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Resumen

Este documento presenta el desarrollo y diseño de una nueva metodoloǵıa basada en

la caracteŕıstica promedio de Euler-Poincaré aplicada a las señales biomédicas.

Esta investigación analiza una de las señales biomédicas del cuerpo humano,

espećıficamente las señales eléctricas del corazón. Un electrocardiógrafo adquiere

esta señal, y el electrocardiograma (EKG) es su representación. El objetivo es crear

un modelo de señales EKG utilizando métodos de identificación de sistemas. Sin

embargo, los métodos de identificación clásicos no son factibles para este propósito,

por lo que desarrollamos y diseñamos un nuevo enfoque.

La metodoloǵıa propuesta para el modelado de EKG se divide en seis pasos;

el primero es realizar un pretratamiento de la señal utilizando polinomios para fil-

trar y suavizar el EKG. El segundo es la construcción de un campo aleatorio no

gaussiano utilizando la señal del EKG filtrada. El tercero trata de obtener sus

propiedades geométricas centradas en sus conjuntos de excursión Au( phi, T ). Pos-

teriormente, el cuarto paso es transformar el conjunto de excursiones en una imagen

2D. Luego, el quinto paso es extraer la caracteŕıstica invariante topológica llamada

caracteŕıstica promedio de Euler-Poincaré. Y finalmente, la señal procesada se trata

matemáticamente para obtener un nuevo modelo probabiĺıstico expĺıcito, denomi-

nado caracteŕıstica promedio de Euler-Poincaré descompuesta (DMEPC).

El método propuesto produce un modelo reducido con una interpretación viable

para diferentes afecciones card́ıacas investigadas para los datos emitidos a partir de

registros Holter. En este número se estudiaron los eventos de infarto de miocardio,

desmayo y derrame cerebral.

El segundo caso es la extensión de la aplicación de la metodoloǵıa antes men-

cionada a la tarea de clasificación. Con este objetivo en mente, se modificó el paso
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final. En su lugar, utilizamos un modelo basado en conjuntos KNN para clasificar

la apnea del sueño a partir de las grabaciones de Holter EKG.



Abstract

This document presents the development and design of a new methodology based on

the mean Euler-Poincaré characteristic applied to the biomedical signals.

This research analyzes one of the human body’s biomedical signals, specifically

the electric heart signals. An electrocardiograph module acquires this signal, and the

electrocardiogram (EKG) is its representation. The objective is to create a model of

EKG signals using systems identification methods. However, classical identification

methods are not feasible for this purpose, thus, we developed and design a new

approach.

The proposed methodology for EKG modeling is divided into six steps; the first is

to lead a pre-treatment of the signal using polynomials to filter and smooth the EKG.

The second is building a non-Gaussian random field using the filtered EKG signal.

The third deals with getting their geometric properties centered on their excursion set

Au(φ, T ). Afterward, the fourth step is to transform the excursion set to a 2D image.

Then, the fifth step is to extract the topological invariant feature called mean Euler-

Poincaré characteristic. And finally, the processed signal is mathematically treated

to obtain a new explicit probabilistic model, referred to as the decomposed mean

Euler-Poincaré characteristic (DMEPC).

The proposed method produces a reduced model with a viable interpretation for

different heart conditions investigated for data issued from Holter EKG recordings.

In this issue, the myocardial infarction, stroke, and syncopal events were studied.

The second issue is the extend the application of the before stated methodology

to classification task. With this goal in mind, the final step was modified. Instead,

we used a model based on ensemble KNN to classify sleep apnea from Holter EKG

recordings.
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3.3 Mean Euler-Poincaré characteristic . . . . . . . . . . . . . . . . . . . 37

3.4 Volume of tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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4.4 Mean Euler-Poincaré Characteristic . . . . . . . . . . . . . . . . . . . 53

4.4.1 Algorithm to get the mean Euler-Poincaré characteristic . . . 56
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5.3.2 Mean Euler-Poincaré characteristic . . . . . . . . . . . . . . . 73



Contents xii

5.3.3 Ensemble KNN classifier . . . . . . . . . . . . . . . . . . . . . 76

5.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Comparative with the literature . . . . . . . . . . . . . . . . . . . . . 81

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Conclusion 86

6.1 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Bibliography 89

A Publication produced 100

B Libraries 102

B.1 WFDB Toolbox for MATLAB . . . . . . . . . . . . . . . . . . . . . . 102



List of Figures

1.1 A system with an output y, an input u, measured disturbances w and

unmeasured disturbances v. . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The system identification loop. From Ljung [1]. . . . . . . . . . . . . 3

1.3 Block diagram of the Acharya’s method for classifying MI, from Acharya

et al. [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Representation of the electrocardiogram or an EKG. . . . . . . . . . . 12

2.2 It shows a random field at the top, and at the bottom, it presents the

concepts of boundedness and field when we used a threshold u to cut.,

because one property of these fields, it is that can be separated. . . . 14

2.3 A simulated Brownian sheet on [0, 1]2, along with its contour lines at

the zero level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Some examples of the values from Euler characteristic χ = V−E+F in

some polyhedra show that all the EC values are equal to 2. Remember

that V = vertices, E = edges, and F = faces. . . . . . . . . . . . . . 24

2.5 E{ϕ(Au)} : N = 1. a) λ2 = 200, b) λ2 = 1000 with σ2 = 1.From [25]. 27

2.6 E{ϕ(Au)} : N = 2. a) λ2 = 200, b) λ2 = 1000. From [25]. . . . . . . . 27

3.1 The resume of the methodology. . . . . . . . . . . . . . . . . . . . . . 34

4.1 EKG signals extracted from the SHAREE database. . . . . . . . . . . 45

4.2 Histogram to select the best order of the polynomials P1 (P-waves)

for each cardiac cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Histogram to select the best order of the polynomials P2 (T-waves)

for each cardiac cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xiii



List of Figures xiv

4.4 The graph Down cycle shows the polynomization for the P-wave; in

the Up cycle shows the polinomization for T-wave. The Full cycle

shows the raw EKG and the P1(c) and the P2(c). . . . . . . . . . . . 48

4.5 An example of NGRF of P-waves. . . . . . . . . . . . . . . . . . . . . 50

4.6 Non-Gaussian random field cut by a level u = 0.2. . . . . . . . . . . . 51

4.7 Excursion set of the Non-Gaussian Random Field at u = 0.1 for a

control patient’s P-waves. . . . . . . . . . . . . . . . . . . . . . . . . 51

4.8 Excursion set of the Non-Gaussian Random Field at u = 0.1 for a MI

patient’s P-waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.9 Expected EPC from the 11 control patients. . . . . . . . . . . . . . . 54

4.10 Expected EPC from the 11 myocardial infarction patients. . . . . . . 54
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Chapter 1

Introduction

A system is a set of elements characterized by many variables that interact and

produce observable signals. These signals are called outputs and are essential to

describe the behavior of the system. External signals influence this behavior. Those

that the observer can manipulate are called inputs and are known signals. Others are

called disturbances, which are unknown signals, but their influence on the outputs

can be observed. A system is described in Figure 1.1.

Figure 1.1: A system with an output y, an input u, measured disturbances w and

unmeasured disturbances v.

System identification theory is widely used to obtain a mathematical representa-

tion of the dynamical behavior of many systems like electrical, mechanical, industrial

processes, etc. System models obtained by identification techniques can be formu-

lated from measured data, based on three entities, described by Ljung [1] as:

1. Data recording. Imply the input-output data record of the system behavior.

1
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2. Collection of estimated candidate models.

3. Rules to determinate the best model in the set, using the data.

System identification theory keeps building a model using input-output data from

a process. The procedure has three essential elements: the data set, the collection

of models with a defined structure, and the rules for evaluating the model.

Ljung [1] proposed a methodology of identification that starts by considering

the model’s final goal, followed by the experimental design, ending with the model

formulation. Figure 1.2 represents this methodology and is described below:

1. Get Record input-output data set: this step has to do with direct experimenta-

tion in the process, it consists of applying a signal in the input, to generate an

output, then record the input-output evolution with a certain time frequency.

2. Conduct data pre-processing: most of the time, noise or undesired signal ac-

company the acquired data. Then, in order to get more manageable data,

filtering is the main action.

3. Choose the model structure: in this step the aim is to determine the mathemat-

ical identification structure and the adequate order of the process to identify.

A priori knowledge and engineering insight make the selection easier.

4. Obtain the ”best” model: this step has to do with the identification method.

Here, the parameters are estimated attempting to match the model’s response

to the input-output data acquired from the experiments.

5. Model validation: the last step is applying several tests to the model to de-

termine if it satisfies the chosen criterion. However, the model can have many

deficiencies for many causes:

(a) The numerical procedure failed to find the best model according to our

criterion.

(b) The criterion was not well chosen.

(c) The model set was not appropriate because it did not contain any ”good

enough” description of the system.
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(d) The data set was not informative enough to provide guidance in selecting

good models.

Figure 1.2: The system identification loop. From Ljung [1].

A well suited book on the topic, by Ljung [1], described parametric and nonpara-

metric methods, parameter estimation methods in the prediction error framework,

reported frequency domain data and interpretations, various ways to compute es-

timates, recursive estimation techniques, model validation,and case studies. Also,

when input or output signals have static nonlinearities, we can use structures where

we have a static non-linear block and a dynamic linear block like NARX, Hammer-

stein, Wiener, or a combination Hammerstein-Wiener.
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Deterministic mathematical models, expressed in terms of an algebraic, differen-

tial, partial differential, or integral set of equations, as well as the standard identifi-

cation procedures outlined earlier, are not always fitting to model some systems.

For biomedical signals, the modeling task needs the best understanding of the

biological phenomenon. In the human body, many variables can be observed and

measured; in this work, we focus on the heart’s electrical signals.

An electrocardiograph can detect the heart’s electrical behavior, and the data

recorded by this device is called an electrocardiogram (ECG, or EKG). The test

detects cardiovascular problems and monitors the state of the heart.

According to the identification methodology, the first step is to record the input

and output data set. In the EKG signals, we can not apply a signal in the input

to generate an output. So that, our approach considered an EKG as a unique

signal.From this point of view, we only have an output.

This thesis introduces a new methodology to model the heart’s electrical behavior

and a new method to classify cardiac diseases. This approach combines geometry

and statistics.

The next sections aim to describe the various studies published about the EKG

signals modeling. Then, the objectives of the thesis are given, and the study case is

presented.

1.1 Background

The compilation of works taken as a reference for this work was divided into two

sections, a section that gathers research related to the treatment of electrocardio-

graphic signals. The other covers discussions about geometry, random fields, and

mean Euler-Poincaré characteristic, which are concepts highly related to to the layed

out methodology.

1.1.1 Treatment of EKG signals

To construct a mathematical model for representing a dynamic system by equations

that involve many parameters is a challenging task. For example, McSharry et al.

[2] proposed a dynamical model to generate synthetic EKG signals using ordinary
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differential equations. An alternative method to obtain a model is handling input-

output data of the system.

The methodology that uses input-output data is named system identification

theory. Ljung [1] compiled the principles of this method.

Models for several engineering systems, such as electrical, mechanical, industrial

processes, and the automotive industry have widely been conceived by the system

identification method. However, for use in biomedicine and medicine, this method

is less practiced. A few examples are describing below, Jalali et al. [3] obtained

a nonlinear autoregressive exogenous model (NARX) that estimate the heart rate

(HR) baroreflex mechanism. The model relates and the HR as output and the

arterial blood pressure(ABP) as input. Another example is explained in [4]; the

authors obtained a MIMO model for predicting the HR in a Lokomat walking. This

model used two outputs, the power of the human and the treadmill speed, and one

input, the (HR) variation.

In this thesis we worked with biomedical signals, especially with electrical signals

from the heart, recorded by EKG. To handle this kind of signals with the aim to

obtain a model via classical methods described by Ljung [1] is a cumbersome task,

so we looked for another approach that would enable the development of a model

for this type of application.

There exist a lot of biomedical signals, so we focus only on EKG signals. In the

literature, we found several methods to analyze them. We summarize them below.

Pan and Tompkins [5] developed an algorithm for detecting the QRS complex of

the EKG cycles. This method treated the signal using a bandpass filter and adapted

a threshold technique for searching the beats. It was evaluated using a 24 h MIT/BIH

arrhythmia database and reached 99.3 percent of the QRS complexes search. Also,

we used this algorithm to detect the R-peaks in the methodology proposed.

Heart rate variability (HRV) analysis is a tool to observe the behavior of the

heart rate (HR) from unpredictable stimuli. The methods for analysis HRV can

be dividing into several domains and features, for example, the time and frequency

domain, non-linear and geometrical features. A review of these characteristics is in

[6]. HRV analysis is an important tool in cardiology, and various methods use it.

Guo et al. [7] worked with HRV features analysis using a support vector machine
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(SVM) and principal component analysis(PDA) for classifying emotions.

In the literature we find several works about the classification of heart diseases,

because it is the principal cause of death around the world. Some research arti-

cles concern coronary artery disease (CAD), myocardial infarction (MI), fibrillation

auricular (FIB), or others.

The principal heart disease in recent years in Mexico is the CAD [8], this affects

the supply of blood into the heart muscle because of narrowed heart arteries. When

the blood flow is blocked, the heart cells die, thus a heart attack or MI is produced.

Some methods to classify the heart diseases are discussing below.

Acharya et al. [9] presented a methodology to classify different types of myocardial

infarction using the wavelet transform as a base to extract various no lineal features

and analyze them with a KNN classifier. This method is shown in Figure 1.3.

Figure 1.3: Block diagram of the Acharya’s method for classifying MI, from Acharya

et al. [9].

The Acharya’s block diagram method can be divided into three main phases

that can be adjusted by applying different approaches. The first phase is the pre-

processing for filtering signals, the second is the processing for extract features, and

the third is the classification.

The filtering step is primordial to remove the baseline wander and eliminate the

noise. In the literature, we can find a decomposition using wavelet functions as

Dauchebies6 (db6) in [9],[10],[11], and [12]. Banerjee and Mitra [13] used a discrete

wavelet method that decomposed the EKG and made reconstruction to eliminate the

noise and baseline wander, and analyze patterns in the EKG for classifying normal

and abnormal data. Banerjee’s method for filtering is also appropriate (see [14]).

In [15] it was also used a wavelet function to detect the noise and eliminate it from

the raw signal, then the features were extracted, and finally, by means of a k-nearest

neighborhood(KNN) classifier it was possible to detect MI. T wave amplitude, Q

wave, and ST level deviation got from 12 lead EKG, constructed the feature vector
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to be analyzed by the classifier.

Dolatabadi et al. [16] implemented a bandpass filter to eliminate the noise and

detect the R-peaks using the Pan-Tompkins algorithm. Then they extracted HRV

features and used PCA and SVM to classify coronary artery disease (CAD).

Sun et al. [17] used a discrete cosine transform over bandpass filter from [18].

Then, they used the ST segment to create a sixth-order polynomial, and took into

account 12 leads of the EKG. Later, they created a vector of 72 coefficients. Finally,

they used a latent topic multiple instance learning (LTMIL) for automated ECG

classification.

Sleep apnea is another disease typically studied with the aid of EKG signals;

da Silva Pinho et al. [19] managed the noise with a median filter, then extracted

HRV and ECG-derived respiration (EDR) signals features. These are the inputs for

an artificial neuronal network with a hyperbolic tangent sigmoid transfer function

and linear transfer function in the layers to classify these inputs as sleep apnea or

nop-apnea patient.

1.1.2 Geometric approach

This work deals with a method to transform an EKG signal into a geometrical

structure. The main idea is to gather random polynomial and topological indicators

from NGRF. So the background for this idea is the following.

Random algebraic polynomials (RAP) are relevant to engineering, physics, or

economics goals. Bharucha-Reid and Sambandham [20] wrote an excellent work

that describes the properties of random orthogonal and trigonometric polynomials.

A big deal for using RAP is to identify the number of real zeros. In this interest,

Kac [21] gave the formula to get the expected number of real zeros of a RAP. Other

works that implement the Kac’s formula are, for example, [22], [23], and [24]. In our

method, RAP is used as a filter.

Random fields (RF) give a statistical description of complex random patterns

of change and relationships from physical data sets [25, 26, 27]. The geometry and

properties of RF have been discussed in the literature. Adler and Taylor [25] wrote

many estimations for the geometric structure of the excursion set for a Gaussian RF

using differential topology and integral geometry. They also wrote about the mean
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Euler-Poincaré characteristic in these Gaussian RF.

For the RF, we found that the distribution can be Gaussian or non-Gaussian.

Related to the Gaussian cases, we found several works with applications in math-

ematics, sciences, and engineering [28]. GRF are considered a tool. A noticeable

issue to increase their applications has been accessing information from biomedical

images. For this interest, Shaikh et al. [29] used Markov irregular fields (MRF) to

address biomedical image analysis by image segmentation, object labeling, and 3D

vision. Later, Zhang et al. [30] developed a Bayesian framework that introduces

an adjustable parameter on a Generalized Adaptive Gaussian Markov random field

(GAGMRF) model to adjust the image quality for X-ray Luminescence tomogra-

phies. Researches that engage in RF concern also medical analyses. As an example,

we refer to the work in [31], where statistical methods assisted morphometric analy-

ses of specific subregions of the brain. In this work, they used GRF to differentiate

the shape of the amygdala and the hippocampus of normal subjects facing patients

with attention-deficit/hyperactivity disorder (ADHD). Another type of RF usage

points to disease mapping. For example, Ferreira and De Oliveira [32] proposed a

Bayesian analysis of a Gaussian Markov random field (GMRF) to determine the

spatial variability of lip cancer cases in Scotland in five years.

The theory of Adler and Taylor has been extended to Gaussian-related RF

(namely, χ2, F , and t fields) [33]. Later, Adler et al. [34] further study the ex-

cursion sets of non-Gaussian random fields (NGRF) holding high levels. High peaks

in an RF are due to noise, high frequencies, states, or other behaviors. Adler and

Taylor [25] presented a special description of NGRF of the form f(t) = F (y(t)) =

F (y1(t), . . . , yk(t)) where the yj(t) are a collection of independent, identically dis-

tributed (i.i.d.) GRF. Because some cases are defined in this way, and it is hard

to get a function F to encode the behavior of NGRF, we propose to focus on the

MEPC.

1.2 Research problem

The biomedical signals extract the behavior of many phenomena from the human

body that can be measured. So researchers have been studying these kinds of signals
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due to their relevance. Generally, they use images to create models, classify symp-

toms, or analyze shapes or conditions. So, in the case of the electrical heart behavior,

what happens? These signals are time series with regular and random components.

The electrocardiograms are processed using many methods or algorithms based

for example on Wavelet, Fourier, or other transformations. A set of characteristics

can also be obtained from measures in the time-domain or frequency, stated as

geometrical, or no-lineal, among others. With these features, the researchers can

found a behavior to many cardiovascular diseases.

Thus, this research attempts to find new methods for modelling this kind of

biomedical signals, with a focus on EKG signals. Besides, it is kept in mind the

objective to achieve a straightforward form to visualize the information and to de-

tect cardiovascular diseases. As study cases, the EKG of patients with myocardial

infarction and sleep apnea will be studied.

1.3 Main Objective

To apply system identification theory tools for the numerical processing of biomedical

signals in order to provide support in the diagnosis and clinical treatment

1.3.1 Specific objectives

• To develop a mathematical model for the clinical diagnosis of myocardial in-

farction in Holter EKG.

• To develop a methodology that allows to obtain a heart disease model.

• To apply a geometric approach based on random field theory for modeling

biomedical signals.

1.4 Justification

Cardiovascular diseases (CVDs) are the first reason of global deaths. CVDs are a

group of disorders of the heart and blood vessels, and more than 17 million people

die for this reason each year [35].
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Classical strategies to detect, diagnose or classify the CVDs implement a trans-

formation in the frequency domain, namely Wavelet, Hilbert, and Fourier. This

transformation can hide or mislead the researchers data that can be useful to find

the CVDs.

In this research, we alternatively used a geometrical and statistical approach to

studying this type of phenomena’ behavior for modeling the EKG signal and classify

myocardial infarction. A new model based on non-Gaussian RF was developed rather

than applying classical Gaussian RF theory.

1.5 Thesis outline

This work is divided into six chapters. Chapter 1 contains a brief background and

the definition of the objectives. Chapter 2 is a review of the techniques and method-

ologies encountered in the literature regarding the various aspects of this study.

Chapter 3 is dedicated to explain the proposed method from a geometrical and

statistical point of view. In Chapter 4, the first research case with application to

myocardial infarction disease is presented. A probabilistic model produced by the

technique outlined in this work is given as a result of the processing of Holter EKG

recordings. In Chapter 5, the second case study is documented. In this challenge,

we worked with a KNN classifier for sleep apnea detection. Finally, the conclusions

and future works are described in chapter 6.



Chapter 2

Theoretical framework

2.1 Introduction

This section shows the theoretical bases for the new methodology showing in this

thesis. It will explain the theory of random fields and the extraction of mean Euler-

Poincaré characteristic. Also, the basic concepts for the selected biomedical signal

and the KNN classifier.

2.2 Concepts of electrocardiograms

In this section, we talk about the electrocardiogram (EKG) signal. EKG records the

electrical activity produced by the heart. The electrical activity in the internal cells

can be divided into two actions: the relaxation phase, the cells in the heart muscle

are charged, or repolarization occurs, and when they are stimulated electrically, it

contracts . The contraction causes a depolarization [36].

An EKG presents these electrical activity effects in the cardiac cells and identifies

rhythm, disturbances, and conduction abnormalities. Figure 2.1 shows the principal

components in an EKG signal.

P-wave is the first element in a normal EKG; it represents the atrial depolariza-

tion. So that, it means the contraction in the two atrial chambers. Then, a pause of

1/10 s is produced to fill the ventricular chambers.

The second element in a normal EKG is the complex QRS. This phase repre-

11
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sents the onset of ventricular contraction. The physical phenomenon of ventricular

contraction lasts much longer than the QRS complex. Here, we considered the de-

polarization of the ventricular chambers and produced the ventricular contraction.

This contraction ejects blood from the ventricles and pumps it through the arteries,

creating a pulse.

T-wave is the third element in a normal EKG. It represents repolarization or

ventricular recovery.
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Figure 2.1: Representation of the electrocardiogram or an EKG.

2.3 Random Fields Theory

In this thesis, the random field theory is applying to transform the signal into a

geometric structure with a parameter space of dimensionality 2. The principles are

addressing below to understand this idea.

Adler and Taylor [25], along with extensions of Worsley [33, 37, 38], combined

the geometry of topology with probability and statistics. The resulting theory has

become a standard framework for analyzing random fields.

A random field (RF) refers to a stochastic process, habitually taking values in

a Euclidean space, and a determined parameter space of dimensionality at least 1.
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The concept field refers to the geometric structure with a parameter space. From

Adler and Taylor [25] was taken a formal definition,

Definition 2.1 Let (Ω,F ,P) be a complete probability space and T a topological

space.1 Then a measurable mapping f : Ω → RT (the space of all real-valued func-

tions on T ) is called a real-valued random field. Measurable mappings from Ω to

(RT )d, d > 1, are called vector-valued random fields. If T ⊂ RN , we call f an (N, d)

random field, and if d=1, simply an N-dimensional random field.

All random fields are separable. This property involves the topological space

and the measurable mapping. An example is showed in Figure 2.2. This property

involves conditions on both T and f . In particular, an Rd-valued random field f ,

on a topological space T , is called separable if there exists a countable dense subset

D ⊂ T and a fixed event N with P{N} = 0 such that, for any closed B ⊂ Rd and

open I ⊂ T ,

{ω : f(t, ω) ∈ B∀t ∈ I}∆{ω : f(t, ω) ∈ B∀t ∈ I ∩D} ⊂ N. (2.1)

Here, ∆ denotes the usual symmetric difference operator, so that

A∆B = (A ∩Bc) ∪ (Ac ∩B) (2.2)

where Ac is the complement of A.

1When we move to manifolds as parameter spaces, we shall replace T by M . The points in M
will still be denoted by t.
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Figure 2.2: It shows a random field at the top, and at the bottom, it presents the

concepts of boundedness and field when we used a threshold u to cut., because one

property of these fields, it is that can be separated.

Adler and Taylor [25] estimated the geometrical structure of the excursion sets

from a Gaussian random field using the integral geometry (IG) and the differential

topology (DT). Santaló [39] described quite comprehensive studies of IG, where the

geometry, group theory, and probability interact with each other in several problems.

On the other hand, Lee [40] discussed the manifolds in the context of differential

topology.

A manifold describes objects such as curves and surfaces in RN . A manifold main-

tains a dimension, i.e., several “parameters” declare a point. To write a definition

for the manifold, first, a description for ”locally” in a Euclidean space is necessary.

A topological space T is said to be locally Euclidean of dimension n if every point

t ∈ T has a neighborhood that is homeomorphic to an open subset I ∈ RN . This

neighborhood is called a Euclidean neighborhood of t. The next lemma said that an

open subset could replace it with an open ball in RN [40].

Lemma 2.1 A topological space T is locally Euclidean of dimension n if and only if

either of the following proporties holds:

(a) Every point of T has a neighborhood homeomorphic to an open ball in RN .

(b) Every point of T has a neighborhood homeomorphic to RN .
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They call M a topological N -manifold if M is locally compact Hausdorff space2

such that for every t ∈ M , there exists an open U ⊂ M containing t, an open

Ũ ⊂ RN , and a homeomorphism ϕ : U → Ũ .

With these concepts of DT and IG, we can analyze some types of random fields,

especially the Gaussian and Non-Gaussian. Some properties, examples, and excur-

sion probabilities are in the next sections.

2.3.1 Gaussian Random Field

In this section, the theory of Gaussian random fields explains about the excursion

probabilities, some examples of the fields like the Brownian sheet, and some proper-

ties of IG and DT.

An essential case of random fields is the Gaussian fields. Gaussian processes have

rich, detailed, and well-understood theory. That’s one reason to choose this type

of field first, and the second reason is for the application, it is possible to derive

formulas to predict or compare with experiment.

Definitions

A real-valued random variable X is said to be Gaussian (or normally distributed) if

it has the density function

ϕ(x) ,
1√
2πσ

e−(x−m)2/2σ2

, x ∈ R,

for some m ∈ R and σ ≥ 0. Also, the mean of X is m and the variance σ2, and

the characteristic function is given by

φ(θ) = E{eiθX} = eiθm−σ
2θ2/2.

Also, we can abbreviate as X ∼ N(m,σ2). The case m = 0, σ2 = 1 is rather

particular, and in this situation, we say that X has a standard normal distribution.

Generally, if a random variable or process has zero mean, we call it centered.

2A topological space T is said to be a Hausdorff space if given any pair of distinct points
q1, q2 ∈ X, there exist neighboorhoods U1 of q1 and U2 of q2 with U1 ∪ U2 = ∅ [40].
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An Rd- valued random variable X is said to be multivariate Gaussian if, for every

α = (α1, . . . , αd) ∈ Rd, the real-valued variable 〈α,X ′〉 =
∑d

i=1 αiXi is Gaussian. In

this case there exists a mean vector m ∈ Rd with mj = E{Xj} and a nonnegative

definite d x d covariance matrix C, with elements cij = E{(Xi−mi)(Xj−mj)}, such

that the probability density of X is given by

ϕ(x) =
1

(2π)d/2 |C|1/2
e−

1
2

(x−m)C−1(x−m)′ (2.3)

where |C| = detC is the determinant of C. We can write as X ∼ N(m,C), or

X ∼ Nd(m,C) if it is necessary to emphasize the dimension.

Boundedness and continuity

In this section, the conditions for a centered Gaussian field on a parameter space T

to be almost indeed bounded and/or continuous are determined, i.e., determining

requirements for which

P
{

sup
t∈T
|f(t)| <∞

}
= 1 or P

{
lim
s→t
|f(t)− f(s)| = 0,∀t ∈ T

}
= 1.

When we talk about continuity, i.e., for the notation s → t above, T must have

some topology, and we assume that (T, τ) is a metric space. Also, that continuity is

in terms of the τ -topology.

The first step is to define a new metric d on T by

d(s, t) , {E[(f(s)− f(t))2]}1/2 (2.4)

where d is the canonical metric for T and/or f . Also, d is only a pseudometric,

because d(s, t) = 0 does not necessarily imply that s = t.

We are interested in the f continuity so, we suppose that supT E{f 2
t } < ∞ and

that f is a.s. continuous. Then

lim
s→t

d2(s, t) = lim
s→t

E{(f(s)− f(t))2} = E
{

lim
s→t

(f(s)− f(t))2
}

= 0,

this exchange of limit and expectation said that since f is Gaussian, boundedness

in L2 implies boundness in all Lp or a.s continuity of f implies the continuity of d.
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Here is the lemma establishing the irrelevance of τ to the continuity question [25].

Lemma 2.2 Let f be a centered Gaussian process on a compact metric space (T, τ).

Then f is a.s. continuous with respct to the τ -topology if and only if it is a.s. con-

tinuous with respect to the d (psedo)topology. More precisely, with probability one,

for all t ∈ T ,

lim
s:τ(s,t)→0

|f(s)− f(t)| = 0⇔ lim
s:d(s,t)→0

|f(s)− f(t)| = 0.

In the Lemma above the parameter space T was assumed to be compact. From

now on, this assumption will always be taken as the case to be analyzed.

The next definition talks about when we need to measure the size of T using a

metric entropy.

Definition 2.2 Let f be a centered Gaussian field on T, and d the canonical metric

2.4. Assume that T is d-compact, and write

Bd(t, ε) , {s ∈ T : d(s, t) ≤ ε} (2.5)

for the d ball centered on t ∈ T and of radius ε. Let N(T, d, ε) ≡ N(ε) denote

the smallest number of such balls that cover T, and set

H(T, d, ε) ≡ H(ε) = ln(N(ε)) (2.6)

Then N and H are called the (metric) entropy and log-entropy functions for T

(or f). We shall refer to any condition or result based on N or H as an entropy

condition/result.

Since we are assuming that T is d-compact, it follows that H(ε) < ∞ for all

ε > 0. Furthermore, we define

diam(T ) = sup
s,t∈T

d(s, t) (2.7)

then N(ε) = 1 and so H(ε) = 0 for ε ≥ diam(T ). Next, we have the main result

about boundedness and continuity from Adler and Taylor [25].
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Theorem 2.1 Let f be a centered Gaussian field on a d-compact T, d the canonical

metric, and H the corresponding entropy.Then there exists a universal constant K

such that

E
{

sup
t∈T

ft

}
≤ K

∫ diam(T )/2

0

H1/2(ε)dε (2.8)

With this result, we define the modulus of continuity ωF of a real valued function

F on a metric space (T, τ) as

ωF (δ) ≡ ωF,τ (δ) , sup
τ(s,t)≤δ

|F (t)− F (s)|, δ > 0 (2.9)

The modulus of continuity of f can be thought of as the supremum of the random

field fs,t = ft − fs over a certain neighborhood of T x T , in that

ωf,τ (δ) = sup

(s, t) ∈ T x T

τ(s, t) ≤ δ

f(s, t). (2.10)

And finally, two trivial observations but essential are discussed below.

Observation 1.- If f is a separable process on T then supt∈Tft is a well-defined

random variable.

Observation 2.- If f is a separable process on T and X a centered random variable,

then

E
{
sup
t∈T

(ft +X)

}
= E

{
sup
t∈T

ft

}
.

Examples

This section shows examples of the Gaussian random field. To start, let ft be a

centered Gaussian process on a compact T ⊂ RN and define

p2(u) = sup
|s−t|≤u

E
{
|fs − ft|2

}
(2.11)

where | · | is the usual Euclidean metric. If f is stationary, then
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p2(u) = 2 sup
|t|≤u

[C(0)− C(t)]. (2.12)

Theorem 2.2 is for the family of random fields in RN [25].

Theorem 2.2 If, for some δ > 0, either∫ δ

0

(− lnu)
1
2dp(u) <∞ or

∫ ∞
δ

p
(
e−u

2
)
du <∞ (2.13)

then f is continuous and bounded on T with probability one. A sufficient condition

for either integral in Eq. (2.13) to be finite is that for some 0 < C <∞ and α, η > 0,

E|fs − ft|2 ≤
C

| log |s− t||1+α
, (2.14)

for all s,t with |s− t| < η. Furthermore, there exists a constan K, dependent only

on the dimension N, and a random δ0 > 0 such that for all δ < δ0,

ωf (δ) ≤ K

∫ p(δ)

0

(− lnu)1/2dp(u), (2.15)

where the modulus of continuity ωf is taken with respect to the Euclidean metric.

Next, we show an example of the Brownian family of processes. This kind of field

needs a Gaussian noise based on a finite ν measure. This noise is a random field

W : Tν → R such that for all A,B ∈ Tν ,

W (A) ∼ N(0, ν(A)), (2.16)

A ∩B = ∅ ⇒ W (A ∪B) = W (A) +W (B) a.s., (2.17)

A ∩B = ∅ ⇒ W (a) and W (B) are independent. (2.18)

In the property of Eq. (2.17) is mentioned that W is not generally finite, and in

Eq. (2.18) said that W has independent increments. With these properties, a new

Theorem emerged.

Theorem 2.3 If (T, T , ν) is a measure space, then there exists a real-valued Gaussian

noise, defined for all A ∈ Tν, satisfying Eqs. (2.16)-(2.18).
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When a space is restricted in rectangles of the form [0, t] ⊂ RN
+ , where t ∈ RN

+ =

{(t1, . . . , tN) : ti ≥ 0}, then a random field is defined on RN
+ and denoted

W (t) = W ([0, t]) (2.19)

Wt is called the Brownian sheet on RN
+ , or multiparameter Brownian motion.This

field has the next covariance.

E{WsWt} = (s1 ∧ t1) x · · · x (sN ∧ tN), (2.20)

where s ∧ t , min(s, t). A simulation of a Brownian sheet with its contour lines

is in the Figure 2.3.

Figure 2.3: A simulated Brownian sheet on [0, 1]2, along with its contour lines at the

zero level.

Above in the text, it was mentioned that one of the difficulties in stochastic

processes is the excursion probabilities. The next section talks about it.

Excursion sets

A principal concept in the random field theory is the excursion set. A definition

from Adler and Taylor [25] is mentioned below,

Definition 2.3 Let f be a measurable real-valued function on some measurable space,

and let T be a measurable subset of that space. Then, for each u ∈ R,

Au ≡ Au(f, T ) , {t ∈ T : f(t) ≥ u} (2.21)
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The excursion set is just the set of points where the field exceeds a fixed threshold

value u [33]. Also, it helps to determinate the probability of the RF, that is a difficult

problem [25].

P
{

sup
t∈T

f(t) ≥ u

}
(2.22)

where f is the random field at a compact space T . Another way of looking at

this problem is with the eq. (2.21) of the random field f on the set A over the level

u, since

P
{

sup
t∈T

f(t) ≥ u

}
≡ P {Au 6= ∅} (2.23)

Eq. (2.23) represents an approximation of the probability using the excursion

sets but is not the same as the direct method using Eq. (2.21) [41]. Indeed the

simple case [0, T ] is arduous to compute the excursion probabilities. In this thesis,

the case of study is a non-Gaussian random field. The next section talk about the

principal concepts for a Non-Gaussian Random Field.

2.3.2 Non-Gaussian Random Field

The term “non-Gaussian” is not well marked and covers a wide range of generaliza-

tions. In this section, we talk about the random fields of the form

f(t) = F (y(t)) = F (y1(t), . . . , yk(t)), (2.24)

where the yi(t) are a collection of independent, identically distributed Gaussian

random fields over a parameter space M , and F : Rk → R is a smooth function.

If we choose k = 1 and F (x) = x, then we back to the Gaussian case, but other

choices are interesting random fields. For example, if we considered that the yj are

centered and of unit variance and consider the following three options for F , where

in the third we set k = n+m:

k∑
i=1

x2
i ,

x1

√
k − 1

(
∑k

i=2 x
2
i )

1/2
,

m
∑n

i=1 x
2
i

n
∑n+m

i=n+1 x
2
i

(2.25)
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These random fields are known as χ2 fields with k degrees of freedom, Student’s t

field with k−1 degrees of freedom, and the F field with n and m degrees of freedom.

For this kind of field, the excursion set of a real-valued non-Gaussian f = F ◦ y
above a level u, is equivalent to the excursion set for a vector-valued Gaussian y in

F−1[u,∞] under appropriate assumptions on F , is a manifold with piecewise smooth

boundary.

Au(f,M) = Au(F (y),M) = {t ∈M : (F ◦ y)(t) ≥ u}
= {t ∈M : y(t) ∈ F−1[u,∞)} = M ∩ y−1(F−1[u,+∞)).

(2.26)

An important matter is the study of the mean Lipschitz-Killing curvatures,

E{Li(Au(f,M))} = E
{
Li(M ∩ y−1

(
F−1([u,+∞))

)
)
}
. (2.27)

This function is general, so is the set F−1([u,+∞)), which will generally be a

stratified manifold in Rk. But,when we take a suitable subset D ⊂ Rk, and we have

suitable stratified manifolds M , we have

E
{
Li(M ∩ y−1(D))

}
=

dimM−i∑
j=0

[
i+ j

j

]
(2π))−j/2Li+j(M)Mγ

j (D), (2.28)

where

[
n

m

]
are the combinatorial flag coefficients and the Mγ

j = MγRk
j are the

generalized (Gaussian) Minkowski functionals. In Eqs. 2.27) and (2.28) are com-

puted with respect to the Riemannian metric induced on M by the individual Gaus-

sian fields yj.

The parameter spaces for the random fields in this section are denoted by M and

not T . It means that we work with manifolds,and the structure of F−1([u,∞)) is

also a manifold.

The first step to compute a general form for expectation in Eq. (2.28), shows

that it must be of the form



Chapter 2. Theoretical framework 23

E
{
Li(M ∩ y−1(D))

} dimM−i∑
j=0

Li+j(M)p̃(i, j,D), (2.29)

where p̃ depends on all the parameters given, but not on the distribution of the

underlying Gaussian fields yj.

With Eq. (2.29), we need to establish the form of the function p̃. In order to find

it, we can freely choose the manifold M and the Gaussian fields yj, since the result

can not depend on these choices. The choice selected was a specific rotationally

invariant field restricted to subsets of a sphere, and a theorem is describing it in [25].

Theorem 2.4 Let M be an N-dimensional, regular stratified manifold embedded in

M̃ , also of dimension N, and let D be a regular, stratified manifold in Rk, k ≤ 1.

Let y = (y1, . . . , yk) : M → Rk be a vector-valued Gaussian field, the components yi

of which are independent, identically distributed, zero-mean, unit-variance Gaussian

fields satisfaying the conditions of Corollary 11.3.5.

Let Lj, j = 0, . . . , N , be the Lipschitz-Killing measures on M with respect to the

metric induced by the yi as defined in (10.7.1). Then there exist functions p̃(i, j,D)

dependent on all the parameters displayed, but not on the distribution of the under-

lying Gaussian fields yj, such that

E
{
Li(M ∩ y−1(D))

}
=

N−i∑
j=0

Li+j(M)p̃(i, j,D). (2.30)

2.4 Euler-Poincaré Characteristic

The Euler-Poincaré characteristic is a topological invariant, is a property in a topo-

logical space that is invariant under homeomorphisms, describing the topological

space’s shape or structure regardless of the way it is bent.

The Euler characteristic made by Leonard Euler (1707 - 1783) observed that the

number of vertices minus the number the edges plus the number of faces always

equals 2 in the ordinary polyhedra [42].

χ = V − E + F represents the topological invariant called Euler characteristic

(EC), and in Fig. 2.4 shows some examples. As you note, the polyhedra observed

in Figure 2.4, all have the value of EC equal 2.
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Figure 2.4: Some examples of the values from Euler characteristic χ = V − E + F

in some polyhedra show that all the EC values are equal to 2. Remember that V =

vertices, E = edges, and F = faces.

Some applications with images, in particular in the fields of astronomic and

treatment of brain images, they used the EC to analyze the expansion of the groups

of bodies [cite] and the main signals in the brain [cite], and others used the EC as

inputs of a classifier [cite].

In this research, we studied the random fields, and used a centered, stationary

Gaussian process on a rectangle T ∈ RN and satisfying the following Corollary 2.1

[25].

Corolary 2.1 Let f be a centered Gaussian field over a finite rectangle T. If for each

t ∈ T , the joint distributions of (fi(t), fij(t))i,j=1,...,N are nondegerate, and if for some

finite K and all s, t ∈ T ,

max
i,j
|Cfij(t, t) + Cfij(s, s)− 2Cfij(s, t)| ≤ K| ln |t− s||−(1+α), (2.31)

then the sample functions of f are, with probability one, Morse functions 3 over

3The following characteristics can define Morse functions:

1. f is C2 on an open neighborhood of T.

2. The critical points of f|∂kT are nondegenerate for all k = 0, . . . , N .
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T.

As usual, C denotes the covariance function, and ν the spectral measure. Then

f has variance σ2 = C(0) = ν(RN). The second-order spectral moments are in this

section as

λij =

∫
RN

λiλjν(dλ). (2.32)

Λ will denote a N x N matrix of these moments—also, the differentiation via

subscripts, so that fi = ∂f/∂ti, fij = ∂2f/∂ti∂tj, etc., we have

E{fi(t)fj(t)} = λij = −Cij(0). (2.33)

Therefore Λ is also the variance-covariance matrix of Of . The random field and

its second-order derivatives are, correlated, and

E{f(t)fij(t)} = −λij (2.34)

Finally, the N x N Hessian matrix (fij) by O2f was denoted.

Lemma 2.3 Let f y T be describe above, and set

µk = #{t ∈ T : f(t) ≥ u,Of(t) = 0, index(O2f) = k} (2.35)

then for all N ≥ 1,

E

{
N∑
k=0

(−1)kµk

}
=

(−1)N |T ||Λ|1/2
(2π)(N+1)/2σN

HN−1

(u
σ

)
e−u

2/2σ2

(2.36)

where HN−1 is the Hermite polynomial 4. This result depends on the covariance

3. f|∂kT has no critical points on
⋃k−1

j=0 ∂jT ∀ k = 1, . . . , N.

4k-th hermite polynomial is the function

Hn(x) = n!

bn/2c∑
j=0

(−1)jxn−2j

j!(n− 2j)!2j
, n ≥ 0, x ∈ R, (2.37)

where bac is the integer greater or equal than a.
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f and the second moment spectral.

For calculate the Euler-Poincaré characteristic, we need

T =
N∏
i=1

[0, Ti], (2.38)

a rectangle on RN .

Theorem 2.5 Let f be a centered. stationary Gaussian field on a rectangle T ∈ RN .

For real u, let Au = Au(f, T ) = {t ∈ T : f(t) ≥ u} be an excursion set, and let ϕ be

the Euler characteristic. Then

E{ϕ(Au)} = e−u
2/2σ2

N∑
k=1

∑
J∈Ok

|J ||ΛJ |1/2
(2π)(k+1)/2σk

Hk−1

(u
σ

)
+ Ψ

(u
σ

)
(2.39)

Because of the manifolds and our proposes. We assume that f is isotropic. And

with this assumption we have the next corollary.

Corolary 2.2 In addition to the conditions of Theorem 2.5, lef f be isotropic and T

the cube [0, T ]N . If λ2 denotes the variance of fi, then

E{ϕ(Au)} = e−u
2/2σ2

N∑
k=1

(
N
k

)
T kλ

k/2
2

(2π)(k+1)/2σk
Hk−1

(u
σ

)
+ Ψ

(u
σ

)
(2.40)

2.4.1 Examples of the Mean Euler-Poincaré characteristic

Now, with Eq. (2.40), we can observe the case when N=1, so that T is simply an

interval [0, T]. Then, using the definition of the Hermite polynomials given by Eq.

(2.37), the mean Euler-Poincaré characteristic for this case is

E{ϕ(Au(f, [0, T ]))} = e−u
2/2σ2 Tλ

1/2
2

2πσ
+ Ψ(u/σ) (2.41)

The Eq. (2.41) show the Rice formula[25]. Figure 2.5 gives two examples, with

σ2 = 1, λ2 = 200, and λ2 = 1000.
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Figure 2.5: E{ϕ(Au)} : N = 1. a) λ2 = 200, b) λ2 = 1000 with σ2 = 1.From [25].

In this case, when u→ −∞, we have E{ϕ(Au)} → 1. The excursion set geometry

behind this is simple. Once u < infTf(t) we have Au ≡ T , and so ϕ(Au) = ϕ(T ),

which in the current case is 1. This is a general phenomenon, independent of dimen-

sion or the topology of T .

Figure 2.6 shows the case when N = 2, with the following conditions σ2 = 1, λ2 =

200, and λ2 = 1000.

E{ϕ(Au)} = e−u
2/2σ2

[
T 2λ2

(2π)3/2
u+

2Tλ
1/2
2

2π

]
+ Ψ(u) (2.42)

Figure 2.6: E{ϕ(Au)} : N = 2. a) λ2 = 200, b) λ2 = 1000. From [25].

In cases with one and two dimensions, some analogies are similar in both cases,

and they are:



Chapter 2. Theoretical framework 28

1. Some different power series (one in T , one in u, and one in
√
λ2) represents the

expression before the exponential term.

2. The geometric meaning of the negative values from Eq. (2.42) are worth un-

derstanding. They are due to the excursion sets, in the mean, have more holes

than connected components for negative values of u.

3. The impact of the spectral moments is not clear in higher dimensions as it in

one. With the Brownian sheet, we can observe the behavior of the spectral mo-

ments. When the spectral moments are significant, it generates large numbers

of small islands (or lakes, depending on the level of the excursion set), leading

to more significant variation in the values of the E{ϕ(Au)}.

In three dimensions, there are a number of different power series appearing in the

Eq. (2.39). There are positive peaks because Au is primarily composed of several

only connected components for large u and primarily of single holes for negative u.

2.5 Machine learning classifiers

Machine learning algorithms don’t work for each problem. Sometimes identifying

the correct algorithm is a heuristic task. Knowing the principal features of each type

of algorithms can help decide which ones to try first and understand your making

tradeoffs. Table 2.1 shows a list of features of some popular classifiers.

In these classifiers, the method consists of predicting a class from a set of data

points. We divided this set into two: the training data and the validation data. So

for the training data, we have targets, and the work of the classifier is to learn the

classes from this set. Then, the classifier predicts the categories for the validation

data.

Below, we presented the main characteristic of each type of classifier mentioned

in table 2.1.

2.5.1 Support Vector Machine(SVM):

Vapnik developed this method. This algorithm is a supervised learning model with

associated learning algorithms that analyze data for classification and regression
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analysis.

A set of points X, a set X in a significant space T , each xinX has one of two

possible categories, the algorithm based in SVM builds a model that predicts a new

point x is in one or other class.

The SVM searches a hyperplane that separates the best possible way the points

from one category to the other, then this new set is projected in a superior dimen-

sionality space.

The dimension of a dataset can be transformed by combining or modifying any

of its dimensions. For example, you can change a two-dimensional space into one of

three by applying the following function:

f(x1, x2) = (x2
1,
√

2x1x2, x
2
2) (2.43)

Eq. (2.43) is just one of the infinite possible transformations, how to know which

is the right one? We have tools called kernels come into play. A kernel (K) is a

function that returns the result of the dot product between two vectors carried out

in a new dimensional space different from the original space in which the vectors are

found. Although the mathematical formulas used to solve the optimization problem

have not gone into detail, it contains a dot product.

If a kernel replaces this dot product, the support vectors (and the hyperplane) in

the dimension corresponding to the kernel are obtained directly. It is often known

as the kernel trick because, with only a slight modification of the original problem,

the result can be obtained for any dimension thanks to the kernels. There are many

different kernels. Some of the most used are:

Lineal Kernel: K(x, x′) = x · x′ (2.44)

Polynomial Kernel: K(x, x′) = (x · x′ + c)d (2.45)

when d = 1 and c = 0, the polynomial kernel’s result is the same as the linear

kernel. If d > 1, limits of no lineal decision appears, generating no lineality when d

grows. It is not recommendable to use d > 5 because of overfitting.
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Gaussian Kernel: K(x, x′) = exp(−γ||x− x′||2) (2.46)

Where γ controls the kernel’s behavior, when it is small, the final model is similar

to the linear kernel; when it is large, the model’s flexibility grows.

2.5.2 K-th nearest neighbor (KNN):

The k-nearest neighbors algorithm (KNN) is a non-parametric classification method

developed by Fix and Hodges in 1951. This method is applied to classify data and

regression cases. In both ideas, the input consists of the k nearest training examples

in the data set. The output depends on the application of the KNN. It could be for

classifying or regression, but we focus on the classification method in this research.

The KNN classifier categorizes unlabeled observations by assigning them to the

class of the most similar labeled examples. The features of the unlabeled marks

are collected from the training and test set. To simplify the visualization, we plot

two characteristics at the same time on a two-dimension plot. If there are many

predictors, we can extend the labeled examples to incorporate any number of features.

Zhang [43] mentions a KNN example to classify the sweet potato in the middle of

three groups: fruit, grain, and vegetables. In his example, he choose the four nearest

kinds of food, they are apple, green bean, lettuce, and corn. Because the vegetable

wins the most votes, sweet potato is assigned to the class of vegetable. You can see

that the critical concept of KNN is easy to understand.

We need to know two main concepts for solving the above example; The first is

how to calculate the distance between sweet potato and other kinds of food. The

second concept is the parameter k which decides how many neighbors will be chosen

for the KNN algorithm.

How we calculate the distance in the KNN algorithm? We need to use a Euclidean

distance which can be calculated with the following equation:

D(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + · · ·+ (pN − qN)2 (2.47)

where p and q are subjects to be compared with n features.There are also other

methods to calculate distance such as Manhattan distance [44].
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The k is another central concept. A large k reduces the impact of variance

caused by random error but runs the risk of ignoring small but essential patterns.

The key to choose an appropriate k value is to strike a balance between overfitting

and underfitting [45].

Performance of the KNN model

The KNN algorithm assigns a category to observations in the test dataset by com-

paring them to the training dataset observations. Because we know the actual class

of observations in the test dataset, we can evaluate the KNN model’s performance

with this information. One of the most commonly used parameter is the average

accuracy that is defined by the following equation:

Accuracy =
l∑

i=1

TPi + TNi

TPi + FNi + FPi + TNi

/l (2.48)

where TP is the true positive, TN is the true negative, FP is the false positive

and FN is the false negative.

Sensitivity and specificity

Sensitivity is a measure of the proportion of positives that correctly identify positive

points. Specificity is a measure of the balance of genuinely negative negatives. These

measures are commonly used to measure the performance in the test data. If we have

a perfect fit model that can predict 100% accuracy, these measures’ sensitivity and

specificity are 100%. These measures are calculated separately for each class. The

equations are the follows.

Seni =
TPi

(TPi + FNi)
(2.49)

Spi =
TNi

(TNi + FPi)
(2.50)

where TP is the true positive, TN is the true negative, FP is the false positive,

and FN is the false negative. The index i indicates category.
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Chapter 3

Decomposed mean Euler-Poincaré

characteristic methodology

This chapter is published as:

M. Ramos-Martinez, C. Corbier, V. M. Alvarado and G. L. Lopez, ”Decomposed

Mean Euler-Poincaré Characteristic Model for a Non-Gaussian Physiological Ran-

dom Field,” in IEEE Access, vol. 9, pp. 21180-21191, 2021.[47].

In this chapter, we focus on the algorithms to extract a model from the EKG

signals. Figure 3.1 shows a general view of the method; the first point is to gener-

ate the polynomials and then create a non-Gaussian random field using them after

extracting the Euler-Poincaré characteristic, and finally describe it mathematically.

33
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Figure 3.1: The resume of the methodology.

Essentially, the methodology can be divided into three main sections:

• The first section, the pre-processing part, applies a filter to reduce noise and

smooth the signal.

• The second section, the processing part, transforms the filtered signal into a

geometrical structure. In the literature, we can found that the time-series

signal is converted to a frequency signal using a Fourier transformation or any

related transform in this section.

• In the third section, the post-processing part, after the transformation, we

get a feature that identifies hide hints of the time-series into the geometrical

structure or the literature cases into the power spectral signal.

The methodology developed in this research have five steps, enumerated below:

1. Polynomization: the first step, using the random algebraic polynomial (RAP)

as a filter. RAP is the filtered signal of the EKG raw signal. Here is the

pre-processing part of the methodology.
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2. Building the non-Gaussian random field: using the filtered signal, we stacked

all the filtered cardiac cycles and made this random field. In other words, we

constructed the geometrical structure using the filtered signals.

3. Excursion sets: a principal concept in the random field theory, is simply the set

of points where the RF exceeds a fixed threshold value u ∈ R. These belong

to the RF.

4. Getting the mean Euler-Poincaré characteristic: using the excursion sets level,

we extract this topological feature that indicates the number of connected

components in the excursion set minus the number of holes.

5. Decomposed mean Euler-Poincaré characteristic: Once we have the MEPC

of each EKG signal that belongs to a patient, we have an MEPC from an

NGRF that doesn’t have an explicit formula that describes this behavior.

Adler and Taylor [25] presented a description of the form f(t) = F (y(t)) =

F (y1(t), y2, · · · , yk(t)) where the y(t) are a collection of identically, indepen-

dent, and distributed (i.i.d.) GRF. It isn’t easy to get a function F to encode

the behavior of NGRF, so that we introduce an approach focused on the MEPC.

We propose a new characteristic through a decomposition.

3.1 Polynomization

Polynomization is a modeling based on RAP denoted ψ(•, X1) of a EKG cycle c

(c = 1...N) where, for a fixed threshold, each of them can be decomposed over two

intervals I1(c) =
[
1 XR(c)

]
and I2(c) =

[
XR(c) XE(c)

]
with XR(c) index-time

of the R wave. Let {ak(c, ω)}D(c)
k=1 be a sequence of i.i.d. random variables and

ψB(E , ω,X1(c)) be a basic RAP of order D(c) defined by

ψB(E , ω,X1(c)) =

D(c)∑
k=0

ak(c, ω)X1(c)k, (3.1)

with E =
(
Ω,Σ, P

)
a complete probability space where Ω denotes the sample

space, Σ a σ-algebra on Ω and P a probability measure on Σ. For each interval

Im(c) (m = 1, 2) define a RAP as ψmD (E , ω,X1(c)) = ψB(E , ω,X1(c))1Im(c) where 1X
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is the unit function over X. The polynomization over one cycle c can then be written

as

ψD(E , ω,X1(c)) =

D1(c)∑
k=0

aI1k (c, ω)(XI1
1 (c))k +

D2(c)∑
k=0

aI2k (c, ω)(XI2
1 (c))k.

3.2 Modeling Non-Gaussian Random field

Let Φ(X, ω) be a NGRF at X with X = [X1(c) X2]T where X1(c) ∈ I1(c) ∪ I2(c).

Let E =
(
Ω,Σ, P

)
be a complete probability space and T a topological space, where

Ω denotes the sample space, Σ a σ-algebra on Ω and P a probability measure on Σ.

Then a measurable mapping Φ : Ω→ RT is called a real-valued random field. Here

X ∈ T ⊂ R2 and Φ is called an 2-dimensional NGRF over N cycles defined as

Φ(X1, X2, ω) = Φ(X, ω) =
N∑
c=1

ψD(E , ω,X1(c))δ(c−X2), (3.2)

where δ is the Dirac’s distribution. Eq.(3.2) means that each EKG signal for

a fixed threshold is decomposed into basic RAP ψD(E , ω,X1(c)) to form a NGRF

according to the coordinate X2.

3.2.1 Non-Gaussian random field

The most important concept in the random field theory is named excursion set. Let

Φ(X, ω) be a NGRF, X ∈ T ⊂ R2, defined inside a set T . The excursion set is a

geometrical object defined as

Au (Φ, T ) = {X ∈ T ,Φ(X, ω) ≥ u} . (3.3)

Thus Au of Φ(X, ω) above a threshold u is the set of points in T ⊂ R2 where

Φ(X, ω) exceeds u. Remember that stratified manifolds T in R2 are basically sets

that can be partitioned into the disjoint union of manifolds as T = ∪dimTj=0 ∂jT where

each stratum ∂jT is itself a disjoint union of a number of j-dimensional manifolds.

Here non-Gaussian properties of Φ involve to consider a class of generalization of

random fields of the form
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Φ(X, ω) = F (φ∗(X, ω)) = F
(
φ1
∗(X, ω), ..., φm∗ (X, ω)

)
, (3.4)

are defined, where φj∗(X, ω) are a collection of i.i.d. Gaussian random fields

(GRF), all defined over a topological space T and F : Rm → R is a smooth function

to be picewise C2, along with appropriate side conditions. The excursion set of a

real-valued non-Gaussian Φ = F ◦ φ∗ above a level u is equivalent to the excursion

set for a vector-valued Gaussian φ∗ in F−1[u,∞) and given by

Au (Φ, T ) = Au (F ◦ φ∗, T ) = {X ∈ T , (F ◦ φ∗)(X, ω) ≥ u} . (3.5)

In our framework let Σs = (s1, ...sSM ) be the set of signatures with sk the associ-

ated signed unit weight (SUW) for each sub GRF φsk(X, ω) and SM =
∑M

k=1(−1)ksk.

Let us define the NGRF given by Eq.(3.2) as

cΦ(X, ω, SM) = (s1φ
s1(X, ω), ..., sSMφsSM (X, ω)) , (3.6)

where smφ
sm(X, ω) (m = 1...SM) is a collection of i.i.d. signed GRF with X ∈

R2, ω ∈ Ω and s2n = +1, s2n+1 = −1.

3.3 Mean Euler-Poincaré characteristic

Now denote the EPC of a set Au (Φ, T ) by ϕ(Au (Φ, T )). For numerous trials,

consider that E {ϕ(Au (Φ, T ))} is computable. Therefore the random fields the-

ory impose some regularity conditions on Φ(X, ω) to ensure both, that its realisa-

tions are smooth and the boundary ∂T is smooth. Then T is a regular C2 domain

in a compact t subset of R2 bounded by a regular 1-dimensional manifold ∂T of

classe C2. Consider Φ(X, ω), X = [X1, X2] ∈ R2 a stationary non isotropic ran-

dom field and Φ̇j(X, ω) =
∂Φ(X, ω)

∂Xj

, Φ̈jk(X, ω) =
∂2Φ(X, ω)

∂Xj∂Xk

, j, k = 1, 2. The

moduli of continuity of Φ̇j(X, ω) and Φ̈jk(X, ω) inside T are given by ωj(h) =

sup
‖X−Y ‖<h,ω

|Φ̇j(X, ω) − Φ̇j(Y , ω)| and ωjk(h) = sup
‖X−Y ‖<h,ω

|Φ̈jk(X, ω) − Φ̈jk(Y , ω)|,

respectively. To ensure that realisations of Φ(X, ω) are sufficiently smooth, consider

the following conditions



Chapter 3. Decomposed mean Euler-Poincaré characteristic methodology 38

• C1: P
(

max
j,k
{ωj(h), ωjk(h)} > ε

)
= o(hN) as h ↓ 0,

• C2: Hessian matrix Φ̈ of Φ̈jk has finite variance conditional on
(

Φ, Φ̇
)

with Φ̇

grandient of Φ̇j,

• C3: the density of
(

Φ, Φ̇
)

is bounded above, uniformly for all X ∈ T .

At a point X ∈ ∂T , let Φ̇⊥ be the gradient of Φ in the direction of the inside

normal to ∂T , let Φ̇T be the gradient 1-vector in the tangent plane to ∂T , let Φ̈T

be the 1× 1-Hessian matrix in the tangent plane to ∂T and let r be the 1× 1 inside

curvature matrix of ∂T . Let sign be the sign function. Consider the notation of

Knuth [48] where a logical expression in parentheses takes the value one if true and

zero otherwise. Under conditions C1-C3, then the EPC is

ϕ(Au (Φ, T )) =
∑
X∈T

(Φ ≥ u)
(
Φ̇ = 0

) [
det(−Φ̈)

]
+
∑

X∈∂T

(Φ ≥ u)
(
Φ̇T = 0

)(
Φ̇⊥<, 0

)
sign

[
det(Φ̈T − Φ̇⊥r)

]
,

(3.7)

with probability one. In R2 integral geometry defines ϕ(Au (Φ, T )) as (the num-

ber of connected components)-(the number of holes) in Au (Φ, T ). Moreover remem-

ber that the expectation of ϕ(Au (Φ, T )) for multiple realisations is

E {ϕ(Au (Φ, T ))} =

∫
T
E
{

(Φ ≥ u) det(−Φ̈)Φ̇ = 0
}
θ(0)dX

+

∫
∂T

E
{

(Φ ≥ u) (Φ̇⊥ < 0) det(−Φ̈T − Φ̇⊥rΦ̇T = 0
}
θT (0)dX,

(3.8)

where θ(.) is the density of Φ̇ and θT (.) is the density of Φ̇T . Worsley in [37]

showed that under the slightly more general condition where the boundary of T is

composed of a finite number of piecewise smooth components, then the expectation

of the excursion sets of a random field with zero mean and unit variance is

E {ϕ(Au (Φ, T ))} =
∑N

j=0
ρj(u)Lj(T ) (3.9)
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where ρj(u) = (2π)−(j+1)/2Hj−1(u) exp(−u2/2) is the intensity of the EPC per unit

volume, Hj the jth Hermite polynomial and Lj(T ) the Lipschitz-Killing curvatures.

3.4 Volume of tubes

Volume of tubes approach for a class of Gaussian processes is linked to a finite

Karhunen-Loéve expansion. These are processes defined on a manifold T that can

be expressed as

φ(X, ω) = 〈α(X), ξ(ω)〉Rl =
l∑

j=1

αj(X)ξj(ω) (3.10)

for some smooth mapping α : T −→ S(Rl) where ξj are independent standard

Gaussians and S(Rl) the sphere in Rl , l ≥ 1. Consider a metric space (T , τ) as S(Rl)

with a geodesic metric τ(x, y) = cos−1 (〈x, y〉). Then a tube of radius ρ around a

closed set A is Tube(A, ρ) =

{
x ∈ S(Rl) : sup

y∈A
〈x, y〉 ≥ cos(ρ)

}
. In the case where

X is a random vector uniformly distributed on S(Rl) with distribution ηl then

P
{

sup
y∈A
〈X, y〉 ≥ cos(ρ)

}
= ηl (Tube(A, ρ)) .

Consider HN the N -dimensional Hausdorff measure associated with the geodesic

metric τ . Remember the Weyl’s tube formula on S(Rl). Assume T is a C2, locally

convex, Whitney stratified submanifold of Sλ(Rl), the sphere of radius λ. For ρ <

ρc
(
T , Sλ(Rl)

)

Hl−1 (Tube(T , ρ)) =
N∑
j=0


b
j

2
c∑

n=0

(−4π)−nλl−1+jj!Gj − 2n, l − 1 + 2n− j(ρ
λ

)

n!(j − 2n)!

Lj(T ),

(3.11)

where Ga,b(ρ) =
πb/2

bΓ(b/2 + 1)

∫ ρ
0
cosa(r)sinb−1(r)dr, bnc is the integer less than n
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and Lj(T ) the Lipschitz-Killing curvatures (LKC) given for a measurable subsets U

by

Lj(T ) =
(−2π)−(N−j)/2

((N − j)/2)!

∫
U

TrT (R(N−j)/2)V olg

if N − j is even and 0 otherwise. Tr is the trace, R is the Riemannian curvature

tensor and V olg is the Riemannian volume form on the metric tensor g. Remark that

LKC is the EPC for j = 0, the perimeter of ∂T for j = 1 and the area of T for j = 2.

3.5 Decomposed Mean Euler-Poincaré Character-

istic

Now we present our approach related to a new modeling of MEPC based decompo-

sition. In our context of sub signed GRF φsk(X, ω) to form the NGRF Φ(X, ω, SM)

the volume of tubes is required to prove our following Lemma.

Lemma 3.1 Let T be a C2 manifold in RN (N ≥ 1), locally convex, Whitney strati-

fied submanifold of S1(Rl). Let skα
sk(X), k = 1, ..., SM be deterministic coefficients

for sk ∈ Σs and ξ(ω) be independent standard Gaussians. Let skφ
sk(X, ω) be map-

pings and sub GRF such that from a finite Karhunen-Loéve expansion skφ
sk(X, ω) =

〈skαsk(X), ξ(ω)〉Rl. Then

P
{

sup
X,ω

(skφ
sk(X, ω)) ≥ sku

}
≈ E {ϕ (Asku (skφ

sk , T ))} = skE {ϕ (Au (φsk , T ))}

=
Γ (l/2)

2πl/2

∑N

j=0
E
{
G̃j,l

(
cos−1 (u/|ξ|)

)
1|ξ|≥u

}
Lj(skαsk),

(3.12)

where G̃j,l (ρ) =
∑bj/2c

n=0

(−4π)−nj!

n!(j − 2n)!
Gj−2n,l−1+2n−j(ρ).

See proof in Appendix.

Let (T , g) be an 2-dimension Riemannian manifold where g is the Riemannian

metric tensor. For each X ∈ T , there is an inner product gX : TXT × TXT → R
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such that (ξX , σX) 7→ gX(ξX , σX) where TXT is the tangent space of T at X.

Let 〈ξX , σX〉 the inner product gX(ξX , σX). For a coordinate system with basis{
∂

∂Xi

|X
}
i=1,2

we have for i, j = 1, 2

gij (X) := gX

(
∂

∂Xi

|X ,
∂

∂Xj

|X
)

= 〈 ∂
∂Xi

|X ,
∂

∂Xj

|X〉 (3.13)

which are called the components of g at X under this coordinate system. Let

G(X) = (gij (X)) for i, j = 1, 2 be a symmetric and positive definite matrix

from the definition of g. For a real-valued function φ on T , let φi =
∂

∂Xi

φ and

φij =
∂2

∂Xi∂Xj

φ. Define the length of the differentiable curve γ : [a, b] → T by

L(γ) =
∫ 1

0

√
〈γ′(t)γ(t)〉dt. Then the distance on T by the Riemannian metric g

is dT (X,Y ) = inf
γ∈D1([0,1];T )X,Y

L(γ). Riemannian metric g is closely related to the

covariance function C(X,Y ) = E {φpφq}. In particular for X0 ∈ T , it follows that

gX0 = ξX0σX0C(X,Y )|X=Y =X0 . (3.14)

Lemma 3.2 Let φ∗ = {φ∗(X, ω),X ∈ T , ω ∈ Ω} be a GRF satisfying C(X,Y ) =

1−cd2
T (X,Y )(1+o(1)), c > 0, where (T , g) is an 2-dimension Riemannian manifold.

Let D ⊂ T be an 2-dimension compact submanifold on T . Then,

P{ sup
X∈D,ω

φ∗(X, ω) ≥ u} =
m∑
j=1

P{ sup
X∈Dj ,ω

φj∗(X, ω) ≥ u}, (3.15)

where D = ∪mj=1Dj, φ
j
∗(X, ω) ∈ Dj and φ∗(X, ω) = (φ1

∗(X, ω), ..., φm∗ (X, ω)).

See proof in Appendix.

Now we present the main Theorem of our method related to the decomposition of

EPC. Let sjφ
j(X, ω) be a collection of i.i.d. signed sub GRF. Let D = ∪mj=1Dj be a

composition such that φj(X, ω) ∈ Dj. Let Φ(X, ω, SM) = (s1φ
s1(X, ω), ..., sSMφsSM (X, ω))

be a NGRF where Σs = (s1, ...sSM ) with sj the SUW of each φsj(X, ω) and SM =∑M
j=1(−1)jsj. Then
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P{ sup
X∈D,ω

Φ(X, ω, SM) ≥ u} =
SM∑
k=1

sk
[
Ak exp(−(Xu

k )2/2) +BkΨ(Xu
k )
]
, (3.16)

with Xu
k = (u − µk)/σk, µk, σk, Ak, Bk ∈ R, Ψ the tail probability function, and

the mother-wave defined as

W (Xu
k ) = Ak exp(−(Xu

k )2/2) +BkΨ(Xu
k ). (3.17)

See proof in Appendix. Eq.(3.16) means that all signed decomposed NGRF has a

decomposed mean Euler-Poincaré Characteristic. This formula allows to treat com-

plex cases of signal containing outliers such that R waves as shown in experimental

data.



Chapter 4

Modelling myocardial infarction

Myocardial infarction (MI), most famously known as a heart attack, represents the

first cause of death worldwide. Mexico is not the exception; 800 000 deaths are esti-

mated in the USA [35], and 105 000 in our country because of the acute myocardial

infarction [49].

MI is the irreversible death of heart muscle secondary to prolonged lack of oxygen

supply. The well-known symptoms of heart attack are chest pain and briefness of

breath, but there exist others like:

• pressure or tightness in the chest

• pain in the chest, back, jaw, and other areas of the upper body that persists a

few minutes or comes and goes

• shortness of breath

• sweating

• nausea

• vomiting

• anxiety

• a cough

• dizziness

• a fast heart rate

43
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The heart and the blood vessels integrate the cardiovascular system. The arteries

take oxygen-rich blood to your body and all of your organs. When the arteries are

blocked due to an accumulation of plaque, the blood flow decreases or stops, so a

heart attack happens.

The unhealthy habits can lead to a condition where MI occurs. Bad cholesterol,

saturated fats, and trans fat can blockage the arteries.

Unhealthy habits can lead to a condition where MI occurs. Bad cholesterol,

saturated fats, and trans fat can blockage the arteries. The most risk people have

high blood pressure, high cholesterol levels, high triglyceride levels, diabetes and

high blood sugar levels, obesity, smoking, age, or family history.

We mentioned a brief description of MI and the causes, but what about the diag-

noses? A doctor will listen to the heart and check for irregularities in the heartbeat,

check the blood pressure, and do an EKG.

The EKG can show a lot of visible information, but hidden information exists,

and we can analyze it with the appropriate method. We can interpret the signal

using transformation as Wavelet, Hilbert, or Fourier as mentioned in the works cited

in this research’s background.

So this chapter threatens this disease and shows the results using our geometrical

approach to get a new model to represent the EKG signal with MI.

4.1 Case of study

EKG data is a collection of the Smart Health for Assessing the Risk of Events via

EKG databases (SHAREE) [50] database. This material includes 139 hypertensive

patients; we have downloaded a total of 22 patients. The signals were digitized at 128

Hz, have a duration of 24 hours or around 94000 cardiac cycles. The patients were

monitored 12 months after the recordings to record a cardiovascular event. In total,

17 patients presented a type of event; 11 had a myocardial infarction, three strokes,

and three syncopal events. Therefore, we analyzed 11 patients without events that

we will call control and 11 patients with myocardial infarction.

Figure 4.1 represents the two types of EKG signals from the SHAREE database.

The top of the figure represents a control patient and the bottom a myocardial
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infarction patient.

Figure 4.1: EKG signals extracted from the SHAREE database.

EKG is a standard medical test to diagnose cardiovascular conditions. Among

these, ventricular tachycardia (VT), atrial fibrillation (AFIB), coronary artery dis-

ease (CAD), and myocardial infarction (MI) [51]. The SHAREE database [52] col-

lects Holter EKG that spans EKG and respiration signals of patients with a cardiac

event prior to the Holder EKG record. It is well-known that it is indeed feasible

to recognize precise cardiac events through the analysis of abnormalities in primary

waves (PQRST) of a cardiac cycle [53]. Hence, we propose to study the behavior

pattern of control and MI patients by assessing the MEPC from the NGRF formed

with a RAP model of the P-waves from Holter EKG records.
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4.2 Polynomization

In this section, we get the first model representing the EKG signal using random

algebraic polynomials (RAP). In this step, we separate the PQRST waves of the

EKG in two parts, the first represents from the P-wave to the R-peak, and the

second represents the R-peak to the T-wave.

The final equation is represented in 3.5 in section 3. In each cycle, we get two

series of coefficients ak(c, ω̄), which the filtered signals for the P-wave and T-wave

section.

Before, we need to calculate the order of the polynomials, and then the method

is described.

4.2.1 Order of polynomials

In the polynomization step, it is essential to know the number of order of the poly-

nomials to represent each EKG cycle for maintaining homogeneity. We selected 100

000 samples of each patient (of total 22).

The following procedure was carried out to obtain the order:

1. Find the R-peaks in each cycle using the Pan-Tompkins algorithm.

2. Find the middle points between the interval R-R.

3. For each interval, we get the results with the order from 20 to 25.

4. The measure of the fit for each order and the raw EKG is getting using the

Eq. (4.1).

5. Choose the best fit in each cycle.

6. A frequency histogram plots the relationship between the fit of the polynomials

and the orders between 20 and 25. Figures 4.2 and 4.3 shows these results.

FIT = max

100

1−

∥∥∥Pj(c)−∑Dj(c)
k=0 âk(c, ω̄)Xj(c)

k
∥∥∥∥∥Pj(c)− P̄j(c)∥∥


j=1,2.

(4.1)
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Figure 4.2: Histogram to select the best order of the polynomials P1 (P-waves) for

each cardiac cycle.

Figure 4.3: Histogram to select the best order of the polynomials P2 (T-waves) for

each cardiac cycle.

From now on, the order of the polynomials is set at D1(c) = 22 and D2(c) = 22.

In this way, the polynomials I1(c) and I2(c) are obtained in terms of the coefficients

Pj. Algorithm 1 dictates the entire procedure. As a result, it returns the structure

arrays P1 and P2.

So that, each cycle has a down cycle, and an up cycle that formed the full cycle,

as we can observe in Figure 4.4.
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Figure 4.4: The graph Down cycle shows the polynomization for the P-wave; in the

Up cycle shows the polinomization for T-wave. The Full cycle shows the raw EKG

and the P1(c) and the P2(c).



Chapter 4. Modelling myocardial infarction 49

4.2.2 Algorithm for polynomization

Algorithm 1: Algorithm for calculating random algebraic polynomials

Data: Holter EKG

Result: Polynomials P1(c) and P2(c)

1 initialization;

2 Detect the peaks position Rk, k = 1, . . . , Nc using the Pan-Tompkin

algorithm [5];

3 Detect the middle points mk = Rk+1−Rk

2
, k = 1, . . . , Nc − 1;

4 Determine the order of polynomials using the FIT (eq. 4.1)

5 Calculate the polynomials I1(c), c ∈ [mk, Rk+1] and I2(c), c ∈ [Rk+1,mk+1]

using the Vandermonde matrix;

6 Evaluate polynomials and add results at structure array P1(c) and P2(c) ;

4.3 Non-Gaussian Random Field

In this step, the polynomization results allow to create the Non-Gaussian random

field (NGRF). This field needs to be homogeneous, so that to maintain the homo-

geneity, we add zeros to the polynomials in each cardiac cycle.

Why do we need to add zeros? The number of samples in each cardiac cycle

changes because of the cardiac frequency for different activities as rest, exercise, or

others. If each cycle is different and we need homogeneity, the solution was to add

zeros to keep it.

Let Φ(X, ω̄) be a NGRF at X with X = [X1(c) X2]T where X1(c) ∈ I1(c) ∪
I2(c). Let E = (Ω̄, Σ̄, P ) be a complete probability space and T a topological space,

where Ω̄ denotes the sample space, Σ̄ a σ-algebra on Ω̄ and P a probability measure

on Σ̄. Then a measurable mapping Φ : Ω̄→ RT is called a real-valued random field.

Here X ∈ T ⊂ R2 and Φ is called an 2-dimensional NGRF over N cycles defined as

Φ(X1, X2, ω) = Φ(X, ω) =
N∑
c=1

ψD(E , ω,X1(c))δ(c−X2), (4.2)

where δ is the Dirac’s distribution. Eq.(4.2) means that each EKG signal for a fixed

threshold is decomposed into basic RAP ψD(E , ω,X1(c)) to form a NGRF according
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to the coordinate X2.

Eq. (4.2) means that we take all the waves of the EKG cycle. However, we

mentioned that we only took the section of P-waves to analyze the MEPC. Hence,

X1(c) ∈ I1(c). Figure 4.5 shows an example of NGRF of P-waves using the polyno-

mials.

Figure 4.5: An example of NGRF of P-waves.

4.3.1 Excursion sets

Excursion sets are widely studied; in this case, we used them for formed new ge-

ometric structures from the NGRF and extracted the MEPC in each level u. The

definition for Gaussian random fields is written in Eq (2.21).

If the case is a non-Gaussian random field, the excursion set is a geometrical

object defined by

Au(Φ, T ) = {X ∈ T : Φ(X, ω̄) ≥ u} (4.3)

where Φ(X, ω̄) is the NGRF. Thus Au of Φ(X, ω̄) above a threshold u is the set

of points in T ⊂ R2 where Φ(X, ω̄) exceeds u. The level u is well-chosen between

the interval [−1, 1]. Figure 4.6 shows the level u as a plane cutting the random field,

the points from the level u to the maximum is the excursion set.
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Figure 4.6: Non-Gaussian random field cut by a level u = 0.2.

The region upper the level u is the excursion set, and we transform it from a

geometrical structure to a binary image that allows us to extract the Euler-Poincaré

characteristic. Figure 4.7 shows the excursion set from a control patient, and Figure

4.8 shows the same for a myocardial infarction patient, both with a level u = 0.1.

Figure 4.7: Excursion set of the Non-Gaussian Random Field at u = 0.1 for a control

patient’s P-waves.
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Figure 4.8: Excursion set of the Non-Gaussian Random Field at u = 0.1 for a MI

patient’s P-waves.
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4.3.2 Algorithm to create the Non-Gaussian Random Field

Algorithm 2: Algorithm to build the non-Gaussian random fields

Data: Polynomials P1(c) and P2(c)

Result: Non-Gaussian Random Field Φ(X, ω̄, SM)

1 initialization;

2 for k = 1 : Nc do

3 A(k) = length(Pl(c)k), l = 1, 2

4 end

5 M = max{A}|M ∈ R; for k=1:Nc do

6 if Ak < M then

7 Φ1([k, 1 : M ], ω̄, SM) = [zeros, P1(c)k] and

Φ2([k, 1 : M ], ω̄, SM) = [P2(c)k, zeros]

8 else

9 Φ1([k, 1 : M ], ω̄, SM) = P1(c)k and Φ2([k, 1 : M ], ω̄, SM) = P2(c)k ;

10 end

11 end

12 Calculate the level u of excursion sets: u = [u1 : un−u1
Nu

: un], where

u1 = min{Φ(X, ω̄, SM)}, un = max{Φ(X, ω̄, SM)},and Nu=number of

levels;

4.4 Mean Euler-Poincaré Characteristic

In this step, a new transform to our original EKG signal shows a new concept of a

model in this type of signal. In this methodology, we transform the raw EKG signal

to a polynomial form. Then we create a geometrical structure from the excursion

sets of the non-Gaussian random field. Now, we transform the geometrical structure

to a binary image in order to get the Euler-Poincaré characteristic.

When the value of t ∈ Φ(X, ω̄) is higher than the level u, so the value for the

binary image is 1, otherwise it is 0. Figures 4.7 and 4.8 represent an example of a

binary image from an excursion set.

The EPC is a scalar value representing the number of connections minus the

number of holes in those elements [42]. To get these values, we used Gray’s algorithm
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[54] to the binary image of each excursion set Au. The levels u selected were in the

interval [−1, 1] divided into 100 points.

Remember that we analyze 22 signals/patients, so each signal acquired 100 values

that formed the EPC model due to the levels. Figures 4.9 and 4.10 show the model

EPC from P-waves for each patient analyzed.

Figure 4.9: Expected EPC from the 11 control patients.
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Figure 4.10: Expected EPC from the 11 myocardial infarction patients.
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The mean Euler-Poincaré characteristic model is the final result using the mean

of all the values of EPC of the eleven patients, as shown in Figure 4.11.

Figure 4.11: Mean Euler-Poincaré characteristic model from the EPC values of the

P-waves of the control patients.

The mean Euler-Poincaré characteristic of control and MI patients is the mean

of all EPC values in each case. Figure 4.12 shows the MEPC from control and MI

patients.
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Figure 4.12: Mean Euler-Poincaré characteristic from P-waves of the control and MI

patients.

4.4.1 Algorithm to get the mean Euler-Poincaré character-

istic

Algorithm 3: Algorithm to get the values of mean Euler-Poincaré charac-

teristic from excursion set
Data: Non-Gaussian Random Field Φ(X, ω̄, SM),u (level)

Result: Euler-Poincaré Characteristic ϕ(Au)
1 initialization;

2 for k = 1 : Nc do

3 for j = 1 : M do

4 if Φ([k, j], ω̄, SM) >= µ then

5 Au(k, j) = 1

6 else

7 Au(k, j) = 0 ;

8 end

9 end

10 end

11 ϕ(Au) = 1
4
[n{Q1} − n{Q3}+ 2n{QD}];
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4.5 Decomposed Mean Euler-Poincaré Character-

istic

The main proposal of this approach is the relationship between the non-Gaussian

random field and the model based on the mean Euler-Poincaré characteristic. Both

can be decomposed in manifolds of the topological space T .

With the literature boarded, we know that the shape of these MEPC models is

similar to the Gaussian MEPC with dimension N = 2. However, the Adler-Taylor

model (Eq. (2.42)) cannot represent them, so we used the DMEPC model based

on the mother-wave defined in Eq. (3.17) and with SM = 2. Where SM are the

segments into which the MEPC model is divided.

We estimated the parameters A, B, mu, and sigma of the eq 15 using the Particle

Swarm Optimization (PSO) method. First, we scaled the MEPC models using a

ratio 10000:1. Then, we divided the MEPC model into two sections, the negative

values and the positive values of the expected MEPC.

The particles ρ are the parameters to estimate, and the cost function CJ is set

as the maximum fit that the estimate of the parameters attains. The constraints for

the parameters are the following:

1. Ak should be less than ten but greater than -10.

2. Bk should be higher than -10 but less than 10.

3. σk is an interval between 0 to 1.

4. µk can take the values between -1 to 1.

Fig. 4.13 shows the DMEPC model from the control patients, and this model

fits 67% of the measured signal. Table 4.1 shows the parameters obtained for this

model.
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Figure 4.13: DMEPC model from control patients with respect to the threshold u.

Table 4.1: Parameters DMEPC control subject model.

k Ak Bk µk σk

1 0.023 -3.024 0.107 -0.205

2 0.317 2.203 0.061 0.031

Figure 4.14 shows the DMEPC model from the MI patients, and this model fits

72% of the measured signal. Table 4.2 shows the parameters obtained for this model.
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Figure 4.14: DMEPC model from MI patients with respect to the threshold u.

Table 4.2: Parameters DMEPC MI suject model.

k Ak Bk µk σk

1 0.045 -3.046 0.081 -0.160

2 0.290 1.165 0.060 0.077

4.5.1 Comparing DMEPC models

In this section, we compared the MEPC models vs. the DMEPC models for each type

of patient. We have four kinds of models: control, myocardial infarction, syncope,

and stroke.

In the first place, we compared the DMEPC model from control and MI vs. the

myocardial infarction patients. We can observe that the minimum and maximum

values in each model are different so that the gradient line formed by these values

and their position are different for each type of patient.

Figures 4.15 and 4.16 represent the first comparison between the DMEPC models

from control and MI patients vs. the Adler-Taylor models. In this case, it is not a

conventional comparison because the Adler-Taylor model presented in Eq. (2.42) is

for GRF. Therefore, the geometric structures are from an NGRF, so the behavior is

from an MEPC for an NGRF.
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Figure 4.15: DMEPC model vs Adler-Taylor model for control patients.

Figure 4.16: DMEPC model vs Adler-Taylor model for MI patients.

Eq. (2.42) can not give us the liberty to find values that match the behavior of

the MEPC models because these behaviors are not from GRF. Table 4.3 showed the

found parameters’ values for Eq. (2.42) using the PSO algorithm.
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Table 4.3: Parameters for the Adler-Taylor models usign PSO algorithm.

Model T λ2 σ

Control 100.226 98.165 1

MI 150.345 80.265 1.2

Then, we compared the Control DMEPC model vs. the MI models using our

approach. We used six patients because we do not want to cram the graph with

information. Figure 4.17 showed the results; observing this graph, we can assume

that our DMEPC models can be a way to find abnormalities between two cases. But,

we need to analyze with detail this information to make sure this assumption. Table

4.4 present the parameters’ values for the DMEPC models of the MI patients. The

fitness in these models is between 65-77 %.
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Figure 4.17: A comparison beetween the DMEPC of control patients vs. the DMEPC

model for each MI patient
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Table 4.4: Parameters for the MI models.
Model FIT k A B σ µ

MI 1 77%
1 -65211.07 476.1843 0.089 -0.173

2 33858.71 4130.40 0.056 0.065

MI 2 73%
1 -64230.47 513.4826 0.073 -0.141

2 29872.87 2246.857 0.049 0.051

MI 3 72%
1 -74014.29 809.90 0.101 -0.202

2 45085.14 10765.96 0.048 0.057

MI 4 72%
1 -58996.29 877.56 0.127 -0.200

2 38491.64 5014.94 0.090 0.115

MI 5 78%

1 35731.51 6213.03 0.075 0.099

2 -52232.17 246.88 0.062 -0.110

3 -29548.24 363.37 0.110 -0.340

MI 6 65%
1 -85156.30 867.54 0.076 -0.091

2 45424.63 8843.88 0.056 0.076

Then, if you remember, in the study case appeared two more events, syncope and

stroke. We treated these events with our methodology and got the DMEPC model

for each syncope and stroke patient. Figures 4.18 and 4.19 showed the resulting

models and were compared with the control model. And Tables 4.5 and 4.6 present

the parameters’ values for the DMEPC models of the syncope and stroke patients.

The fitness in these models is between 60-79 %.

Table 4.5: Parameters for the syncope models.

Model FIT k A B σ µ

Syncope 1 76%
1 -32686.33 50.88 0.057 0.016

2 23019.93 5427.64 0.04 0.189

Syncope 2 74%

1 -18907.67 281.21 0.099 -0.02

2 24857.1 144.1 0.042 0.179

3 12523.71 3517.81 0.116 0.506

Syncope 3 81%
1 -39960.47 142.21 0.046 0.036

2 31070.26 1384.91 0.045 0.194
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Figure 4.18: A comparison beetween the DMEPC of control patients vs. the DMEPC

model for each syncope patient

Table 4.6: Parameters for the stroke models.
Model FIT k A B σ µ

Stroke 1 79%

1 -48441.39 183.59 0.041 0.067

2 35719.09 1025.19 0.043 0.201

3 6138.78 1786.5 0.072 0.829

Stroke 2 74%
1 -46420.87 458.39 0.077 0.02

2 37937.06 3746.21 0.067 0.239

Stroke 3 60%
1 -17973.33 -228.9 0.091 -0.053

2 26010.7 876.06 0.069 0.117
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Figure 4.19: A comparison beetween the DMEPC of control patients vs. the DMEPC

model for each stroke patient

Observing the DMEPC models, the minimum and maximum values change. In

the syncope cases, the minimums are after the cero excursion set level, and the

maximums are close to the 0.19 excursion set level. The minimums are relative to a

cero in stroke, and maximums are in a 0.2 excursion set level.

Finally, we showed in Figure 4.20 the four different DMEPC models for control,

MI, syncope, and stroke cases. Table 4.7 present the parameters’ values for the

DMEPC models.
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Figure 4.20: A representation of the MEPC based on DMEPC for the fourcases

(control MI, syncope, and stroke).

Table 4.7: Parameters for the mean DMEPC models .
Model

DMEPC
FIT k A B σ µ

Control 77%
1 -38940.19 560.41 0.104 -0.195

2 28017.40 16613.80 0.065 0.075

MI 71%
1 -58392.27 755.79 0.108 -0.166

2 37425.67 6204.29 0.062 0.078

Stroke 78%
1 -34871.91 175.72 0.073 -0.008

2 27881.90 3599.18 0.053 0.211

Syncope 77%
1 -29566.22 202.83 0.059 0.019

2 25297.32 5121.67 0.038 0.183
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4.5.2 Algorithm to find the DMEPC parameters

This section defines the algorithm to get the parameters of the Eq. (3.17) for each

segment of the MEPC model.

Algorithm 4: Algorithm for get the parameters of the Decomposed Mean

Euler-Poincaré Characteristic Model using PSO

Data: Mean Euler-Poincaré Characteristic E{ϕ(Au)}
Result: Ak, Bk, Ck, σk, µk parameters

1 Initialize velocity w, c1 and c2 constants, and define the cost function CJ ;

2 Select the number of particles Np and create random particles ρ(4, Np) using

the constraints for each parameter and random velocities V (4, Np) ;

3 Evaluate the particles in the eq. 3.17.

4 Calculate the fitness of each particle (Fp);

5 If Fp > pBest in the iteration so the set of values of Fp is the new pBest

6 Choose the particle with the best CJ = 100
(
‖y−ŷ‖
‖y−ȳ‖

)
of all the particle as the

gBest ;

7 Calculate particle velocity using

V = ωV + c1(pBest− ρ) + c2(gBest− ρ), (4.4)

where c1, c2 ∈ R, V = velocity of the particle and ρ = particle ;

8 Update particle position with ρ = ρ+ V

9 Update particle using the next constraints:

−10 <= Ak <= 10,

−10 <= Bk <= 10,

−1 <= µ <= 1,

0 <= σ <= 1

10 When the number of maximum iterations or maximum fit is accomplished,

the approximate solution is the particle with best fitness and STOP;

contrarily add iteration and turn to 3.
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4.6 Conclusion

This chapter presents the methodology applied to the myocardial infarction cases

from the EKG Holter.

• We suggest using the Normalized Root Mean Square Error (NRMSE) and

histograms to know the order of the polynomials utilizing a portion of each

signal. The polynomials orders are 22nd for the P and T wave sections.

• We adequate the filtered signals into a Non-Gaussian random field, collapsing

each EKG cycle filtered signal and add some zeros to homogenized.

• We search the excursion set at each level U. This part transforms the signal

and the NGRF into a geometrical structure.

• For extracting a topological invariant feature of the excursion set, we transform

the excursion set into a 2D image and extract the values of the mean Euler-

Poincaré characteristic using Gray’s algorithm.

• Then, we decomposed the MEPC model to get a mathematical model to ex-

press the behavior of the MEPC from an NGRF. DMEPC parameters were

obtained using the PSO algorithm, and for the ”separations/divisions,” we use

an empirical method.

• The DMEPC models fit the MEPC models with the following percentages 77%

for Control, 71% for MI, 78% for stroke, and 77% for syncope.

• The developed method can be a helpful tool for a doctor since it extracts a

single image of the long-term recording (Holter EKG).



Chapter 5

Classify Sleep Apnea

Sleep apnea is a disorder that affects many people in the world. In the USA, 22

million people suffer from sleep apnea, and almost 80 % of the cases sustained with

severe obstructive sleep apnea undiagnosed. Obstructive sleep apnea (OSA) can

complicate everything if left untreated, leading to heart problems like atrial fibrilla-

tion, heart failure, high blood pressure, stroke, and others. It is also associated with

type 2 diabetes and depression and is a risk factor because of sleepy drivers that

don’t know about this condition.

The public and the health community are generally aware of the population’s

increasing obesity, a phenomenon related to the increase in sleep apnea. However,

few people from the sleep medicine community are aware that too little good sleep

appears to be a factor in obesity as too much food and too little exercise.

OSA do not care about the people’s age, it includes infants and children, but it

is most frequently seen in men over 40, significantly overweight or obese men.

During sleep, cessation of breathing can last seconds or minutes when sleep apnea

is presented. It effect on the cardiovascular system, and these effects are associated

with physiological functions such as systemic hypertension and it increased sympa-

thetic activity that compromises the heart (ref).

da Silva Pinho et al. [19] analyzed the EKG signal to detect sleep apnea using

a median filter to obtain the HVR and the EKG-derived respiration (EDR), then

extracts features from these analyses, and finally trained an artificial neural network.

Burgos et al. [55] developed an alternating decision trees classifier using the per-

68
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centage of oxygen saturation signals taken from pulse oximetry systems (SpO2).

Also, Lee et al. [56] used these signals to classify sleep apnea but, they implemented

a Wavelet transform and measured the time when the SpO2 decreased.

McNames and Fraser [57] use the EKG to detect sleep apnea using the RR vari-

ability values, S-wave and T-wave amplitude, and EKG pulse energy into thresholds

about 5 min. Other research used spectral features using the EDR and RR signals

minute by minute [58] or using a linear and quadratic discriminant classifier [59, 60].

In our approach, we get the MEPC model from the EKG signal, and the OSA

can be detected using the EKG Holter data. The EKG apnea database [61] was

analyzed using our approach, but for classifying, we took another tool.From many

models of classifiers, we selected an ensemble KNN classifier. In the next section,

the methodology proposed for this study case is presented.

5.1 Methodology

In this section, we present an approach to classify the EKG signal and detect sleep

apnea. Figure 5.1 shows a general view of the method; the first point is to gener-

ate the polynomials and then create a non-Gaussian random field using them after

extracting the Euler-Poincaré characteristic, and finally describe it mathematically.

But in this case, instead of acquiring the mathematical model, we add a classifier.

Figure 5.1 shows the new method.

The methodology developed in this research have five steps, enumerated below:

1. Polynomization: the first step, using the random algebraic polynomial (RAP)

as a filter. RAP is the filtered signal of the EKG raw signal. Here is the

pre-processing part of the methodology.

2. Building the non-Gaussian random field: using the filtered signal, we stacked

all the filtered cardiac cycles and made this random field. In other words, we

constructed the geometrical structure using the filtered signals.

3. Excursion sets: a principal concept in the random field theory, is simply the set

of points where the RF exceeds a fixed threshold value u ∈ R. These belong

to the RF.
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4. Getting the mean Euler-Poincaré characteristic: using the excursion sets level,

we extract this topological feature that indicates the number of connected

components in the excursion set minus the number of holes.

5. An ensemble KNN classifier model is proposed to classify sleep apnea from

Holter EKG. In this case, we select several EKG data for the training and

validation set to have the final results.

Figure 5.1: The resume of the new methodology.

5.2 Study case

The dataset has 70 records, divided into two. The first set is the learning set and

have 35 records, where we have 20 severe cases, 5 started instances, and ten no apnea

cases. The second set is the validation with 35 records. All of them downloaded from

the Apnea-ECG database [61]. All of the EKG signals have a bunch of apnea and

QRS annotations. The EKG signal was digitized at 100 Hz with a 12-bit resolution

of approximately 8 h, corresponding to men and women between 27 and 60 years

old.
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5.3 Implementing the methodology

For this case, the first four steps are the same as the chapter 4 for myocardial

infarction. This section has the changes in each step, the first step needs a new

polynomial order, and we used a classifier for this patient.

5.3.1 Polynomization

Remember that we need to choose an order of polynomials for maintaining homo-

geneity; in this case, we selected 100 000 samples of each patient from the training

set.

The following procedure was carried out to obtain the order:

1. Find the R-peaks in each cycle using the QRS annotations.

2. Find the middle points between the interval R-R.

3. For each interval, we get the results with the order from 15 to 25.

4. The measure of the fit for each order and the raw EKG is getting using the

Eq. (4.1) and the ITAE performance index.

5. Choose the best fit in each cycle.

6. A frequency histogram plots the relationship between the fit and IAE of the

orders polynomials from 15 and 25. Figures 5.3 and 4.3 shows these results.

On this occasion, we used both histogram results, so with the FIT criterion, the

polynomial order is 15, and with the IAE criterion, the 21th polynomial order.

To build the NGRF, we selected the filtered signals from 15 and 21 orders and

constructed the geometrical structure for these EKG signals.
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Figure 5.2: Histogram to select the best order of the polynomials (P-waves and

T-waves) for each cycle using the FIT criterion

Figure 5.3: Histogram to select the best order of the polynomials (P-waves and

T-waves) for each cycle using the IAE criterion
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5.3.2 Mean Euler-Poincaré characteristic

In this step, we transform the geometrical structure to a binary image to get the

Euler-Poincaré characteristic.

When the value of t ∈ Φ(X, ω̄) is higher than the level u, so the value for the

binary image is 1, otherwise it is 0. Figures 4.7 and 4.8 represent an example of a

binary image from an excursion set.

The EPC is a scalar value representing the number of connections minus the

number of holes in those elements [42]. To get these values, we used Gray’s algorithm

[54] to the binary image of each excursion set Au. The levels u selected were in the

interval [−1, 1] divided into 100 points.

Remember that we analyze the training set in the first place, so each signal

acquired 100 values that formed the EPC model due to the levels. Figures 5.4 and

5.5 show the model EPC from P-waves for each patient analyzed.

By not having a similarity in the MEPC models’ behaviors and not finding an

adequate function representing these behaviors in their entirety, we have obtained

to use another tool to classify these EKGs.
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5.3.3 Ensemble KNN classifier

The KNN classifier has only two parameters, the Euclidean distance and the number

of neighbors k compared with the neural networks and decision tree classifiers with

more parameters. The KNN represents a modern and straightforward way to classify.

The KNN classifier has a ”good” performance in classifying different classes from

a series of data. But, when we have a ”bad” accuracy using the training and test

data. One solution is to connect multiple classifiers, known as ensemble methods, to

improve learning algorithms’ prediction performance, especially in non-informative

features in the data sets.

We don’t have non-informative features; instead, we have an MEPC model that

describes the behavior of the high peaks in different levels of the NGRF. In the case

of MI, we notice that the action of the MEPC is similar in each patient. In this

case, Figures 5.4 and 5.5 represent the MEPC model for each patient, and we know

it is challenging to analyze them. But we know that this model revealed a lot of

information.

To get the ensemble KNN classifier, we use the 101 values from each patient’s

EPC model. These values were the classifiers’ predictors, and the classes are sleep

apnea (representing the value 0) and no apnea (with 1) in the 102 columns in the X

input of the classifier. The matrix below represents the matrix X of inputs.
x1

1 x1
2 · · · x1

n t1

x2
1 x2

2 · · · x2
n t2

...
...

. . .
...

...

xm1 xm2 · · · xmn tm


where xji are the predictors with i = [1, 101], and ti is the class of each patient.

The random subspace method relies on a stochastic process that randomly selects

several components of the given feature vector in constructing each classifier [62]. In

KNN, that means when a test sample is compared to a prototype, only the selected

features have nonzero contributions to the distance. Geometrically this is equivalent

to projecting all the points to the chosen subspace, and the k nearest neighbors

are found using the projected distances. Each time a random subspace is selected,

a new set of k nearest neighbors are computed. The k nearest neighbors in each
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selected subspace are then assembled for a majority vote on the test sample’s class

membership. The same training sample may appear more than once in this ensemble

if it happens to be among the k nearest neighbors in more than one selected subspace.

So that, we have a set of N points in an n−dimensional feature space

(x1, x2, . . . , xn)|xiis real ∀1 ≤ i ≤ n,

we consider the m−dimensional subspaces

(x1, x2, . . . , xn)|xi = 1for i ∈ I, xi = 0 for i /∈ I,

where I is an m−element subset of 1, 2, . . . n, and m < n.In each pass, a sub-

space is chosen by randomly selecting an I from C(n,m)−many choices. All points

are projected into the subspace chosen. For each testing point, k nearest neighbors

(1 ≤ k ≤ N) passes, the test point is assigned to the class with the most frequent

occurrences in the list C. The method is a derivative of stochastic discrimination

where many stochastically created weak classifiers are combined for a nearly mono-

tonic increase inaccuracy [63, 64].

In this research, we implement an ensemble random KNN classifier using the tool

of Matlab, and the results showed below are using an AMD Ryzen 5 3600, 16 GB

of RAM, and the parallel pool option. Using this tool, we have the next diagram to

explain the ensemble.

Figure 5.6: Diagram of the KNN ensemble classifier.
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We choose 30 learners, which are 30 subspaces, with 65 random entries in each

learner (predictors)—a total of 35 observations (35 MEPC model values) for the

training phase and 35 ones for the test phase. The next section explains the confusion

matrix and the results of this model.

5.4 Results and discussion

This chapter found a classifier model for sleep apnea and not apnea cases using an

ensemble KNN classifier. The first result is with the training phase. The dataset

comprises 20 sleep apnea with more than an hour of activity, 5 with less than an hour,

and ten patients without apnea. The result is the next confusion matrix showed in

Figure 5.7. In this phase, we get an accuracy of the 80%, a sensitivity of 82%, and

a specificity of 71%.

Figure 5.7: Confusion matrix for the training phase

We observed that we have 92% of accuracy in the apnea class and 50% in the

control class. To get the values of the accuracy, sensitivity, and specificity, we used

the following formulas.

Accu =
TP + TN

P +N
=

23 + 5

35
∗ 100% = 80%

Sen =
TP

TP + FN
=

23

23 + 5
∗ 100% = 82%
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Spec =
TN

TN + FP
=

5

5 + 2
∗ 100% = 71%

where TP is true positive, TN is true negative, P are the positive cases, N the

negative cases, FN is false positive, and FP is false negative.

Remember, we have two different polynomials to filter the signal in the pre-

processing step, which are 15 and 21 orders. In both cases, the training phase was

the same.

For the test phase, we have two different confusion matrices. The first result

using 15 orders in the polynomials to filter the signal is the next confusion matrix

shown in Figure 5.8. And the accuracy is 97%, sensitivity 96%, and specificity 100%.

Figure 5.8: Confusion matrix for the test phase using 15 order polynomials.

We observed that we get 100% of accuracy in the apnea class and 88% in the

control class. To get the values of the accuracy, sensitivity, and specificity, we used

the following formulas.

Accu =
TP + TN

P +N
=

27 + 7

35
∗ 100% = 97%

Sen =
TP

TP + FN
=

27

27 + 1
∗ 100% = 96%

Spec =
TN

TN + FP
=

7

7 + 0
∗ 100% = 100%
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And finally, Figure 5.9 shows the last confusion matrix with the 21 order of

polynomials to filter the signal. We obtain an accuracy of 94%, a sensitivity of 93%,

and a specificity of 100%.

Figure 5.9: Confusion matrix for the test phase using 21 order polynomials

We observed that we have 100% of accuracy in the apnea class and 75% in the

control class. To get the values of the accuracy, sensitivity, and specificity, we used

the following formulas.

Accu =
TP + TN

P +N
=

27 + 6

35
∗ 100% = 94%

Sen =
TP

TP + FN
=

27

27 + 2
∗ 100% = 93%

Spec =
TN

TN + FP
=

6

6 + 0
∗ 100% = 100%

Specificity is the ability to correctly exclude individuals who do not have a given

disease or disorder. For example, if we have a value of 90% specific. If 100 healthy

individuals are tested with that method, only 90 of those 100 healthy people will be

found to be a control patient. The other ten people also do not have the disease, but

their test results indicate they do. For that, 10% of their “abnormal” findings are

misleading false-positive results. In this case, we have a value of 100% of specific,

which means our model could correctly classify all the control cases. So the model
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did not produce false-positive results.

Sensitivity is the ability to identify people who have a given disease or disorder

correctly. For example, if we have 90% sensitivity in a test. It means that if 100

people are known to have a particular disease, the test will correctly identify 90 of

those 100 cases of the disease. The other ten people who were tested also have the

disease, but the test will fail to detect it. For that 10%, the finding of a “normal”

result is a misleading false-negative result. A test’s sensitivity becomes particularly

important when you are seeking to exclude a dangerous disease. Our model gets a

96% and a 93%, which means the model can detect correctly with these percentages

and give 1 or 2 false negatives.

So, if we need to select one model, we choose the first one, using a 15th polynomial

order to smooth the signal.

5.5 Comparative with the literature

In this section, we can say that we produced a classifier that can detect sleep apnea

using a Holter EKG signal. Other works in the literature also can see the same

disease and classified according to different perspectives.

Some works try to decide if a patient suffers apnea or not using an overall diag-

nostic over the whole biomedical signal. For example, they used the δ index, which is

the differences in oxygen saturation in a 12s interval [65, 66], and non-linear methods

as central tendency measure (CTM) and Lempel–Ziv (LZ) complexity [67].

Other works used fragments of the signal (minute by minute [57], or using win-

dows of variable size [68]) to identify the apnea episodes and do not attempt to make

a general diagnosis of SAHS, which is considered as a responsibility of the specialists.

Some works use their database created with data obtained from many patients

[65, 66, 67]. Others used the same database that we use, which is the Apnea-ECG

Database [68].

Different biomedical signals are used to classify and diagnoses the SAHS. For

example, photopletismography signal [69], SpO2 signal [56, 67, 55], oronasal air flow

signal [70], ECG signal [66, 57], etc.

Those works use different techniques or methods to analyze these kinds of sig-
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nals. For example, RR variability [57, 59, 71], wavelet transform [56, 58], neuronal

networks [70], etc.

Our approach is different as the previous works, an following these considera-

tions:uses the whole recording of each patients, but only the P-waves sections,uses

the Apnea-ECG Database, analyzes only the P-wave from the EKG signal after the

filtering phase, and employs the mean Euler-Poincare characteristic and a neuronal

network.

The first works, [57], [58], and [59], are results from the 2000 challenge organized

by Physionet and Computers in Cardiology [61] and are the best results. The chal-

lenge consisted of displaying the effectiveness of EKG-based methods for sleep apnea

detection using the EKG signal using the Apnea-ECG database.The middle works,

i.e., [56], [71], [60], and [55], are to show the many techniques implemented and also

their performance results using EKG and respiratory signals.

McNames and Fraser [57] got an accuracy of 92.62% by doing a spectral analysis

of heart rate variability and using different ECG-derived parameters like ECG pulse

energy and amplitude of the S-component. Raymond et al. [58] got an accuracy

of 92.30% using the T-wave amplitude’s spectral analysis using wavelet transform

(WT). Also, they get some power spectral features from the EKG-derived respiratory

signal (EDR). And the RR interval tachogram was computed.

de Chazal et al. [59] got an accuracy of 89.36% by spectral analysis of heart rate

variability and R-wave amplitude. They created a set of characteristics based on RR

and PR intervals, obtained from each minute of data and others related to series of

alternating bradycardia and tachycardia.

Lee et al. [56] worked with the SpO2 signals from the eight recordings with the

EKG and the respiratory signs from the Apnea-ECG database. They compared the

performance obtained by WT to three conventional algorithms. With the wavelet al-

gorithm, they got an accuracy of 82%. The other traditional algorithms, wavelet algo-

rithm (WA), amplitude duration algorithm (ADA), drop duration algorithm (DDA),

and nervus algorithm (NA), got accuracy above 95% but using tuned parameters,

which do not reflect acceptable medical values. When they adjusted their algorithms

with good results, the performance decreased to 88%.

Corthout et al. [60] compared three strategies to evaluate obstructive sleep apnea
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(OSA). The three methods, one based on the Empirical Mode Decomposition (EMD)

and the Hilbert transform (HT), one based on EMD and reassigned spectrogram

(RAS), and one based on wavelet analysis (WA) and HT, were able to classify the

minute-by-minute signal with an accuracy of around 90%.

Burgos et al. [55] made a classifier using a bagging method in a decision tree

(ADTree) that identifies sleep apnea from the blood oxygen saturation taken from

SpO2. Their strategy reached 93.03% of accuracy, with a sensibility and specificity of

92.35% and 93.52%, respectively. Also, they get a receiver operating characteristic-

area under the curve (ROC-AUC) of 98.5% on SpO2 signals.

The last three works, i.e., [72], [73], and [74], are more recent works that also

offer performance results to detect sleep apnea; Ye et al. [72] got a 99% using a

frequency extraction network (FENet), using the RR-interval during one minute as

inputs. FENet generates an implicit representation of respiration with a group of

multi-frequency filters and a frequency feature extractor. Then a convolutional layers

and fully connected layers are adopted to produce three independent classification

results.

Rajesh et al. [73] worked with the Apnea-ECG database, they used a random

forest classifier (RFC) to get a 90% of accuracy. They extracted three sets of features

for the RFC inputs, namely moments of power spectrum density (PSD), waveform

complexity measures, and higher-order moments extracted from the 1-min segmented

EKG subbands obtained from discrete wavelet transform (DWT). After, correlation-

based feature selection with particle swarm optimization (PSO) search method is

employed for getting an optimum feature vector.

Li et al. [74] evaluated the features from the EKG, SpO2, and the body mass

index (BMI) using a multi-layer feed-forward neural network (FNN). They achieved

with the multi-layer FNN an accuracy, sensitivity, and specificity of 97.8%, 98.6%,

and 93.9%.

Table 5.1 summarizes each related work, including performance measures, the sig-

nal employed, the techniques used, and the decision method chosen to state whether

there is an apnea or not on a specific signal interval. We can see that our approach

offers suitable performance measures (sensitivity, specificity, and accuracy) from such

results. Moreover, it is the only one that uses a geometrical approach.
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5.6 Conclusion

This chapter presents a change in the methodology and applying a classifier to the

sleep apnea cases from the EKG Holter.

• In the polynomization section, we selected the NRMSE vs. IAE criterion. The

results are that with the NRMSE, the order of the polynomials was 15th, and

with the IAE 21th order.

• We use the same method and exact algorithms for the NGRF, excursion set,

and MEPC characteristic extraction.

• Then, we don’t apply the DMEPC approach. We use an ensemble KNN clas-

sifier to detect apnea or no apnea cases.

• With this classifier, we get in the learning phase 80% of accuracy, 82 % of

sensitivity, and 71% of specificity.

• And in the test phase, we got 97% accuracy, 96 % sensitivity, and 100% speci-

ficity.

• The developed method can be a helpful tool for a clinician since it can classify

Holter EKG for sleep apnea disease.



Chapter 6

Conclusion

The procedure to get an EKG model using the random field theory from Adler and

Taylor is new. It describes the steps to pass from an EKG signal to a geometrical

structure called a random field, then transform from an RF to a 2D image, and

finally to the MEPC model.

The Gaussian methods can not describe the mathematical expression for the

MEPC model of our study cases, so the new approach based on decomposition was

related to express these models. This method was called decomposition of the mean

Euler-Poincaré characteristic.

The resume methodology is divided into polynomization, building NGRF, excur-

sion sets, 2D image transforming, MEPC feature extraction, and getting a model.

In the case of the DMEPC that describes the behavior of the MEPC model math-

ematically, we get good approximations with 71-77 % of fit. Also, we observe that

the place where the minimums and maximums are can be an indicator to differentiate

one disease from another.

Also, in the MI case, where we use a Holter EKG, we construct a possible tool

for the physicians to identify some diseases using the DMEPC models as templates

and with some values as the difference from the minimum and maximum and the

difference from level U where the values before are.

Using the idea below, we get four final templates for MI, stroke, syncope, and

control cases. Remember, the sample space is a population of older people with some

heart problems and heart diseases.

86
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In the second case of the methodology, we applied an ensemble KNN. Because

if we are against an NGRF where the mother wave proposed can not describe the

MEPC model behavior, we can choose another method that helps to reach the goal.

An ensemble KNN can be chosen because it was easy to implement. If we took

the learning and test phase results, we get these finals indicators: 89% sensitivity,

which means how good the classifier is at detecting the sleep apnea cases; 85.5%

specificity indicates how good the classifier is to see the normal status; and 88.5%

accuracy, it measures the degree of veracity of the classifier to detect both cases

(sleep apnea or no apnea).

In this case, we choose two criteria to select the order of polynomials, the NRMSE

equation vs. IAE criterion, and when we compared all the graphs, we watch that

the two are so closed. But we can conclude that the NRMSE criterion can satisfy in

both study cases.

Also, the method used for sleep apnea based on the topological invariant MEPC

and the KNN classifier can be considered a good result compared with the classical

methods.

This research is an introduction to use a feature expected used in biomedical

images, but not in time series biomedical signals. So this research has wide-open

possibilities, as the name of this document, theory of identification systems applied

to medical diagnoses and treatment of biomedical signals.

We used one of many biomedical signals, and we choose the Holter EKG as the

first option. Our journey to discover more benefits for this approach will continue.

6.1 Future works

The methodology described before is not a static method. We can adapt many

resources to create models of the Holter EKG, using different mother-waves and

using classifiers after the DMEPC models. So that, we proposed the next works:

1. Get the MEPC model for other cardiac diseases as AFIB, coronary artery

disease, MI in long terms (30 min), others.

2. The MEPC models will use as input of some classifiers (KNN, SVM,NN, oth-

ers).
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3. Get the MEPC model for breast cancer images and use a classifier.

4. Use the MEPC model with mechanical process, to analyze the vibrations.

5. DMEPC is based on the NGRF from the EKG time cycles. Another approach

will consist of built the NGRF from the EKG frequency cycles using FFT and

compare DMEPC in time and frequency.
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ABSTRACT This paper introduces a new approach of the mean Euler-Poincaré characteristic for non-
Gaussian random fields (NGRF), which is based on the decomposition by a basic function named mother-
wave. The method is proved for long-term recorded, noisy physiological signals. A pretreatment allows the
signal to become smooth as the original one is fitted through a Random Algebraic Polynomials (RAP)-based
scheme. After that, the polynomized signals are merged by thresholding the RAP function at different levels
u. In this way, it is formed a real-valued non-Gaussian physiological random field (NGPRF). Thereby,
we deal with their geometric properties centered on their excursion sets Au(8, T ) and a topological invariant,
such as the Euler Poincaré Characteristic (EPC) ϕ(Au(8, T )). The highlight of this work is an explicit model,
referred to as the decomposedmean Euler-Poincaré characteristic (DMEPC). The proposedmethod produces
a reduced model with a viable interpretation for different heart conditions investigated for data issued from
Holter EKG recordings.

INDEX TERMS DMEPC, Euler characteristic, random field.

I. INTRODUCTION
Random Fields (RF) give a statistical description of complex
random patterns of change and relationships from physi-
cal data sets [1]–[3]. Consider a random variable 8(X, •)
as a function of X = [X1, . . . ,Xn]T with {Xk}nk=1 as the
set of random continuous coordinates, then, a collection
of 8(X, •) is named random field [4]. The geometry and
regularity properties of RF have been largely discussed in
the literature. These features have to do with continuity and
differentiability notions [5] and still with the geometry gen-
erated by RF through their excursion sets over a level u [4].
Gaussian Random Fields (GRF) is a class of RF for which
the finite-dimensional distributions are multivariable nor-
mal distributions that can be fully specified by expectations
and covariances. GRFs lead to a large class of applications
suited for use in mathematics, sciences, and engineering
[6]. A noticeable issue has been accessing information from
biomedical images. In this case, Gaussian Markov Ran-
dom Fields (GMRF) provide a spatial-contextual knowledge

The associate editor coordinating the review of this manuscript and
approving it for publication was Aniruddha Datta.

that has often resulted in spatial statistics applications.
The research by [7] used Markov irregular fields (MRF)
to address biomedical image analysis by image segmenta-
tion, object labeling, and 3D vision. Later, [8] developed
a Bayesian framework that introduces an adjustable param-
eter on a Generalized Adaptive Gaussian Markov random
field (GAGMRF) model to adjust the image quality for X-ray
Luminescence tomographies. Researches that engage in RF
concern also medical analyses. As an example, we refer to the
work in [9], where statistical methods assisted morphometric
analyses of specific subregions of the brain. Here, using
GRF differentiated the shape of the amygdala and the hip-
pocampus of normal subjects face to patients with attention-
deficit/hyperactivity disorder (ADHD). Another type of RF
usage points to disease mapping. In this regard, we cite the
work of [10] that propose a Bayesian analysis of a GMRF
to determine the spatial variability of lip cancer cases in
Scotland for a period of five years.
From the given literature review, we deduce that the theory

of GRF supports quite well medical diagnosis practice by
images. However, for some diseases, the diagnosis is made
more by reading signals recorded over time. For example,

21180 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021
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Libraries

B.1 WFDB Toolbox for MATLAB

The WFDB Toolbox for MATLAB and Octave is a collection of functions for read-

ing, writing, and processing physiologic signals and time series in the formats used

by PhysioBank databases (among others). The Toolbox is compatible with 64-bit

MATLAB and GNU Octave on GNU/Linux, Mac OS X, and MS-Windows [75].

Prerequisites:

• MATLAB R2014a or later, with a working Java Virtual Machine (JVM) that

supports Java 1.7 or later.

Installation:

• Open MATLAB.

• Go into the directory where you wish to install the Toolbox: cd directoryname

• Type (or copy and paste) the following commands into the MATLAB window:
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[old_path]=which(’rdsamp’); if(~isempty(old_path))

rmpath(old_path(1:end-8)); end

wfdb_url=’https://physionet.org/physiotools/matlab/wfdb-app-matlab/wfdb-app-toolbox-0-10-0.zip’;

[filestr,status]=urlwrite(wfdb_url,’wfdb-app-toolbox-0-10-0.zip’);

unzip(’wfdb-app-toolbox-0-10-0.zip’);

cd mcode

addpath(pwd)

savepath

For more references, you can search at this site:

https://archive.physionet.org/physiotools/matlab/wfdb-app-matlab/

https://archive.physionet.org/physiotools/matlab/wfdb-app-matlab/
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