) was established at di�erent values in each path, the continuous
paths are not able to pass through each way-point.

From here, it is possible to focus only in stop-and-go motion paths for mission planning strategy considering
to generate smooth and minimum energy paths as well as to ensure that vehicle �ies through each way-
point according to roadmap de�nition.

Figure 5.6: Compassion of battery response between Stop-and-go and Continuous motion.
.
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Figure 5.7: Energy battery
.

Path de�nition based on minimization energy criteria

Such as was mentioned in previous section, the path de�nition based on polynomial functions does not
take into account the hexarotor dynamics nor the battery health during its formulation. In addition,
the main assumption in this method is that the generated path is characterized by being smooth and
minimum energy path. However, it is necessary to established the relationship between the minimization
of energy consumption associated to angular speed of each BLDCM and position around x-y-z axis.
The minimization of the energy consumption (5.6) is realized by de�ning a multi-objective constrained
minimization problem taking into account the hexarotor dynamics and the constraints associated with the
battery performance. In order to explain how is de�ned the minimization problem, let us consider Figure
5.8-(a), where the interaction of the di�erent elements that integrate the dynamics of the hexarotor is
shown. The control signals are functions of control inputs generated by CCL described in Chapter 3 and
reference angular speeds of each BLDCM. Then, in order to established the relationship between energy
consumption and control e�ort, an additional control input (ω2

o) is introduced as a reference control input
in the CCL as it can be seen in Figure 5.8-(b).

(a) (b)

Figure 5.8: (a) Interaction of di�erent dynamics in hexarotor. (b) Control system with reference angular
speed

Considering the approach proposed in ([114]), the path planning de�nition is formulated as a minimization
problem of the total energy consumed from initial and �nal times [t0 tf ]. Then, taking into account the
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dynamic of the hexarotor and the propulsion system, the following nonlinear state space system is de�ned:

ẋ1 = x2

ẋ2 = (cx7sx9cx11 + sx7sx11)
U1

m
ẋ3 = x4

ẋ4 = (cx7sx9sx11 + sx7cx11)
U1

m
ẋ5 = x6

ẋ6 = −g + (cx7cx9θ)
U1

m
ẋ7 = x8

ẋ8 =
Iy − Iz
Ix

x10x12 +
Jm
Ix
ωTx10 +

U2

Ix
ẋ9 = x10

ẋ10 =
Iz − Ix
Iy

x8x12 −
Jm
Iy
ωTx8

U3

Iy

ẋ11 = x12

ẋ12 =
Ix − Iy
Iz

x8x10 +
U4

Iz

ẋ13 =
1

Jm

(
KEVbattDc1 +K2

Ex13
R

− dx213 −Dfx13 − Tfric
)

ẋ14 =
1

Jm

(
KEVbattDc2 +K2

Ex14
R

− dx214 −Dfx14 − Tfric
)

ẋ15 =
1

Jm

(
KEVbattDc3 +K2

Ex15
R

− dx215 −Dfx15 − Tfric
)

ẋ16 =
1

Jm

(
KEVbattDc4 +K2

Ex16
R

− dx216 −Dfx16 − Tfric
)

ẋ17 =
1

Jm

(
KEVbattDc5 +K2

Ex17
R

− dx217 −Dfx17 − Tfric
)

ẋ18 =
1

Jm

(
KEVbattDc6 +K2

Ex18
R

− dx218 −Dfx18 − Tfric
)

ẋ19 = −Ibatt
CT

ẋ20 = − x10
RdCd

+
Ibatt
Cd

ẋ21 = ω̇1ref

ẋ22 = ω̇2ref

ẋ23 = ω̇3ref

ẋ24 = ω̇4ref

ẋ25 = ω̇5ref

ẋ26 = ω̇6ref .

(5.12)

where x = [x ẋ z y ẏ z ż φ φ̇ θ θ̇ ψ ψ̇ ωi1×6 VSoC Vd ωiref 1×6
]> is the state vector, ω̇iref is de control input and

it corresponds to the angular acceleration of ith-BLDCM. Considering the control input, the ith duty cycle



5.1. MISSION PLANNING STRATEGY 69

Dci is computed as

Dci = γ1x
2
j + γ2xj + γ3 (5.13)

where i = 1, · · · , 6 and j = 21, · · · , 26. The demanded current Ii of ith-BLDCM is computed as:

Ii =
Dci
KE

(
Jmω̇iref + dx2j +Dfxj + Tfric

)
(5.14)

where i = 1, · · · , 6 and j = 21, · · · , 26. Finally the total demanded current Ibatt and battery voltage Vbatt
are computed as:

Ibatt =

6∑
i=1

Ii

Vbatt = VOCV (x19)− x20 −RintIbatt.

(5.15)

Considering the dynamic system (5.12) and the equations (5.13)-(5.15), the minimization problem of
energy consumption is de�ned as:

min
ω̇iref

Ec(tf )

s.t. dynamic system (3.13),

x(t0) = xt0 , x(tf ) = xtf ,

xmin ≤ x ≤ xmax,
0 ≤ xj ≤ ωmax, j = 21, · · · , 26

Vbatt(EoD) ≤ Vbatt ≤ Vbatt(t0),
SoC(tf ) ≤ SoC ≤ SoC(t0),

(5.16)

where the reference angular velocity and the battery voltage are bounded considering realistic operational
limits, and the constraint in the battery voltage avoids to discharge the battery under Safety Voltage
Threshold (SVT).

Remark. As it can be noted in this method, the path generation is reached by solving the minimization
problem (5.16). The boundary conditions around the states of hexarotor dynamics, mainly position (x,y,z)
lead to generate the path which has the characteristic to be a minimum energy path due that the solution
is constrained to minimize the control e�ort associated to angular speed of BLDCM.

In order to show and compare the di�erences between the path de�nition based on polynomial func-
tions and multi-objective constrained minimization problem, the hexarotor is required to follow a single
path from initial point to �nal point considering Stop and go motion. The multi-objective constrained
minimization problem (5.16) was solved using an optimal control software called GPOPS II which is a
general-control software implemented in MATLAB R©. It is dedicated to solve nonlinear optimal control
problems using variable-order adaptive orthogonal collocation methods together with sparse nonlinear pro-
gramming ([132]). In order to test the capability of the path planning algorithm to minimize the energy
consumption Ec, two cases with the following boundary conditions were considered:

Xa(t0) = [01×12, 454.71×6, 1, 0, 25] ,

Xa(tf ) = [xf , 0, yf , 0, zf , 01×5, ψf , 0, 454.71×6, free, free, free] .
(5.17)
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The BLDCM speed was established as ωi(t0) = ωr(tf ) = 454.7 rad/s due to such value corresponds to
equilibrium conditions for hexarotor hover position. Moreover, that initial speed makes it possible to
generate the thrust force to take-o� and remain lifted up during the �ight. On the other hand, the multi-
objective constrained minimization problem was also solved allowing to choose the �nal time according to
minimum energy. In order to do that, a time window was established, where the minimum time is 5 sec
and maximum time was 15 sec.

Case 1. In the �rst case, the multi-objective constrained minimization problem (5.16) was solved con-
sidering a new (SoH = 1 ) and fully charged (SoC = 1) battery, EoD = 12.8 V. In Figure 5.9 and Figure
5.10 the comparison between the minimum energy path generated by solving the minimization problem
and the path generated by the polynomial approach is shown. As it can be seen, both methods generate
similar smooth paths without aggressive maneuvers. However the di�erence between both methods can
be observed in Figure 5.11, where the minimization problem generate a very smooth transition between
the initial and �nal orientation.

Figure 5.9: Case 1: 3D Position around x− y − z axis.

The battery response is shown in Figure 5.12 and 5.13. As it can been seen the demanded current for
the minimization problem has an increase due to take o� in comparison with the polynomial approach.
This increase generates a considerable drop in battery voltage during takeo� (Figure 5.12-b). The total
consumed energy for the minimization problem and polynomial approach was 1.8657 kJ and 1.8772 kJ
respectively. This result lets us to conclude that the minimization problem is capable of generating min-
imum energy paths considering the constraints associated to hexarotor and propulsion system dynamics.
On the other hand, even though the polynomial approach does not consider the hexarotor dynamics during
path generation it allows to generate smooth and minimum energy paths.

Case 2. To evaluate the minimization problem (5.16) considering the e�ect of a degraded battery, two
changes in the battery SoH were considered at the beginning of the �ight taking into account the boundary
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Figure 5.10: Case 1: Position and linear speed around x− y − z axis.

Figure 5.11: Case 1: Orientation and angular speed around Euler angles [φ θ ψ].

conditions (5.17): SoH = 0.8077, i.e. a degradation of ≈ 20% at Ncycle = 60, and SoH = 0.5946, i.e. a
degradation of ≈ 40% at Ncycle = 160. As it can be seen in Figure 5.14 and Figure 5.15, the variation
of the SoH battery modi�es the �nal time value associated with the hexarotor mission (to see Table 5.2).
That means, the consideration of battery health in the minimization problem not only enables to manage
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Figure 5.12: Case 1: Battery response.

Figure 5.13: Case 1: Battery temperature.

the issues associated with battery performance, it also de�nes the limits of �ight endurance in order to
determine if the available energy is su�cient to continue developing the mission. It can also be noted that
the SoH variations also a�ects the discharge dynamics. As it can be seen in Figure 5.16, to satisfy the
requirement of minimum energy consumption and �nal time considering the performance index de�ned in
(5.16), the discharge rate increase. On the other hand, it can be also notice that the initial SoC indicates
that the battery is fully charged at the beginning of the �ight, but due to capacity loss, �nal SoC tends
to decrease rapidly.

Finally, the result of the minimization problem with SoH variation at 40% is compared with the response
obtained by the polynomial approach in order to validate the result. As it is illustrated in Figure 5.17,
the minimization problem is able to compensate for the e�ects generated by the variation in the battery
SoH generating an energy consumption of 2.4035 kJ and 2.5341 kJ for the polynomial approach. In
addition, it is possible to conclude that with this results, that the path generation by minimization of
energy consumption is able to manage the e�ects of battery aging during the path generation, However it
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Figure 5.14: Case 2: Position and linear speed around x− y − z axis.

Figure 5.15: Case 2: Hexarotor position and linear speed around x− y − z axis.

is important remark that the maximum time is established a priori considering the maximum energy that
battery can supply. The polynomial approach on the other hand, requires to determine the maximum
FE which is predicted by Prognosis algorithm proposed in Chapter 4. With such considerations, it is
possible to ful�ll the mission within the time window provided by Flight Endurance Model and battery
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Figure 5.16: Case 2: Battery response.

Table 5.2: Results of multi-objective minimization problem with SoH variations.

tf (s) SoH (%) Ncycle Ec(tf ) (kJ)

7.0147 100 0 1.8857
7.7908 80 60 2.0922
8.9575 60 160 2.4035

characteristics.

5.2 Simulation results

Once the method to path de�nition and its relationship between path planing and Prognosis (through
battery health or SoH) is de�ned, the following step is the integration of such elements in the mission
planning strategy. Then considering the Figure 5.18, (already given in the introduction of this chapter),
the mission requirements determines the �ight characteristics, area to cover and way-points de�nition.
In order to illustrate how the mission planning strategy, an exploration task in an area of 12000 m2 is
established as mission target. Then the following mission characteristics are considering:

1. The initial (takeo�) and �nal point (landing) are the same.

2. The battery is new and fully charge (SoC and SoH are equals to 1).

3. A maximum time window for mission execution is considered at 15 minutes.

4. The area to cover comprise 8000 m2 inside of a safety region which matching the total area of 12000
m2.
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Figure 5.17: Comparison of battery response between minimization problem and polynomial approach.

Figure 5.18: Structure of mission planning based on Prognosis module for �ight Endurance estimation.

5. The hexarotor motion is performed around x-y axis at constant altitude, i.e. there is not no variation
around yaw angle.

6. The maximum �ight speed is established at 10 m/s.

7. The EoD is de�ned at 20% of SoC according to Safety Voltage Threshold.

8. Without considering the initial and �nal way-points the hexarotor must move in 30 way-points
around x-y position.

In Figure 5.19, the roadmap is shown were the blue point represents the take-o� and landing way-point
and the red ones are the reference way-points which de�nes the path that the hexarotor must track. The
green arrows represent the direction of the path starting in the way-point (0,0,0).
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Figure 5.19: Area to cover and safety zone.

The maximum �ight endurance is 23 min and 53 sec according to battery characteristics. The time interval
between way-points is established at 20 sec. In that sense, by including the take-o� and landing a �nal
mission time of 640 sec or 10.65 minutes. In Figure 5.20 the entire path with the way-points in 3D view
is shown.

Figure 5.20: Minimum energy path and way-points.

In Figure 5.20 the result of the tracking controller in the hexarotor position is shown. As it can be observed
the tracking controller keep the hexarotor position close to reference path to entire mission.
The battery response can be observed in Figure 5.22. The battery is considering new and fully charged
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Figure 5.21: Results of the tracking controller.

and the maximum current picks are generated during the take-o� and the landing. The rest of the picks
just represents the position change between way-points due to the vehicle must move and stop. During the
mission, the current tends to increase to compensate the e�ect of the voltage discharge and to generate
the entire thrust force to keep the vehicle lift.

Figure 5.22: Battery response: current and voltage.

The current and voltage signal were contaminated with a noise level to evaluate the Prognosis Module.
The result of the estimated SoC compared with the SoC generated by the battery model and scaled in
0-100 % is shown in Figure 5.23. As it can be noted, the estimated SoC relates the current and voltage
(red line) re�ecting the e�ective battery SoC in comparison with the SoC generates by the battery model
(blue line) which just take into account the discharge current.

Finally, the computation of the Flight Endurance (FE) and Remaining Mission Time (RMT) is observed
in Figure 5.24. First, the maximum FE was computed considering the model (4.8) and the parameters of
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Figure 5.23: State of Charge estimation.

the BLDCM and battery capacity. Then, using the Prognosis Module, the RMT is computed during the
mission development. In addition, During take-o�, the current increases, which causes a decrease during
the �rst few minutes of RMT prediction. However, when the hexarotor reaches the desired altitude, and
starts moving around the di�erent way-points that characterize the mission, the RMT begins to decrease
until it reaches the minimum value at the end of the mission.

Figure 5.24: Remaining Mission Time and maximum Flight Endurance.

As it can be also noted in Figure 5.24 the total mission time was 10.65 min with a �nal energy consumption
of 172.5 kJ or 47.9167 Wh. Such result gives the possibility to extend the task within the mission by
considering a more big area to cover and safety region or increase the �ight time. However, is it necessary
to take into account the constraints linked to maximum Flight Endurance in order to ensure the mission
ful�llment.
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Mission planning based on fault actuator e�ect

In order to analyze capabilities of mission planning against faults in actuators and to determine when it
is possible to re-planning the original path, the faulty situation was introduced. However, it is important
to remark that:

• There is no a Fault Diagnosis methodology developed in the system, i.e. the tasks around fault
detection, isolation and identi�cation are ideally executed.

• A classic Fault Tolerant Control strategy based on control allocation is considered to illustrate the
results.

In addition, the previous considerations are to emphasize that the analysis around faulty situation is
not main objective of this work. However it is necessary to remark the e�ects of faults during mission
development. According to ([152]), the control allocation and re-allocation method can be used to accom-
modate actuator faults. In addition, fault tolerant control can be achieved without the need to recon�g-
ure/restructure the baseline controller due control signals are redistributed among faulty and healthy ac-
tuators ([51]). Control allocation method is usually applied on over-actuated systems where the amount of
actuators is greater than the controlled variables. By introducing the fault matrix F = diag([f1, · · · , fn])T

the actuator faults can be modeled as the e�ectiveness loss 0 ≤ fi < 1, i.e. fi = 1 represent the healthy
(or 100 %) ith-actuator, fi < 1 denotes the e�ectiveness loss of ith-actuator (or less than 100 %) and
fi = 1 denotes the complete loss e�ectiveness of ith-actuator. In addition, the fault severity is associated
to the percentage of e�ectiveness loss in the actuator and the capability of CCL to keep the controlla-
bility without recon�gure the control e�ort ([51]). Then, in order to redistribute the e�ect of ith faulty
actuator, considering the recon�guration of control e�ort, the control allocation method is reached by
Pseudo-Inverse approach ([165]) by solving

ω̄ =
(
FBT(BFBT)−1

)
Ū . (5.18)

As it can be noted in (5.18), the reference control signals are distributed between faulty and healthy ac-
tuators according to fault severity. In fault-free case F is set as the identity matrix. However, the control
allocation requires information about the fault occurrence as location, time and magnitude of fault. Such
information can be provided by an actuator Fault Diagnosis (FD) module which executes the task to
detect, isolate and identify the fault.

(a) (b)

Figure 5.25: Comparison between battery current (a) and voltage (b) in healthy and faulty situation.
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Case 1: Fault e�ect without recon�guration

The fault e�ect was simulated as a loss e�ectiveness of 70 % of BLDCM 1 at 200 sec and 30 % of BLDCM
5 at 400 sec (according to Figure 4.3). In Figure 5.25-(a) and 5.25-(b) the result of the battery current
and battery voltage for nominal and faulty cases is shown. When the fault occurs the battery current
increase due the CCL tries to compensate the fault e�ect. In that sense, the discharge rate increase as it
can be observed. This rate increase is noted in the State of Charge in Figure 5.26-(a) where at the end of
the mission, the minimum SoC in nominal case is 50.24 % and for the faulty case is 39.48 % with a �nal
energy of 207.3 kJ or 57.58 Wh and maximum �ight endurance of 18 min and 13 sec.

(a) (b)

Figure 5.26: Battery State of Charge at nominal and faulty case (a) and Remaining Mission Time (b).

Case 2: Fault e�ect with recon�guration

The control signal e�orts after fault occurrence are distributed between the faulty and healthy actuators,
2 sec after the fault is detected, isolated and its magnitude is identi�ed. In the case of recon�guration of
fault in actuator 1 (in Figure 5.27)-(b)), the current tends to decrease in comparison with the faulty case,
however when the fault in actuator 5 occurs, the �nal energy consumption is 192.8 kJ or 53.55 Wh with
a maximum �ight endurance of 16 min and 28 sec. In such case the recon�guration of faulty actuator
reduce the discharge rate of �rst fault allowing to ful�ll the mission within the maximum �ight endurance
and energy. In Figure 5.29 the result of recon�guration of fault in actuator 5 is shown. As it can be
observed there is not a signi�cant change in the current magnitude and SoC as well as maximum �ight
endurance are close to faulty case. In such case, the maximization of �ight endurance and minimization of
energy consumption after the occurrence of the fault cannot be achieved. This is mainly caused by e�ect
of battery discharge which at certain values of SoC the battery voltage exhibits unpredictable discharge
rate. In order to compensate such e�ect it is necessary to consider additional actions like to reduce the
�ight speed of vehicle or recon�gure the initial path by reducing the number of way-points. In addition,
it is necessary to determines at which SoC levels it is possible to recon�gure the control e�orts without to
recon�gure the initial mission conditions.
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Figure 5.27: Battery battery current with recon�guration of fault in actuator 1.

Figure 5.28: Battery battery current with recon�guration of fault in actuator 2.

Figure 5.29: Battery SoC after recon�guration.
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Figure 5.30: Remaining Mission Time after recon�guration.

5.3 Conclusions

In this Chapter the main elements describing the mission planning methodology were presented. A method
to generate minimum energy paths based on a minimization problem was implemented and compared
against path generation method based on polynomial functions. The minimum energy paths generated
demonstrated that it is possible to minimize the energy consumption during the mission execution taking
into account the constraints associated to hexarotor dynamics and battery limitations as discharge e�ects
or State of Health. The interaction between prognosis module with path planning allows to compute the
mission time according to �ight endurance prediction and to determine the maximum endurance before to
launch the mission. On the other hand, the introduction of fault e�ects in hexarotor actuators allowed to
evaluate the necessities to apply a re-planning of the original path in order to avoid the hexarotor crashes
due that the energy is not enough to continue with the mission.



Chapter 6

Conclusions and perspectives

In this �nal Chapter, the conclusions and main results about the di�erent elements integrating the mission
planning strategy will be presented. In addition, the core of the contribution is composed by the develop-
ment of Prognosis Module (to execute the SoC estimation, SoH prediction and mission time computation),
Path De�nition (based on multi-objective minimization problem) and Mission Planning Strategy (inte-
grating all elements). In that sense, the following conclusions are presented in order to highlight the
contributions of this thesis.

6.1 Prognosis and Health Management module

According to results presented in Chapter 4, the Prognosis and Health Management methodology was
applied to propulsion system of hexarotor, particularly to battery. This is because the battery is the
component within the UAV that requires more attention to develop a mission regardless of the application.
On the other hand, However, due to the dynamics that describe the behavior of the battery, the main
phenomenon that must be characterized is aging. Aging, as described in Chapter 4, is mainly characterized
by the number of charge/discharge cycles and in turn is noticeable once a large number of cycles have
been reached. When the problem of battery aging is considered within the development of a mission,
it is considerable to introduce strategies or methodologies that take into account energy consumption.
Then, taking into account the results presented in Chapter 4, the following conclusions are retaken and
re-marked:

• Estimation of battery State of Charge (SoC). In order to ensure a proper and accurate calculation
of the total charge of the battery during the development of the mission, it was chosen to use an
Extended Kalman Filter (EKF) to estimate the State of Charge of the battery. The EKF in com-
parison with the classic Coulomb Counting (CC) method, proved to o�er a better characterization
of the battery charge during the development of the mission.

• Computation of battery SoH by using degradation models. The use of model-based Prognosis tech-
niques allowed to de�ne two models of degradation that characterize the aging of the battery: the
capacity loss and the increase of the internal resistance. With such degradation models, it is pos-
sible to determine the current state of battery State of Health (SoH), determine energy limits and
establish replacement times.

• Prediction of FE during mission development and computation of Remaining Mission Time (RMT).
Within the main requirements of the mission, is the maximum �ight time. As demonstrated in
chapter 4, using battery information such as capacity (in Ah) and taking into account the dynamics
of the actuators, it was possible to establish the maximum energy that the battery can supply and
the maximum �ight time according to the current demanded by the actuators. in addition, the main
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contribution around this conclusion is the generated endurance model, which is able to determine
the maximum endurance according to battery characteristics as Capacity and C-rate and demanded
current per BLDCM.

In perspective, it is important to remark that the proposed method considers that the battery aging is
mainly liking to battery cycling in that sense. It is necessary to ensure about the real aging of the battery
by running degradation tests which take into account di�erent operation conditions associated to C-rate
and temperature. On the other hand, the Prediction of FE requires experimental validation considering
outdoor mission with large �ight time and long distance. However, the simulation results are representative
of what might happen during a real mission.

6.2 Mission planning and path planning

On the other hand, the mission planning strategy and path planning based on energy consumption al-
lowed to establish the relationship between Prognosis Module and energy consumption with hexarotor and
propulsion system dynamics. As it was shown in Chapter 5, the use of polynomial functions is useful to
meet the requirements of smooth and minimum energy trajectories. However, such assumption is based
on the fact that the hexarotor has an adequate and robust position control and orientation capable of
following a reference trajectory with a tracking error close to zero. In that sense, the use of optimization
techniques based on the criteria of minimum energy, resulted in a better option because such techniques
take into account the restrictions associated with the vehicle, such as the control inputs, the SoC and SoH
of the battery. With this, it is possible a) to identify the energy limitations of multirotor UAV during
mission development and b) Improve the multirotor �ight capabilities by taking into account the energy
consumption, and �nally c) the maximization of Flight Endurance (FE) in order to have long-time mission
for general applications (surveillance, exploring, mapping and photogrammetry) by taking into account
the battery limitations.

On the other hand, the method used to generate the Cascade Control Loop, such as the consideration of a
linear model for hexarotor dynamics and the integration of propulsion system allowed to generate a more
realistic representation of real behavior of a �ight. However, the objective of this thesis was not create a
control loop but due to the dynamics of hexarotor it was necessary to include that information during the
thesis development. In addition, the analysis around fault e�ects was to demonstrate the capabilities of
the proposed method to manage the faulty situation, in that sense, the analysis and obtained results were
only to emphasize the need to include a Fault Tolerant Control system but such development is out of the
vision of this work. However, it will be considered in future works.

As it was mentioned in Chapter 3, during description of Cascade Control Loop, the mission planning and
path planning method introduced in this thesis are focus to execute mission with long time-distance path
without aggressive maneuvers. In that sense, the prognosis of FE and RMT plays an important role to
determine the maximum �ight time and to de�ne the constraints of energy supplied by battery.



Appendix

Appendix A. Parametrization of lithium battery

In order to obtain the parameters of the dynamic model of the battery voltage, a process of parameter
identi�cation is performed by using experimental data from a Li-Po battery. Such procedure is based on
the methodology proposed by ([31]). In Table 6.1 the characteristics of the Li-Po battery are enlisted.

Table 6.1: Characteristics of the battery
Parameter Value

Cells 4

Capacity 6200 mAh

C-Rate 25 C

Min voltage per cell 3.5 V

Max voltage per cell 4.2 V

Total minimum voltage 14 V

Total voltage max 16.8 V

In addition, the parameter estimation is based on the mathematical model of battery which is expressed
as an equivalent circuit model (Figure (6.1)) as described in Chapter 3.

Figure 6.1: Equivalent Circuit Model of Li-Po battery.

V̇SoC = − Ibatt
3600 · CT

V̇d = − Vd
Rd · Cd

+
Ibatt
Cd

VBatt = VOCV (VSoC)− Vd −Rint Ibatt,

(6.1)
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where the VOCV (VSoC) is a function of State of Charge and mathematically could be expressed as:

VOCV (VSoC) =
n∑
i=0

λiV
i
SoC + ln(VSoC)VSoC . (6.2)

n determines the order of the polynomial, and λi are the polynomial coe�cients. It can be noted that the
nonlinear function (6.2) is not unique and its formulation is obtained through experimental tests.

A discharge current pro�le characterized by steps was applied to the battery through a rheostat. The test
consisted in applying a current step for twenty-seven minutes followed by a rest period of the same time
value in order to reach the Open Circuit Voltage (OCV). Each current step discharged the battery in steps
of 10 %. In Figure 6.2 the demanded current pro�le and battery voltage are shown.

Figure 6.2: Discharge current pro�le and battery voltage.

The State of Charge (SoC) of a cell or a battery at a given time is the proportion of the charge available
at that instant of time, compared to the total charge available when it is fully charged. It is expressed
in percent from 100 % (or 1 %) when the battery is full charged and, 0% when it is empty. The SoC
evaluation function is also known as the fuel gauge, especially in Electrical Vehicle's because of its analogy
to a gas car's fuel gauge. Coulomb counting or Ampere-hour counting is the most commonly used method
for SoC computation ([61]), such as

SoC (t) = SoC (to)−
1

3600CT

t∫
to

Ibatt(t)dt, (6.3)

where to represents the initial time. Figure 6.3 shows the SoC of the battery computed through Coulomb
counting which corresponds to the demanding current applied to the battery. It is also observed that the
battery reached the minimum total voltage of 14.5 V. The measurement of the SoC allows to know the
�nal value of discharge of the battery.
The relationship between the SoC in each rest period and the open circuit voltage of the battery is shown
in Figure 6.4. Note that, there is a nearly linear behavior from 50% to full charge, an exponential decay
until reaching 0% of charge. This behavior was characterized by the following polynomial function:

VOCV (SoC) = 13.55SoC(t)5− 41.10SoC(t)4 + 46.49SoC(t)3− 21.94SoC(t)2 + 5.22SoC(t) + 14.52. (6.4)

Identi�cation through Least-Square

According to system (6.1), the total voltage battery is a di�erence between the open circuit voltage and
two voltage drops: VRint(t) and Vd(t) as
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Figure 6.3: State of charge of the demanding current.

Figure 6.4: Relationship between the SoC and the open circuit voltage.

Vbatt(t) = VOC(SoC(t))− VRi(t)− Vd(t), (6.5)

The open circuit voltage as it was mentioned above is a function of the state of charge of battery, and it
represents the static behavior of the battery voltage. In this sense, by means of subtracting this voltage
from the battery total voltage Vbatt(t) of the experimental data, the transient behavior of the battery
voltage denoted by Vtrans(t) is computed as follows (to see Fig. 6.5):

Vtrans(t) = Vbatt(t)− VOC(SoC(t)) (6.6)

= Vd(t)− VRint(t)

Figure 6.5: Relationship between the SoC and the open circuit voltage.

By considering the Laplace transformation of the Vtrans(t):

Vtrans(s) =

(
1
Cd

s+ 1
RdCd

+Rint

)
Ibatt(s), (6.7)
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and a sampling time Ts, the above equation is discretized by the backward Euler method, considering
s = 1−z−1

Ts
, as follows:

Vtrans(z) =
b0 + z−1b1
1 + z−1a1

Ibatt(z), (6.8)

where b0 = Rint, b1 = Ts/Cd + TsRint/CdRd − Rint, and a1 = Ts/CdRd − 1. The above discrete transfer
function can be written as di�erence equation:

Vtrans(k) = b0Ibatt(k) + b1Ibatt(k − 1) (6.9)

−a1Vtrans(k − 1).

The parameters b0, b1, and a1 can be determined by using the method of least-squares (LS), which is
derived as follows:

Vtrans(k) = ξT(k)γ, (6.10)

with the parameters vector

γ = [a1, b0, b1]
T, (6.11)

and discrete-time data of the system

ξ(k) = [−Vtrans(k − 1), Ibatt(k), Ibatt(k − 1)]T, (6.12)

the least-square estimate is computed as:

γ̂(k) = (ξTξ)−1ξTVtrans(k). (6.13)

The obtained parameters are registered in Table 6.2. Note that the parameter b0 corresponding to the
internal resistance of the battery which can be used to determined the state of health of the battery and
to predict the remaining useful life by considering prognosis techniques.

Table 6.2: Parameters of the battery model
Parameter Value

Rd 3.7307× 10−3 Ω

Cd 9.5730× 103 F

Rint 0.0392 Ω

A comparison between the mathematical model and experimental data is made in order to show the
capacity of the model to characterize the dynamic behavior of the battery with the estimated parameters.
The response of the mathematical model was compared with experimental voltage of the battery in Fig.
6.6 and the mean square error (MSR) was computed with a value of 9.5681 × 10−4. Other comparison
was made with experimental data obtained from the battery by applying a constant current of 5A. In
Fig. 6.7 the comparison between the model response and the experimental voltage is shown, with a MSR
of 0.0061. As it can be observed in both comparisons the mathematical model reproduce adequately the
dynamical behavior of the experimental voltage.



Figure 6.6: Comparison 1 between the mathematical model and experimental data.

Figure 6.7: Comparison 2 between the mathematical model and experimental data.
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