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Abstract
Keywords : Adaptive Observers, Dynamic Observers, Unknown inputs, Disturbances, LPV systems, Fault-tolerant
control.

In this thesis, the observer design for linear parameter-varying systems and their applications to fault diagnosis
and fault-tolerant control is studied. A linear parameter-varying (LPV) system can approximate the nonlinear dynamic
behavior through a set of linear state space models that are interpolated by a mechanism depending on the scheduling
variables.

The observer used in this research is called generalized dynamic observer (GDO), where the principal idea is to
add dynamics structure to increase its degrees of freedom, with the purpose of achieving steady-state accuracy and
improve robustness in estimation error against disturbances and parametric uncertainties. Therefore, this structure can
be considered as more general than a proportional observer and proportional-integral observer.

It addresses the GDO synthesis for LPV systems with measured and unmeasured scheduling variables such as the
quasi-LPV system, in which the scheduling variables are functions of endogenous signals such as states, inputs, or
outputs instead of exogenous signals.

Conditions of existence and stability for each GDO structure are given through the Lyapunov approach using parameter-
independent Lyapunov function or parameter-dependent Lyapunov function. The design is obtained in terms of a set
of linear matrix inequalities. Engineering applications are used to illustrates the performance and effectiveness of the
proposed approaches.

It considers a fault-tolerant control (FTC) strategy for polytopic LPV systems to maintain the current system
close to the desired performance and preserve stability conditions in the presence of actuator faults. A fault diagnosis
unit is built to estimate the states, the actuator faults, and the parameter variation. This information is essential to the
FTC law.
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Résumé
Mots-clés : Observateurs adaptatifs, observateurs dynamiques, entrées inconnues, perturbations, systèmes LPV,
commande à tolérance de pannes.

Dans cette thèse, la conception de l’observateur pour les systèmes linéaires à paramètres variables et leurs appli-
cations au diagnostic des pannes et au contrôle tolérant aux pannes est étudiée. Un système à variation de paramètre
linéaire (LPV) peut approcher le comportement dynamique non linéaire via un ensemble de modèles d’espace d’état
linéaire interpolés par un mécanisme dépendant des variables de planification.
L’observateur utilisé dans cette recherche s’appelle l’observateur dynamique généralisé (GDO), où l’idée principale est
d’ajouter une structure dynamique pour augmenter ses degrés de liberté, dans le but d’obtenir une précision à l’état
d’équilibre et d’améliorer la robustesse de l’erreur d’estimation contre les perturbations et paramétriques. incertitudes.
Par conséquent, cette structure peut être considérée comme plus générale qu’un observateur proportionnel et un
observateur proportionnel intégral.

Il traite de la synthèse GDO pour les systèmes LPV avec des variables d’ordonnancement mesurées et non me-
surées telles que le système quasi-LPV, dans lequel les variables d’ordonnancement sont des fonctions de signaux
endogènes tels que des états, des entrées ou des sorties au lieu de signaux exogènes.
Les conditions d’existence et de stabilité de chaque structure de GDO sont définies par l’approche de Lyapunov en
utilisant une fonction de Lyapunov indépendante des paramètres ou une fonction de Lyapunov dépendant de paramètres.
La conception est obtenue en termes d’un ensemble d’inégalités matricielles linéaires. Les applications d’ingénierie
illustrent la performance et l’efficacité des approches proposées.

Il envisage une stratégie de contrôle tolérant aux pannes (FTC) pour les systèmes LPV polytopic afin de main-
tenir le système actuel proche des performances souhaitées et de préserver les conditions de stabilité en présence
de défauts de l’actionneur. Une unité de diagnostic des défauts est construite pour estimer les états, les défauts de
l’actionneur et la variation des paramètres. Cette information est essentielle à la loi FTC.
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LMI Linear Matrix Inequality.
PDL Parameter Dependent Lyapunov.
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PO Proportional Observer.
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General introduction

1 Context of the thesis

This report presents the results of the research thesis titled "Design of adaptive observers for LPV systems. Application
to fault tolerant control". These results consist in proposing a new structure of adaptive observer for linear parameter
varying (LPV) systems, and consequently, a fault diagnosis (FD) unit are designed such that the parameter variation
and actuator fault of the system is estimated.

On the other hand, this research is developed in a research collaboration between the National Center of Research and
Technological Development (CENIDET) and the Research Center for Automatic Control of Nancy (CRAN) of Lorraine
University.

2 Problem formulation

In the bibliography review, it was possible to detect different open problems and certain trends in the fault tolerant
control area, based in the polytopic LPV approach. Nevertheless, there is a vast literature about LPV estimation based
on the measured scheduling parameters (exactly known), and there exist a different kind of observer structures with
this condition. However, this case could have some restrictions :

— In a practical case, the chosen scheduling parameters could be unmeasured, or the scheduling parameters could
have uncertainty. In the literature, this issue is solved either estimating the scheduling parameter or designing a
filter to cancel the uncertainty effect.

— The use of endogenous variables in the scheduling parameters (quasi-LPV approach). This approach is very
convenient when it is necessary to represent in the simplest way, the nonlinear dynamic of the system. The-
refore, the state variables could be unmeasured. This point is very common in the literature for quasi-LPV systems.

In the observer design, these scheduling parameters should be estimated and, the interpolation of the linear time-invariant
(LTI) models is based on their estimation. Similarly, in the fault-tolerant control (FTC) area, there are works addressed
in sensor faults, actuator faults and parameter faults based on the previous constraints. These issues are still open
problems and we found a possible contribution based on the following polytopic LPV structure

ẋ(t) =

2k∑
i=1

µi(θ̃(t))(Aix(t) +Biu(t) +Gf(t)) (1a)

y(t) = Cx(t) (1b)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector, y(t) ∈ Rp is the output vector and f(t) ∈ Rnf is
the additive actuator fault vector. Ai ∈ Rn×n, Bi ∈ Rn×m, C ∈ Rp×n and G ∈ Rn×nf are constant matrices. k is the
number of scheduling parameters.

The variable θ̃(t) is a vector which depends on unmeasured parameters that varies on a convex polytope. These
scheduling parameters do not take into account the state variables, but only parameters that varies over time.
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3 Objectives

The general objective of this thesis is to propose a new structure of adaptive observers for LPV systems, which must be
able to estimate parameters and system state variables. This information should be useful to design a fault tolerant
control system.

Particular objectives

— Propose a new structure of adaptive observers for LPV systems, able to estimate variations in process parameters.
— Propose a fault diagnosis strategy for LPV systems to estimate the states, the actuator faults and the parameter

variation based on the proposed observer.
— Implement a control law which considers the parameter estimation and the information provided by the diagnostic

scheme, to maintain the desired operating conditions, even in the presence of faults.

4 Justification

The product quality, the economic operating system, and the security are significant factors to industrial processes
[Jiang and Yu, 2012]. A way to maintain these factors is the implementation of FTC and FD methods. These strategies
provide a security operation, avoiding dangerous situations ; a continuous operation, maintaining the system even in the
presence of disturbances and faults ; and efficient operation, preserving an acceptable performances.

The plant could produce substantial measurement errors or changes in the nominal operation due to faults that are
often classified as actuator faults, sensor faults and parameter faults. In order to improve the reliability of the plant,
FD is often employed to monitor, locate, and identify the faults by using the concept of redundancy, either hardware
redundancy or analytical redundancy. This information about the fault is used in an FTC strategy so as to satisfy the
control objectives with the minimum performance degradation after the fault occurrence.

In some works, the control design assumes that the state vector is accessible for measurement. In a practical case the avai-
lability of the instrumentation is constrained due to the cost of the components or simply it does not exist the technology
to measure some state variable. In the FD model based, the main tool to estimate these unmeasured state variables are
observers. To design these observers, a dynamic model is required to know the behavior of the system. In the literature
is very common to represent the dynamic behavior of a system through nonlinear models. Generally, the nonlinear
models have derived thanks to system knowledge or by equations representing the physical behavior. Because of the
complexity of nonlinear controllers design, sometimes this model is linearized at an operating point getting an LTI model.

The LPV approach presents a great advantage in comparison of linear and nonlinear models. This theory can represent
a system through several operation points (LTI models) describing in a better way the dynamic behavior of the plant
and reduce the complexity of the design controllers or design observers which are key tools in the FTC area.

This research tries to give a contribution in the FTC area for LPV systems. There are a vast of literature about this
topics but, there are still issues that have not been addressed.

5 Thesis outline

Based on the objectives of this dissertation, this work is organized by six chapters. Chapter 1 describes the background
of this research work, and likewise, state of the art is presented to demonstrate the motivation of this thesis. The linear
parameter-varying systems theory is introduced, giving the necessary concepts for the stability analysis based on the
Lyapunov method. Afterward, it gives an introduction of different types of observer structures and control designs
for LPV systems based on the bibliography review. Since this research is directed towards the FTC area, it describes
definitions as active FTC and passive FTC.

Chapter 2 presents the synthesis of the generalized dynamic observer (GDO) for continuous-time LPV systems. This
observer structure generalizes the results on the observer structures such as proportional observer (PO) and proportional-
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5. Thesis outline

integral observer (PIO). Likewise, to satisfy the existence conditions of the GDO, a parameterization of algebraic
constraints obtained from the estimation error analysis is detailed. Besides, it is presented the observer design problem
for LPV systems with unknown input. On the other hand, it illustrates the cases when the scheduling variables are either
exogenous or endogenous signals, such as the case when the scheduling variable is unmeasured. Academic examples are
used to compare the performance of the GDO against their particular cases.

Chapter 3 describes the GDO design for discrete-time LPV systems with unknown inputs and disturbances. For the
synthesis of this observer, a parameter-dependent Lyapunov function is used, which is sufficient to ensure global
asymptotic stability. Likewise, an engineering application is used to compare the GDO performance with their particular
cases.

In Chapter 4, using the GDO structure, an adaptive observer design for LPV systems is developed, which can estimate
states and parameters of the system simultaneously. Moreover, the observer design conditions for LPV systems with
unknown inputs are defined. Time-varying terms are bounded, taking advantage of the polytopic properties. The
Lyapunov method and notions of L2 gain is used to obtain the stability conditions in terms of LMI. Numerical examples
are used to demonstrate the performance of this observer structure.

Chapter 5 concerns an active FTC strategy for LPV systems that combines the results of the previous chapters. In the
first section, the FTC law uses the state and fault estimation provided by an adaptive observer. The control law is then
designed to undertake reference state tracking, minimizing the system state trajectory deviation caused by faults. At
last, it assumes that the scheduling variable is unmeasured ; therefore, another adaptive observer which can estimate
the parameter variation of the system is added to the FTC scheme previously established. Consequently, a new FD unit
is built, which can estimate states, faults, and parameter variation.

Finally, in Chapter 6, the conclusions of this research work are presented and some perspectives for the future work are
discussed.
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Chapter 1

Introduction
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1.1.4 Polytopic Bounded Real Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.5 Unmeasured scheduling variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Fault-tolerant control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 Type of fault-tolerant control systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Fault diagnosis scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Tools for the stability analysis of dynamic systems . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1 LPV system
LPV systems are linear state-space models with matrices depending on time-varying parameters that can evolve over
wide operating ranges. These parameters, called scheduling variables, depend on exogenous signals that are unknown a
priori, but measured or estimated in real-time. The LPV systems can be described by the following equations :

ẋ(t) =A(ρ(t))x(t) +B(ρ(t))u(t) (1.1a)
y(t) =C(ρ(t))x(t) +D(ρ(t))u(t) (1.1b)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm represents the control input vector, y(t) ∈ Rp represents the measured
output vector, and ρ(t) ∈ Rj is the time-varying parameter vector. A(ρ(t)), B(ρ(t)), C(ρ(t)) and D(ρ(t)) are varying
matrices of appropriate dimensions. The class of LPV systems encompasses a wide variety of systems according to
the type of trajectories of the parameters [Briat, 2015]. The most common technique to obtain an LPV system is the
polytopic LPV approach, where the plant depends affinely on time-varying parameter vector which evolves into a
polytopic set [Hoffmann and Werner, 2015].

It is assumed that each component ρi(t), i ∈ {1, 2, . . . , j} of the time-varying parameter vector ρ(t) is bounded, in
which their values remain into a hyper-rectangle such that

ρ(t) ∈ P =
{
ρi(t)

∣∣∣ρ
i
≤ ρi(t) ≤ ρi

}
, ∀i ∈ {1, 2, . . . , j},∀t ≥ 0 (1.2)
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Based on the affine parameter dependence (1.2), the varying matrices of the LPV system (1.1a) can be represented in
the following form :

A(ρ(t)) = A0 +

j∑
i=1

ρi(t)Ai, B(ρ(t)) = B0 +

j∑
i=1

ρi(t)Bi,

C(ρ(t)) = C0 +

j∑
i=1

ρi(t)Ci, D(ρ(t)) = D0 +

j∑
i=1

ρi(t)Di

where A0, B0, C0, D0, Ai, Bi, Ci, and Di are known matrices with appropriate dimensions.From this characterization,
system (1.1a) can be transformed in a convex combination where the vertices Si of the polytope are the images of the
vertices of P such that Si = [Ai, Bi, Ci, Di], ∀i ∈ {1, 2, . . . , τ} where τ = 2j . The polytopic coordinates are denoted by
µ(ρ(t)) and vary into the convex set Λ where

Λ =

{
µ(ρ(t)) ∈ Rτ , µ(ρ(t)) = [µ1(ρ(t)), µ2(ρ(t)), . . . , µτ (ρ(t))]T , µi(ρ(t)) ≥ 0,

τ∑
i=1

µi(ρ(t)) = 1

}
(1.3)

The polytopic coordinates can be computed as in [Pellanda et al., 2002]. The polytopic LPV system with the time-varying
parameter vector µi(ρ(t)) ∈ Λ is represented by

ẋ(t) =

τ∑
i=1

µi(ρ(t))(Aix(t) +Biu(t)) (1.4a)

y(t) =

τ∑
i=1

µi(ρ(t))(Cix(t) +Diu(t)) (1.4b)

can be reformulated in a convex linear combination of linear time-invariant (LTI) models, such that the LTI system
theory can be used.

Remark 1.1. [Kwiatkowski et al., 2006] If the scheduling variables are functions of endogenous signals such as states,
inputs, or outputs instead of exogenous signals, the system is referred to as quasi-LPV and describes a large class of
nonlinear systems.

Likewise, there are many LPV control/observer applications reported in the literature such as aircraft dynamics
[Varga and Ossmann, 2014, Pellanda et al., 2002], wind turbines [Shao et al., 2018, Liu et al., 2017a, Bakka et al., 2014],
automotive [Zhang and Wang, 2017a, Zhang and Wang, 2017b, Zhang et al., 2016, Zhang and Wang, 2016], vehicle mo-
tion [Hu et al., 2016, Yacine et al., 2013], mechatronic [Nguyen et al., 2016, Nagy Kiss et al., 2015], anaerobic diges-
ters [López-Estrada et al., 2015, Nagy Kiss et al., 2011], biomechanical systems [Blandeau et al., 2018] and unman-
ned aerial vehicles (UAV) [López-Estrada et al., 2016, Rotondo et al., 2013]. Based on these applications, it can be
noted that the LPV approach is useful when the component parameters, like stiffness, inertias, resistances, mi-
crobial growth rates, are depending on the state variables. For more information about LPV applications, see
[Hoffmann and Werner, 2015, Shamma, 2012] and references therein.

The following sections address some properties of LPV systems like stability, and it will be presented different controller
and observer structures into the LPV systems area.

1.1.1 Stability for LPV systems

Let us consider the following LPV system represented as

ẋ(t) = A(ρ(t))x(t)

x(0) = x0

(1.5)

where x(t) ∈ Rn is the state vector and the parametric uncertainty vector ρ ∈ Rj ⊂ P where j is the number of
parameters. A usual type of stability for LPV system (1.5) is the quadratic stability which is described in Definition 1.1.
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1.1. LPV system

Definition 1.1. (Quadratic stability) System (1.5) is said to be quadratically stable if the positive definite quadratic
form

Vq(x(t)) = xT (t)Px(t), P = PT > 0 (1.6)
is a Lyapunov function for (1.5). Such a Lyapunov function is often referred to as a common Lyapunov function or
parameter-independent Lyapunov Function.

Quadratic stability is only sufficient for asymptotic stability for a LPV system [Briat, 2015]. This approach suffers from
conservatism since it does not take into account the parameter variations of the LPV system. The terms stable and
asymptotically stable, are established in Definition 1.2.

Definition 1.2. Consider the system (1.5) which its solution is denoting by x(x0, ρ, t) where ρ ∈ P and x0 ∈ Rn. The
system (the zero equilibrium point) is said to be

— stable if, for each ε > 0, there is δ = δ(ε) > 0 such that

‖x0‖ ≤ δ ⇒ ‖x(x0, ρ, t)‖ ≤ ε (1.7)

∀t ≥ 0 and all ρ ∈ P.
— attractive if there exists δ with the property that

‖x0‖ ≤ δ ⇒ lim
t→∞

‖x(x0, ρ, t)‖ = 0 (1.8)

∀ρ ∈ P.
— asymptotically stable (in the sense of Lyapunov) if it is both stable and attractive.
— exponentially stable if there exist δ, α > 0 and β ≥ 1 such that

‖x0‖ ≤ δ ⇒ ‖x(x0, ρ, t)‖ ≤ βe−αt ‖x0‖ (1.9)

∀t ≥ 0 and all ρ ∈ P.
— unstable if it is not stable in the sense of Lyapunov.

The following Theorems characterize the quadratic stability for LPV systems for the continuous and discrete cases.

Theorem 1.1. (Quadratic stability for CT LPV systems) The autonomous LPV system (1.5) is quadratically stable if
there exists P > 0 such that :

AT (ρ(t))P + PA(ρ(t)) < 0 ∀ρ ∈ P (1.10)

Proof. Considering the Lyapunov candidate function (1.6) which its dynamics is described by

V̇q(t) = ẋ(t)TPx(t) + x(t)TPẋ = x(t)T
[
AT (ρ(t))P + PA(ρ(t))

]
x(t). (1.11)

V̇q(t) < 0 if AT (ρ(t))P + PA(ρ(t)) < 0. �

Theorem 1.2. (Quadratic stability for DT LPV systems) The autonomous LPV system (1.5) is quadratically stable :
1. if there exists P > 0 such that :

A(ρk)TPA(ρk)− P < 0 ∀ρ ∈ P (1.12)
2. if there exists P > 0 such that : [

−P PA(ρk)
A(ρk)TP −P

]
< 0 ∀ρ ∈ P (1.13)

Proof. The system (1.5) is represented in discrete form as

xk+1 = A(ρk)xk (1.14)

Let Vqk = xTk Pxk with P = PT > 0, be a Lyapunnov candidate function, then ∆Vqk along the solution of (1.14) is
given by

∆Vqk = Vqk+1
− Vqk = xTk (A(ρk)TPA(ρk)− P )xk (1.15)

if A(ρk)TPA(ρk)− P < 0 then ∆Vqk < 0. Then, (1.13) can be obtained from (1.12) by using Schur complement. �

Remark 1.2. The polytopic approach has a unique feature in the LPV systems stability, which turns the solution of an
infinite set of LMI into a finite set of LMI by only considering the vertices of the polytope [Apkarian et al., 2000].
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1.1.2 Observation

For this section, we consider the following LPV system :

ẋ(t) =A(ρ(t))x(t) +B(ρ(t))u(t) + E(ρ(t))w(t) (1.16a)
y(t) =C(ρ(t))x(t) + F (ρ(t))w(t) (1.16b)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm represents the control input, y(t) ∈ Rp represents the measured output
vector, w(t) represents the disturbance vector. ρ(t) ∈ Rj is the time-varying parameter vector, in which their values
remain into some compact set P giving reasonable trajectories ensuring that solutions to (1.16) exist.
The study of LPV observers design is addressed for proportional observer (PO) [Ichalal et al., 2016], proportional integral
observers (PIO) [Ichalal et al., 2009] and adaptive observers (AO) [Nagy-Kiss et al., 2015, Bezzaoucha et al., 2013]
framework respectively.

1.1.2.1 Observers for LPV systems

The observation objective aims to reconstruct the state or a linear combination of the system states from the input and
output measurements. Commonly, the observer design ensures asymptotic stability using the observation error. Now, let
us consider the following LPV observer for system (1.16) assuming that y(t) = Cx(t)

ζ̇(t) =M(ρ(t))ζ(t) +N(ρ(t))y(t) + S(ρ(t))u(t) (1.17)
x̂(t) =ζ(t) +Hy(t) (1.18)

where ζ(t), x̂(t) ∈ Rq are the state observer and the estimate of x(t), respectively. The observer matrices are determined
through the asymptotic convergence analysis of the estimation error e(t) = ζ(t)− Tx(t), where T is any full row rank
matrix. Likewise, the L2 gain is used to minimize the effect of w(t) to e(t).
More restrictive observer structures have the form

˙̂x(t) = A(ρ(t))x̂(t) +B(ρ(t))u(t) + L(ρ(t))(y(t)− Cx̂(t)) (1.19)

with x̂ ∈ Rn is the estimated state and the observer gain L(ρ(t)) is used to ensure a good estimation of the full state
x(t) of the system (1.16). For this case, the estimation error is defined as e(t) = x̂(t)− x(t). The observability problem
for CT LPV observers and DT LPV observers is addressed in [Tóth, 2010].

1.1.2.2 Dynamic observers

More recently, the study of a new observer structure, called generalized dynamic observer (GDO) has been introduced for
descriptor systems [Osorio-Gordillo et al., 2015], linear time invariant systems [Gao et al., 2016], discrete-time systems
[Gao et al., 2017, Pérez-Estrada et al., 2018a] and continuous-time LPV systems [Pérez-Estrada et al., 2018b]. These
observer structures are based on [Park et al., 2002, Marquez, 2003], where the principal idea is to add dynamics structure
to increase its degrees of freedom, with the purpose of achieving steady state accuracy and improve robustness in
estimation error against disturbances and parametric uncertainties. Therefore, this structure can be considered as more
general than PO and PIO.

The GDO structure for system (1.16) is described by

ζ̇(t) =N(ρ(t))ζ(t) +H(ρ(t))v(t) + F (ρ(t))y(t) + J(ρ(t))u(t) (1.20a)
v̇(t) =S(ρ(t))ζ(t) + L(ρ(t))v(t) +M(ρ(t))y(t) (1.20b)
x̂(t) =Pζ(t) +Qy(t) (1.20c)

where ζ(t) ∈ Rq0 represents the state vector of the observer, v(t) ∈ Rq1 is an auxiliary vector and x̂(t) ∈ Rn is the
estimate of x(t). Matrices N(ρ(t)), H(ρ(t)), F (ρ(t)), J(ρ(t)), S(ρ(t)), L(ρ(t)), M(ρ(t)), P and Q are unknown matrices
of appropriate dimensions which must be determined such that x̂(t) converges asymptotically to x(t).

This observer structure generalizes the PO and PIO considering the following algebraic constraints :

8



1.1. LPV system

— If H(ρ(t)) = 0, S(ρ(t)) = 0, M(ρ(t)) = 0, and L(ρ(t)) = 0, then the observer reduces to the PO for LPV systems.

ζ̇(t) =N(ρ(t))ζ(t) + F (ρ(t))y(t) + J(ρ(t))u(t) (1.21a)
x̂(t) =Pζ(t) +Qy(t) (1.21b)

— For L(ρ(t)) = 0, S(ρ(t)) = −CP , and M(ρ(t)) = −CQ+ I, then the following PIO for LPV systems is obtained :

ζ̇(t) =N(ρ(t))ζ(t) +H(ρ(t))v(t) + F (ρ(t)) + J(ρ(t))u(t) (1.22a)
v̇(t) =y(t)− Cx̂(t) (1.22b)
x̂(t) =Pζ(t) +Qy(t). (1.22c)

The integral term of a PIO aims to cancel the effect of the disturbance in the estimation error in steady-state [Ellis, 2012].
The difference between PIO and GDO is that the GDO has more degrees of freedom than the PIO, improving the
estimation performances against uncertainties and disturbances.

Remark 1.3. The order of the observer is q0 ≤ n, when q0 = n− p, a reduced order observer is obtained. For q0 = n,
we obtain the full order one.

1.1.2.3 Unknown input observers

Similarly, the study of model-observer design for LPV systems in the presence of unknown inputs or disturbances is
challenging research in the field of robust control, fault-tolerant control, and system supervision [Chadli et al., 2017,
Chadli and Karimi, 2013]. This problem came across in practice since the disturbances or partial inputs are inaccessible,
or can result from either model uncertainties or faults. In [Marx et al., 2019] the authors addressed the unknown input
decoupling approaches which consist in obtaining the state estimation error free from an unknown input, the conditions
for the existence of the considered observer are also given.

This type of observers is useful for systems with the following LPV representation

ẋ(t) =A(ρ(t))x(t) +B(ρ(t))u(t) +D(ρ(t))d(t) + E(ρ(t))w(t) (1.23a)
y(t) =C(ρ(t))x(t) (1.23b)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm represents the control input, y(t) ∈ Rp represents the measured output
vector, w(t) represents the disturbance vector, and d(t) ∈ Rnd is the unknown input vector. ρ(t) ∈ Rj is the time-varying
parameter vector, in which their values remain into some compact set P . An UI observer for the LPV system (1.23) can
be proposed as equation (1.21).

The majority of physical processes are subject to disturbances as measurement noises, modeling uncertainties, sensors,
and actuators faults, which can be considered as unknown inputs. In (1.23), the distinction of the variable d(t) and w(t)
is that w(t) represents disturbances and model uncertainties which are always present, while d(t) represents unknown
inputs which may be present or not [Blanke et al., 2003]. The disturbance w(t) satisfies certain conditions such as be
stochastic with some statistical proprieties or to be of finite energy. d(t) may be any exogenous signal affecting the
systems and taking any values (for example, the resistant torque in DC motor).

These disturbances, considered as unknown inputs, have adverse effects on the normal behavior of the real system, and
their estimates can be used to conceive systems of diagnostic and control [Youssef et al., 2014].

1.1.2.4 Adaptive observers

Commonly, the observer design assumes that the parameters of the system are known. This fact is not always true
in a practical mean, because unknown parameters are encountered frequently in physical systems and these ones can
introduce uncertainty in the observer design obtaining an inaccuracy reconstruction of the state variables. In this
case, the adaptive observers are an efficient solution to solve this problem due to its characteristic of jointly estimates
parameters and states. In the literature, two major approaches have been developed to face the design of adaptive
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observer. These approaches are essentially based on the following points : the unknown parameter vector is deduced
from the stability analysis of a state observer and the convergence property of the parameter error is obtained by the
persistence of excitation type constraint, consequently, a parameter adaptation law is proposed. Many contributions
deal with this approach as in [Zhang, 2002, Cho and Rajamani, 1997, Alma et al., 2018] ; and an augmented system for
which the adaptive observer design is elaborated. In this case, the system dynamics are augmented with the dynamics
of its unknown parameters as in [Nagy-Kiss et al., 2015, Bezzaoucha et al., 2013, Srinivasarengan et al., 2018].

Along with the chapters of this thesis, we address these observer structures, undertaking the observer stability analysis
of each one. In the case of the GDO, its performance is compared with particular cases as PO and PIO using academic
examples. Besides, the UI scenery is addressed in continuous and discrete-time.

1.1.3 Control

For the control of LPV systems, let us consider the following LPV system :

ẋ(t) =A(ρ(t))x(t) +B(ρ(t))u(t) + E(ρ(t))w(t) (1.24a)
y(t) =C(ρ(t))x(t) + F (ρ(t))w(t) (1.24b)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm represents the control input, y(t) ∈ Rp represents the measured output
vector, w(t) represents the disturbance vector. ρ(t) ∈ Rj is the time-varying parameter vector, in which their values
remain into some compact set P giving reasonable trajectories ensuring that solutions to (1.24a) exist. In the literature,
we can find the following gain-scheduled controllers.

1.1.3.1 Gain-scheduled static controllers for LPV systems

The control action is an algebraic function of the system state. In this category, there exist state-feedback and static
output feedback controller, such as :
• Gain-scheduled static output-feedback controllers are given by

u(t) = K(ρ(t))y(t). (1.25)

• Gain-scheduled state-feedback controllers are given by

u(t) = K(ρ(t))x(t). (1.26)

1.1.3.2 Gain-scheduled dynamic controllers for LPV systems

For this type of controllers, the control action is computed on the state of an auxiliary system with proper dynamics.
These controllers can be classified by :

Observer-based controllers

If the system state is not directly accessible, this type of controller is designed by two parts. The first one is estimating
the state of the system, and a control part is computed through the estimated state. Observer-based controller can take
the following forms

ζ̇(t) =M(ρ(t))ζ(t) +N(ρ(t))y(t) + S(ρ(t))u(t) (1.27a)
x̂(t) =ζ(t) +Hy(t) (1.27b)
u(t) =K(ρ(t))x̂(t) (1.27c)

or

˙̂x(t) =A(ρ(t))x̂(t) +B(ρ(t))u(t) + L(ρ(t))(y(t)− Cx̂(t)) (1.28a)
u(t) =K(ρ(t))x̂(t) (1.28b)
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where x̂(t), ζ(t) ∈ Rn are the states of the observes and M(ρ(t)), N(ρ(t)), S(ρ(t)), H, K(ρ(t)) are matrices to be
determined with appropriate dimensions.

Dyamic output-feedback controllers

This controller structure do not take into account the estimated state. It computes a control input from the measured
output as the following equations :

ẋc(t) =Ac(ρ(t))xc(t) +Bc(ρ(t))y(t) (1.29a)
u(t) =C(ρ(t))xc(t) +Dc(ρ(t))y(t) (1.29b)

where xc(t)Rnc is the state of the controller. Depending on the dimension of the controller, this one can call it either
full-order or reduced order.

1.1.4 Polytopic Bounded Real Lemma
Based on quadratic stability for LPV system and the L2 performance formulation, we can obtain an adaptation of the
bounded real lemma [Xie, 2008] if there is a matrix P = PT > 0 such thatA(ρ(t))TP + PA(ρ(t)) PB(ρ(t)) C(ρ(t))T

B(ρ(t))TP −γI D(ρ(t))T

C(ρ(t)) D(ρ(t)) −γI

 < 0, ρ(t) ∈ P (1.30)

is satisfied, then the L2 gain of the system described by

ẋ(t) =A(ρ(t))x(t) +B(ρ(t))w(t) (1.31)
z(t) =C(ρ(t))x(t) +D(ρ(t))w(t) (1.32)

is less than γ, i.e., for zero initial conditions x(0) = 0 it guaranteed that

sup
‖w‖2 6=0, w∈L2

‖z‖2
‖w‖2

< γ <∞ (1.33)

Using the convex properties described in (1.3), the inequality (1.30) becomes

τ∑
i=1

µi(ρ(t))

ATi P + PAi PBi CTi
BTi P −γI DT

i

Ci Di −γI

 < 0, ρ(t) ∈ P (1.34)

if

ATi P + PAi PBi CTi
BTi P −γI DT

i

Ci Di −γI

 < 0 then inequality (1.34) is negative definite.

1.1.5 Unmeasured scheduling variables
In practical situations, the scheduling variables could be inaccessible by the fact that the scheduling variables are
functions of the system states [Theilliol and Aberkane, 2011]. On the other hand, if the scheduling variables depend
on sensor/actuator signals, these measurements can be corrupted by measurement noises or sensor/actuator faults
deviating them from the true parameter values [Hassanabadi et al., 2018].

In the polytopic LPV observer design, a trustful knowledge on the scheduling variables is of paramount importance, be-
cause this information is needed to design the observer. In the literature, many researchers have proposed solutions to both
problems in the polytopic systems framework. The first solution is to consider the estimation error dynamics and the origi-
nal system in an uncertain system structure. The uncertainty describes the mismatch between either scheduling variables
measurement or estimated scheduling variables with the real values as in [Hassanabadi et al., 2017, Zhang et al., 2016,
Srinivasarengan et al., 2017, López-Estrada et al., 2017, Theilliol and Aberkane, 2011, Yoneyama, 2009]. Then, the ob-
server design needs to guarantee a robust convergence against those uncertainties. Other solutions are established
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by [Heemels et al., 2010, Millerioux et al., 2004, Maalej et al., 2017] based on input to state stability (ISS) property,
designing LPV observers through bounded estimation error convergence, instead of asymptotic convergence. In the same
context of a convex linear combination of LTI models, in [Bergsten et al., 2001, Ichalal et al., 2010, Lendek et al., 2009]
a perturbation term is added to the original system on the assumption that this term is Lipschitz function. The obtained
LMI, in the design, depends on the admissible Lipschitz constant. In Section 2.4 the unmeasured scheduling variables
case is addressed.

1.2 Fault-tolerant control

Nowadays, the need for acceptable performances of practical engineering systems is required for avoiding economic
losses and dangerous situations. With the augmentation of system complexity and integration, the system failures as
sensor, actuator, and process faults raise increasingly, which can cause system performance deterioration and instability.
In the FTC area, a fault is defined as the deviation of a parameter from the acceptable value, and failure is defined as
the inability of a system to carry out its intended operation under specific conditions [Frank, 2004].

In order to avoid the propagation of the fault effects, the fault-tolerant control strategies are viewed as the most
effective control area to face these issues since they improve the system safety and reliability [Patton et al., 1989]. An
FTC possesses the ability to accommodate component failures automatically. The basic idea of an FTC is tolerating
component malfunctions while maintaining desirable performance and stability properties [Blanke et al., 2003].

1.2.1 Type of fault-tolerant control systems

There exist two fault-tolerant control categories, which are : passive and active FTC. The passive FTC techniques take
into consideration a set of supposed faults modes designing control laws to make the system robust against the presumed
faults. On the other hand, the active FTC techniques can reconfigure control actions depending on the faulty situation
so that the stability and acceptable performance of the entire system can be maintained. Commonly, the active strategy
uses the information provided by a fault diagnosis unit [Jiang and Yu, 2012]. The main goal of these approaches is to
design a controller with a suitable structure to ensure stability and satisfactory performance, not only when the system
is in the free-fault case, but also in cases when there are malfunctions in actuators, sensors, or other system components.

Objectives of active FTC

An active FTC can be divided into four subsystems, a reconfigurable controller, a fault diagnosis (FD) unit which include
the fault isolation and fault identification tasks, a controller reconfiguration mechanism, and a command/reference
governor [Zhang and Jiang, 2008].
The main difference between active and passive FTC is the incorporation of both FD unit and reconfigurable controllers
within the overall system structure. An active FTC is illustrated in Figure 1.1.

Command
Reference

Actuators System

FD scheme

Reconfigurable
Controller

Sensors

Reconfigurable
Mechanishm

+

-

Faults Faults Faults

Figure 1.1 – Active FTC scheme.
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In [Zhang and Jiang, 2008], the design objectives of active FTC are established as :

• A FD unit to provide as precisely as possible, the information about the fault in real-time.
• A control scheme (reconfigurable/restructurable) to compensate the fault-induced changes in the system so that

the stability and acceptable close-loop system performance can be maintained.

In the literature, there exist many active FTC methods which can be classified based on mathematical design
tools as linear-quadratic, intelligent control, gain scheduling/LPV, model following, adaptive control, eigenstruc-
ture assignment, H∞ and other robust techniques ; by the design approaches as pre-computed control laws, and
online automatic redesign ; by type of systems as linear and nonlinear systems ; or based on field of applications
[Amin and Hasan, 2019, Jiang and Yu, 2012, Zhang and Jiang, 2008]. It can be concluded that the controller in an
active FTC is less conservative than the controller used in a passive FTC. A comparative study between these two
approaches is carried out in [Jiang and Yu, 2012].

1.2.2 Fault diagnosis scheme
It can be found a variety of diagnostic methods from different perspectives. In [Venkatasubramanian et al., 2003b,
Venkatasubramanian et al., 2003a, Venkatasubramanian, 2003], the diagnostic methods are classified by quantitative
model-based methods, qualitative model-based methods, and process history based methods, the study of each classifica-
tion is illustrated in the three works. The main characteristic of an FD unit is to provide information in a short time to
minimize the interval between the fault occurrence and the initiation of the reconfigured controller, maintaining the safe
operation of the system. An FD unit has three tasks ; the first one is fault detection, which indicates that something is
wrong in the system ; the second is fault isolation, which determines the location and the type of the fault, and fault
identification which determines the magnitude of the fault.

This research focused on a quantitative model-based approach which, it has demonstrated that the state estimation
based schemes are most suitable for fault detection due to the short time delay in the real-time decision-making process
in comparison with parameter estimation approach. Nonetheless, the state estimation information may not be detailed
since fault induced changes in parameters or even system model need to be determined. For this issue, a parameter
estimation based schemes are more applicable or a combination of the state and the parameter estimation based scheme
will be suitable.

Most of the engineering applications are nonlinear ; therefore, an active FTC must consider fault scenarios and operation
condition changes. Gain scheduling type approaches can deal with these issues since they take into account changes
caused by both failures and operating conditions variations [Orjuela et al., 2019, Kharrat et al., 2018, Rotondo, 2018,
Montes de Oca et al., 2014]. In the recent literature, it is still an open problem on how to design an active FTC, which
can work efficiently in the entire range of general nonlinear systems and how to distinguish the changes induces by
faults from that by operating conditions.

1.3 Tools for the stability analysis of dynamic systems
Lemma 1.1. Consider two matrices X and Y with appropriate dimensions, a time varying matrix ∆(t) and a positive
scalar ε. The following inequality is verified

XT∆T (t)Y + Y T∆(t)X ≤ εXTX + ε−1Y TY (1.35)

for ∆T (t)∆(t) ≤ I.

Lemma 1.2. (Schur complement) Let A, B and D be matrices of appropriate dimension. Then the following statements
are equivalent :

(i)
[
A B
BT D

]
< 0.

(ii) D < 0 and A−BD−1BT < 0.
(iii) A < 0 and D −BTA−1B < 0.
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Remark 1.4. If D is nonsingular, then
[
A B
BT D

]
≤ 0 is equivalent to D < 0 and A−BD−1BT ≤ 0.

Lemma 1.3. [Skelton et al., 1997] Let matrices B ∈ Cn×m, C ∈ Ck×n and D = DT ∈ Cn×n be given. The following
statements are equivalent.

(i) There exists a matrix X satisfying
BXC + (BXC)T +D < 0. (1.36)

(ii) The following two conditions hold

B⊥DB⊥T < 0 or BBT > 0,

CT⊥DCT⊥T or CTC > 0

Suppose the above statements hold. Let rb and rc be the ranks of B and C, respectively, and (Bl,Br) and (Cl,Cr) be any
full rank factors of B and C, i.e., B = BlBr, C = (Cl, Cr). Then all matrices X in statement (i) are given by

X = B+
r KC+

l + Z − B+
r BrZClC+

l

where Z is an arbitrary matrix and

K =−R−1BTl ϑCTr (CrϑCTr )−1 + S1/2φ(CrϑCTr )−1/2 (1.37)

S =R−1 −R−1BTl [ϑ− ϑCTr (CTr ϑCTr )−1Crϑ]BlR−1 (1.38)

where φ is an arbitrary matrix such that ‖φ‖ < 1 and R is an arbitrary positive definite matrix such that

ϑi = (BrR−1BTl −D)−1 > 0 (1.39)

1.4 Conclusion
In this introductory chapter, it has presented the necessary tools to encompass the later chapters. Based on the
bibliography review, we can find many applications using the LPV systems framework due to the characteristic to
embedded the component parameters behavior in an interpolation mechanism. It has described the basic properties of
LPV systems like stability, observation, and control. Likewise, the state of art of observers for LPV systems is presented
addressing the cases of unknown input, adaptive observers, and the problematic of unmeasured scheduling variables,
which is common in quasi-LPV systems. On the other hand, it addressed the FTC theory focusing on the model-based
approach.
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2.1 Introduction
This chapter addresses the GDO design for LPV systems for the continuous-time approach. Likewise, it considers
LPV systems with scheduling variables depending on exogenous and endogenous signals, knowing the bounds of these,
boarding the cases of measurable and unmeasurable scheduling variables. In the same way, it presents particular
structures of the GDO, such as PIO and PO, in order to compare their performances in simulation. In Section 2.2, it
presents a GDO for LPV systems with measurable scheduling variables where a general parameterization is shown,
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which it will be used in later designs. In section 2.3, it introduces the unknown input problematic in LPV systems, the
manner of approaching this issue is using rank conditions to decouple the unknown input. At last, in Section 2.4, it
considers the problematic of unmeasured scheduling variables, which describes a large class of nonlinear systems ; the L2

gain is used to face this issue. To demonstrate the performance of the GDO in comparison to PIO and PO, it computes
a performance index for each design.

2.2 Generalized dynamic observer design for LPV systems

2.2.1 Problem formulation

Let us consider the following LPV system

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t) (2.1a)
y(t) = Cx(t) (2.1b)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm the input vector, y(t) ∈ Rp represents the measured output vector.
A(ρ(t)) ∈ Rn×n, B(ρ(t)) ∈ Rn×m and C ∈ Rp×n are known matrices. ρ(t) ∈ Rj is a varying parameter vector, it is
assumed that all parameters ρ(t) = {ρ1(t), ρ2(t) . . . , ρj(t)} are bounded, measurable and their values remain in a convex
polytope of τ vertices as in [Rodrigues et al., 2007]. The LPV system (2.1) can be rewritten as the following polytopic
representation :

ẋ(t) =

τ∑
i=1

µi(ρ(t))(Aix(t) +Biu(t)) (2.2a)

y(t) = Cx(t) (2.2b)

where
τ∑
i=1

µi(ρ(t)) = 1, 0 ≤ µi(ρ(t)) ≤ 1 (2.3)

∀i ∈ [1, 2, . . . , τ ] where τ = 2j . µi(ρ(t)) = µ(ρi, ρi, ρi(t), t) (ρi and ρi represent the maximum and minimum value of
ρi(t) respectively).
Now, let us consider the following GDO for state estimation for system (2.2).

ζ̇(t) =

τ∑
i=1

µi(ρ(t))(Niζ(t) +Hiv(t) + Fiy(t) + Jiu(t)) (2.4a)

v̇(t) =

τ∑
i=1

µi(ρ(t))(Siζ(t) + Liv(t) +Miy(t)) (2.4b)

x̂(t) = Pζ(t) +Qy(t) (2.4c)

where ζ(t) ∈ Rq0 represents the state vector of the observer, v(t) ∈ Rq1 is an auxiliary vector and x̂(t) ∈ Rn is the
estimate of x(t). Matrices Ni, Hi, Fi, Ji, Si, Li, Mi, P and Q are unknown matrices of appropriate dimensions which
must be determined such that x̂(t) converges asymptotically to x(t).
The following lemma gives the existence conditions of the observer (2.4).

Lemma 2.1. There exists an observer of the form (2.4) for the system (2.2) if the following two statements hold
1. There exists a matrix T of appropriate dimension such that the following conditions are satisfied

(a) NiT + FiC − TAi = 0
(b) Ji = TBi
(c) SiT +MiC = 0
(d) PT +QC = In

2. The system ϕ̇(t) =
∑τ
i=1 µi(ρ(t))

[
Ni Hi

Si Li

]
ϕ(t) is asymptotically stable.
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Proof. Let T ∈ Rq0×n be a parameter matrix and consider the transformed error ε(t) = ζ(t)− Tx(t), then its derivative
is given by :

ε̇(t) =

τ∑
i=1

µi(ρ(t))(Niε(t) + (NiT + FiC − TAi)x(t) +Hiv(t) + (Ji − TBi)u(t)) (2.5)

by using the definition of ε(t), equations (2.4b) and (2.4c) can be written as :

v̇(t) =

τ∑
i=1

µi(ρ(t))(Siε(t) + (SiT +MiC)x(t) + Liv(t)) (2.6)

x̂(t) = Pε(t) + (PT +QC)x(t) (2.7)

If conditions (a)-(d) of Lemma 2.1 are satisfied, the following observer error dynamics is obtained from (2.5) and (2.6)[
ε̇(t)
v̇(t)

]
︸ ︷︷ ︸

˙ϕ(t)

=

τ∑
i=1

µi(ρ(t))

[
Ni Hi

Si Li

]
︸ ︷︷ ︸

Āi

[
ε(t)
v(t)

]
︸ ︷︷ ︸

ϕ(t)

(2.8)

From (2.7), we have
x̂(t)− x(t) = e(t) = Pε(t). (2.9)

The system (2.8) can be written as
ϕ̇(t) = Ã(t)ϕ(t) (2.10)

where Ã(t) =
∑τ
i=1 µi(ρ(t))Āi.

Let V (t) = ϕ(t)TPϕ(t) with P = PT > 0, be a Lyapunov candidate function, then we have

V̇ (t) = ϕ̇(t)TPϕ(t) + ϕ(t)TPϕ̇(t) = ϕ(t)T [Ã(t)TP + PÃ(t)]ϕ(t)

and V̇ (t) < 0 if Ã(t)TP + PÃ(t) < 0 or equivalently

τ∑
i=1

µi(ρ(t))[ĀTi P + P Āi] < 0 (2.11)

Eq. (2.11) is satisfied if ATi P+PAi < 0. In this case if the system (2.8) is asymptotically stable then limt→∞ e(t) = 0. �

2.2.2 Parameterization of the observer

In this section, we shall give the parameterization of the algebraic constraint equations (a)-(d) of Lemma 2.1. Let

E ∈ Rq0×n be any full row rank matrix such that the matrix Σ =

[
E
C

]
is of full column rank and let Ω =

[
In
C

]
.

Conditions (c) and (d) of lemma 2.1 can be written as :[
Si Mi

P Q

] [
T
C

]
=

[
0
In

]
(2.12)

The necessary and sufficient condition for (2.12) to be consistent is that R
([

0
In

])
⊂ R

([
T
C

])
or equivalently

rank
[
T
C

]
= rank


T
C
0
In

 = n (2.13)
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On the other hand, since rank
[
T
C

]
= n, there always exist matrices T ∈ Rq0×n and K ∈ Rq0×p such that :

T +KC = E (2.14)

which can be written as : [
T K

]
Ω = E (2.15)

and since rank(Ω)=rank
[

Ω
E

]
. The general solution to equation (2.15) is given by :

[
T K

]
= EΩ+ − Y1(In+p − ΩΩ+) (2.16)

From equation equation (2.16) we deduce that

T = T1 − Y1T2 (2.17)
K = K1 − Y1K2 (2.18)

where T1 = EΩ+

[
In
0

]
, T2 = (In+p − ΩΩ+)

[
In
0

]
, K1 = EΩ+

[
0
Ip

]
and K2 = (In+p − ΩΩ+)

[
0
Ip

]
.

By inserting the value of matrix T given by equation (2.14) into condition (a) we obtain

NiE + K̃iC = TAi (2.19)

where K̃i = Fi −NiK and equation (2.19) can be written as :[
Ni K̃i

]
Σ = TAi (2.20)

Since matrix Σ is of full column rank, the general solution to (2.20) is given by :[
Ni K̃i

]
= TAiΣ

+ − Zi(In+p − ΣΣ+) (2.21)

where Zi is an arbitrary matrix. By inserting the value of matrix T given in (2.17) into equation (2.21) we obtain

Ni = N1,i − Y1N2,i − ZiN3 (2.22)

K̃i = K̃1,i − Y1K̃2,i − ZiK̃3 (2.23)

where N1,i = T1AiΣ
+

[
Iq0
0

]
, N2,i = T2AiΣ

+

[
Iq0
0

]
, N3 = (Iq0+p − ΣΣ+)

[
Iq0
0

]
, K̃1,i = T1AiΣ

+

[
0
Ip

]
,

K̃2,i = T2AiΣ
+

[
0
Ip

]
, K̃3 = (Iqo+p − ΣΣ+)

[
0
Ip

]
. As matrices Ni, T , K, K̃i have a known structure, we can deduce

the matrix Fi as :

Fi = K̃i +NiK

= K̃1,i +N1,iK − Y1(K̃2 +N2,iK)− Zi(K̃3 +N3K)

= F1,i − Y1F2,i − ZiF3 (2.24)

where F1,i = T1AiΣ
+

[
K
Ip

]
, F2,i = T2AiΣ

+

[
K
Ip

]
, F3 = (In+p − ΣΣ+)

[
K
Ip

]
.

On the other hand from equation (2.14) we obtain :[
T
C

]
=

[
Iq0 −K
0 Ip

]
Σ (2.25)

inserting equation (2.25) into the equation (2.12) we get :[
Si Mi

P Q

] [
Iq0 −K
0 Ip

]
Σ =

[
0
In

]
. (2.26)

18



2.2. Generalized dynamic observer design for LPV systems

Since matrix Σ is of full column rank and [
Iq0 −K
0 Ip

]−1

=

[
Iqo K
0 Ip

]
the general solution to equation (2.26) is given by :[

Si Mi

P Q

]
=

([
0
In

]
Σ+ −

[
U1,i

U2

]
(Iq0+p − ΣΣ+)

)[
Iq0 K
0 Ip

]
(2.27)

where U1,i and U2 are matrices of appropriate dimensions with arbitrary elements.
Then, matrices Si, Mi, P and Q can be determined as :

Si = −U1,iN3 (2.28)
Mi = −U1,iF3 (2.29)

P = Σ+

[
Iq0
0

]
− U2N3 (2.30)

Q = Σ+

[
K
Ip

]
− U2F3 (2.31)

The estimation error (2.9) shows that e(t)→ 0 when ε(t)→ 0, i.e., the error e(t) is independent of the matrix P . Then,

without loss of generality, we can take U2 = 0 to obtain P = Σ+

[
Iq0
0

]
and Q = Σ+

[
K
Ip

]
. Now, by using (2.22)

and (2.28) the observer error dynamics (2.8)-(2.9) can be rewritten as :

ϕ̇(t) =

τ∑
i=1

µi(ρ(t))((Ai − YiA2)ϕ(t)) (2.32a)

e(t) = Pϕ(t) (2.32b)

where Ai =

[
N1,i − Y1N2,i 0

0 0

]
, A2 =

[
N3 0
0 −Iq1

]
, Yi =

[
Zi Hi

U1,i Li

]
and P =

[
P 0

]
.

2.2.3 Stability analysis
In this section, a method to design a GDO from (2.4) is presented. This method is obtained from the determination
of matrices Yi and Y1, such that system (2.32) is stable. The GDO matrices can be obtained by using the following
theorem.

Theorem 2.1. There exist parameter matrices Yi and Y1 such that the system (2.32) is asymptotically stable if there

exists a matrix X =

[
X1 X2

XT
2 X3

]
> 0 with X1 = XT

1 such that the following LMI’s are satisfied.

NT⊥
3

[
X1N1,i −W1N2,i +NT

1,iX1 −NT
2,iW

T
1

]
NT⊥T

3 < 0 (2.33)

where Y1 = X−1
1 W1. The matrices Yi are parameterized as

Yi = X−1(B+
r KiC+

l + Z − B+
r BrZClC+

l ) (2.34)

where

Ki =−R−1BTl ϑiCTr (CrϑiCTr )−1 + S1/2
i φ(CrϑiCTr )−1/2 (2.35)

Si =R−1 −R−1BTl [ϑi − ϑiCTr (CTr ϑiCTr )−1Crϑi]BlR−1 (2.36)

ϑi =(BrR−1BTl −Di)−1 > 0 (2.37)

with Di =

[
X1(N1,i − Y1N2,i) + (N1,i − Y1N2,i)

TX1 (∗)
XT

2 (N1,i − Y1N2,i) 0

]
, B = −I, C =

[
N3 0
0 −Iq1

]
, φ is an arbitrary matrix such

that ||φ|| < 1 and R > 0. Matrices Cl, Cr, Bl and Br are any full rank matrices such that C = ClCr and B = BlBr.
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Proof. Consider the following Lyapunov candidate function

V (ϕ(t)) = ϕ(t)TXϕ(t) > 0 (2.38)

with X =

[
X1 X2

XT
2 X3

]
> 0. Its derivative along the trajectory of (2.32) is given by

V̇ (ϕ(t)) =

τ∑
i=1

µi(ρ(t))
(
ϕ(t)T ((Ai − YiA2)TX +X(Ai − YiA2))ϕ(t)

)
< 0 (2.39)

the inequality V̇ (ϕ(t)) < 0 is valid for all ϕ(t) 6= 0 if and only if

(Ai − YiA2)TX +X(Ai − YiA2) < 0 (2.40)

which can be written as
BXiC + (BXiC)T +Di < 0 (2.41)

where B = −I and Di = ATi X +XAi and Xi = XYi. According to the elimination lemma [Skelton et al., 1997], the
inequality (2.41) is equivalent to :

CT⊥DiCT⊥T < 0 (2.42)

with CT⊥ =
[
NT⊥

3 0
]
. By using the definition of matrix Di, inequality (2.42) becomes (2.33). If (2.42) is satisfied,

the parameter Yi is obtained as in (2.34). �

2.2.4 Particular cases
In this section, two particular cases of the obtained results are presented.

2.2.4.1 Proportional observer

The PO corresponds to the following values of the parameter matrices of the GDO (2.4) : Hi = 0, Si = 0, Mi = 0 and
Li = 0, to obtain the following observer :

ζ̇(t) =

τ∑
i=1

µi(ρ(t))(Niζ(t) + Fiy(t) + Jiu(t)) (2.43)

x̂(t) =Pζ(t) +Qy(t) (2.44)

and the observer error dynamics (2.32) becomes

ε̇(t) =

τ∑
i=1

µi(ρ(t))(Ai − YiA2)ε(t) (2.45)

where Ai = N1,i − Y1N2,i, A2 = N3, and Yi = Zi.
Consequently matrices Di and C of Theorem 2.1 become Di = (N1,i − Y1N2,i)

TX1 +X1(N1,i − Y1N2,i) and C = N3.

2.2.4.2 Proportional-Integral observer

The PIO corresponds to the following values of the parameter matrices of the GDO (2.55)-(2.57) : Li = 0, Si = −CP
and Mi = −CQ+ Ip, to obtain the following observer :

ζ̇(t) =

τ∑
i=1

µi(ρ(t))(Niζ(t) +Hiv(t) + Fiy(t) + Jiu(t)) (2.46)

v̇(t) =y(t)− Cx̂(t) (2.47)
x̂(t) =Pζ(t) +Qy(t) (2.48)
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and the observer error dynamics (2.32) becomes

ϕ̇(t) =

τ∑
i=1

µi(ρ(t))(Ai − A2,1YiA2,2)ϕ(t) (2.49)

where ϕ(t) =

[
ε(t)
v(t)

]
, Ai =

[
N1,i − Y1N2,i 0
−CP 0

]
, A2,1 =

[
I
0

]
, A2,2 =

[
N3 0
0 −Iq1

]
, and Yi =

[
Zi Hi

]
.

Consequently matrices Qi, B and C of Theorem 2.1 become Di =

[
Πi (∗)

XT
2 (N1,i − Y1N2,1)−X3CP 0

]
with Πi =

X1(N1,i − Y1N2,i) + (N1,i − Y1N2,i)
TX1 −X2CP − (X2CP )T , B = −X

[
I
0

]
and C =

[
N3 0
0 −Iq1

]
.

2.2.5 Application to double pipe heat exchanger
In order to illustrate our results, it considers a double pipe heat exchanger. It is used for energy exchange between
at least two fluid streams, a hot and a cold stream. In this case, the hot water flows through the inner pipe, and the
cooling water flows through the annular section (outside of the inner pipe) [López-Zapata et al., 2016].
To obtain a simple model of the heat transfer, the following modeling assumptions are used :

A1. Constant volume and mass in the heat exchanger pipes.
A2. Physico-chemical properties of the fluid are constant.
A3. Global heat transfer coefficient (U) and area (Ar) are constant.
A4. There is not heat transfer with the environment.
A5. Inlet temperatures are measured.

The continuous time state equations that represent the energy balance are given in (2.50)

Ṫco(t) =
vc
Vc

(Tci(t)− Tco(t)) +
UAr
cpcρcVc

(Tho(t)− Tco(t)) (2.50a)

Ṫho(t) =
vh
Vh

(Thi(t)− Tho(t)) +
UAr

cphρhVh
(Tco(t)− Tho(t)) (2.50b)

where the lumped parameters are represented in Table 2.1. Tci(t) and Thi(t) are the inlet temperatures in the cold and
hot streams respectively. Tco(t) and Tho(t) are the outlet temperatures in the cold and hot streams respectively.

Table 2.1 – Heat exchanger parameters

Symbol Meaning Value
Vc Volume in external side 9.679× 10−5m3

Vh Volume in the inner side 2.233× 10−5m3

vc Flow in the cold stream 6.67× 10−6cm3/min
cpc Specific heat of cold water 4179.2J/kg◦C
cph Specific heat of hot water 4190.3J/kg◦C
ρc Density of cold water 988.876kg/m3

ρh Density of hot water 975.876kg/m3

Ar Heat transfer surface area 0.0199m2

U Global heat transfer coefficient 1055.9W/m2◦C

Consider the following LPV system described by (2.1) where there exists one scheduling parameter ρ(t) ∈ [0.5×10−5, 3×
10−5] cm3/min which represents the variation of the flow in the hot stream vh. Therefore, the matrices of the LPV
system (2.1) are

A(ρ(t)) =

[
− UAr
cpcρcVc

− vc
Vc

UAr
cpcρcVc

UAr
cphρhVh

− UAr
cphρhVh

− ρ(t)
Vh

]
,

B(ρ(t)) =

[
vc
Vc

0

0 ρ(t)
Vh

]
, and C =

[
1 0

]
.
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with x(t) =
[
Tco Tho

]T . Such that the scheduling functions µi(ρ(t)) are

µ1(ρ(t)) =
ρ− ρ(t)

ρ− ρ
(2.51)

µ2(ρ(t)) =
ρ(t)− ρ
ρ− ρ

(2.52)

The problem is to estimate the states
[
Tco Tho

]T by using the GDO. By solving the LMI’s of Theorem 2.1 and

choosing the matrix E =

[
3 0
0 3

]
, L = 14×3 × 0.18 and R = I4 × 0.01 we obtain the following results :

N1 =

[
−87.945 0.0263
−4.550 −1.193

]
, N2 =

[
−87.9458 0.0263
−6.264 −2.3123

]
, S1 =

[
−18.012 0
−18.012 0

]
, S2 =

[
−18.012 0
−18.012 0

]
,

H1 =

[
−13.405 −13.405
−4.472 −4.472

]
, H2 =

[
−13.405 −13.405
−6.199 −6.199

]
, L1 = L2 =

[
−118 −18
−18 −118

]
,

F1 =

[
132.845
−37.720

]
, F2 =

[
132.845
−82.3968

]
, M1 = M2 =

[
27.019
27.019

]
.

P =

[
0.3 0
0 0.33

]
and Q =

[
0.55

14.071

]
.

The initial conditions for the system are x(0) = [45, 80]T for the GDO are x̂(0) = [47, 70]T , v(0) = [0, 0]T and
u(t) = [29, 81]T . To evaluate the performance of the observers an uncertainty ∆A1(t) is added to the system dynamics

matrix A(ρ(t)), where ∆A1(t) = α(t)Ā1 with Ā1 =

[
0.1 0
0.6 0.5

]
. The results of the simulation are depicted in Figures

2.1-2.4.
In order to compare the observer performances, the integral of absolute error (IAE) is calculated in the Table 2.2. We
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Figure 2.1 – Uncertainty α(t) and parameter variant ρ(t).

can conclude that the GDO performance is better than the PO and PIO in the presence of parameter uncertainties,
obtaining the minimum values of IAE on the estimation errors.

Table 2.2 – Parameter index of each observer

x̂1 − x1 x̂2 − x2

GDO IAE 0.176 20.81
PIO IAE 1.14 22.40
PO IAE 9.53 26.26
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Figure 2.2 – Estimation of states x1(t) and x2(t).
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Figure 2.3 – Estimation error e(t) = T̂co(t)− Tco(t).

2.3 Generalized dynamic observer design for quasi-LPV systems

2.3.1 Problem formulation

Let us consider the following parameter variant system with unknown input

ẋ(t) = A(%(t))x(t) +B(%(t))u(t) +Gd(t)

y(t) = Cx(t)
(2.53)

where x(t) ∈ Rn, u(t) ∈ Rm, d(t) ∈ Rs and y(t) ∈ Rp are the state, the input, the unknown input and the measured
output vectors, respectively. A(%(t)) ∈ Rn×n, B(%(t)) ∈ Rn×m, G ∈ Rn×s, and C ∈ Rp×n are known matrices.
%(t) = {%1(t), %2(t), . . . , %j(t)} is the vector that collect the nonlinearities of the systems. Furthermore, it assumes that
%(t) is available (i.e. perfectly measurable) for the observer which will be proposed.
The quasi-LPV system case is treated, in which the nonlinearities %(t) varies in a convex polytope of τ vertices, where
each vertex corresponds to the extreme value of %j(t) [Rodrigues et al., 2007]. Under this consideration, the structure
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Figure 2.4 – Estimation error e(t) = T̂ho(t)− Tho(t).

of the quasi-LPV system (2.53) is

ẋ(t) =

τ∑
i=1

µi(%(x(t)))(Aix(t) +Biu(t)) +Gd(t)

y(t) = Cx(t)

(2.54)

where
∑τ
i=1 µi(%(x(t))) = 1, 0 ≤ µi(%(x(t))) ≤ 1, ∀i ∈ {1, 2, . . . , τ} where τ = 2j , and µi(%(x(t))) are the scheduled

functions of each ith local model.

Remark 2.1. Since %(t) depends on measurable variables state %(x(t)), system (2.54) is called quasi-LPV and the
scheduled functions µi(%(x(t))) are assumed to be known.

Now, let us consider the following full-order GDO for system (2.54)

ζ̇(t) =

τ∑
i=1

µi(%(x(t)))(Niζ(t) +Hiv(t) + Fiy(t) + Jiu(t)) (2.55)

v̇(t) =

τ∑
i=1

µi(%(x(t)))(Siζ(t) + Liv(t) +Miy(t)) (2.56)

x̂(t) = ζ(t) +Qy(t) (2.57)

where ζ(t) ∈ Rn represents the state vector of the observer, v(t) ∈ Rq1 is an auxiliary vector and x̂(t) ∈ Rn is the
estimate of x(t). Ni, Hi, Fi, Ji, Si, Li, Mi and Q are unknown matrices of appropriate dimensions.
The problem of the observer design is to guarantee the asymptotic convergence of the estimation error

e(t) = x̂(t)− x(t)

to zero in the presence of the unknown input d(t). The unknown input is decoupled on the estimation error through
decoupling conditions described in the observer design section. The following lemma gives the sufficient conditions for
the existence of the observer (2.55)-(2.57).

24



2.3. Generalized dynamic observer design for quasi-LPV systems

Lemma 2.2. There exists an observer of the form (2.55-2.57) for the system (2.54) if the system

ϕ̇(t) =

τ∑
i=1

µi(%(x(t)))

[
Ni Hi

Si Li

]
ϕ(t)

is asymptotically stable ∀i ∈ {1, 2, . . . , τ}, and if there exists a matrix T of appropriate dimension such that the following
conditions are satisfied

(a) NiT + FiC − TAi = 0
(b) Ji = TBi
(c) TG = 0
(d) SiT +MiC = 0
(e) T +QC = In.

Proof. Define the estimation error as

e(t) = x̂(t)− x(t) = ζ(t)− (In −QC)x(t) (2.58)

Let T ∈ Rn×n be a parameter matrix, such that

T = In −QC (2.59)

so that, (2.58) can be written as
e(t) = ζ(t)− Tx(t) (2.60)

then, its derivative is given by

ė(t) =

τ∑
i=1

µi(%(x(t)))(Nie(t) +Hiv(t) + (NiT + FiC − TAi)x(t) + (Ji − TBi)u(t))− TGd(t) (2.61)

On the other hand from (2.56) and the definition of e(t) we have

v̇(t) =

τ∑
i=1

µi(%(x(t)))(Sie(t) + Liv(t) + (SiT +MiC)x(t)) (2.62)

Now, if the conditions (a)− (e) of Lemma 2.2 are satisfied the following observer error dynamics is obtained from (2.61)
and (2.62) [

ė(t)
v̇(t)

]
︸ ︷︷ ︸
ϕ̇(t)

=

τ∑
i=1

µi(%(x(t)))

[
Ni Hi

Si Li

]
︸ ︷︷ ︸

Ai

[
e(t)
v(t)

]
︸ ︷︷ ︸
ϕ(t)

(2.63)

which can be written as
ϕ̇(t) = Ã(t)ϕ(t) (2.64)

where Ã(t) =
∑τ
i=1 µi(%(x(t)))Ai.

Let V (t) = ϕ(t)TXϕ(t) with X = XT > 0, be a Lyapunov candidate function, then we have

V̇ (t) = ϕ̇(t)TXϕ(t) + ϕ(t)TXϕ̇(t) = ϕ(t)T [Ã(t)TX +XÃ(t)]ϕ(t)

and V̇ (t) < 0 if Ã(t)TX +XÃ(t) < 0 or equivalently

τ∑
i=1

µi(%(x(t)))[ATi X +XAi] < 0 (2.65)

Eq. (2.65) is satisfied if ATi X +XAi < 0. In this case if the system (2.63) is asymptotically stable then limt→∞ e(t) = 0.
�

25



Chapter 2. H∞ generalized dynamic observers for LPV systems

2.3.2 Parameterization of the observer

In this section, the parameterization of all the observers (4)-(6) will be given. First, define the matrices

Σ =

[
In G
C 0

]
and Ω =

[
In 0

]
, to write conditions (c) and (e) of Lemma 1 as

[
T Q

]
Σ = Ω (2.66)

The following condition must be verified to have a solution of (2.66)

rank

[
In G
C 0

]
= rank

In G
C 0
In 0

 = n+ rank(G) (2.67)

In order to simplify the computation, condition (2.67) can be also written as

rank

[
In 0
C −Ip

] [
In G
C 0

]
= n+ rank(CG) = n+ rank(G)

or
rank(CG) = rank(G) (2.68)

Assumption 2.1. We assume that condition (2.67) (or its equivalent (2.68)) is always satisfied.

Under Assumption 2.1 the general solution to (2.66) is given by[
T Q

]
= ΩΣ+ − Y (In+p − ΣΣ+) (2.69)

which leads to
T = T1 − Y T2 (2.70)

Q = Q1 − Y Q2 (2.71)

where Y is an arbitrary matrix of appropriate dimension. Σ+ is any generalized inverse of Σ, such that it verifies

ΣΣ+Σ = Σ. Matrices T1 = ΩΣ+

[
In
0

]
, T2 = (In+p − ΣΣ+)

[
In
0

]
, Q1 = ΩΣ+

[
0
Ip

]
and Q2 = (In+p − ΣΣ+)

[
0
Ip

]
.

Now, from conditions (a) and (e) of Lemma 1, and considering the definition of matrix T from (2.70) we obtain

Ni = T1Ai − Y T2Ai −KiC (2.72)

where Ki = Fi −NiQ.
On the other hand from condition (d) of Lemma (2.2) we get

Si = −ZiC (2.73)

where Zi = Mi − SiQ.
By using (2.72) and (2.73) the observer error dynamics (2.63) can be written as

ϕ̇(t) =

τ∑
i=1

µi(%(x(t)))(A1i − YiA2)ϕ(t) (2.74)

where A1i =

[
T1Ai − Y T2Ai 0

0 0

]
, A2 =

[
C 0
0 −Iq1

]
, and

Yi =

[
Ki Hi

Zi Li

]
. The design of the observer is reduced to the determination of parameter matrices Y and Yi.
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2.3.3 Observer stability

In this section a method for design a GDO given by (2.55-2.57) is presented. This method is obtained from the
determination of matrix Yi, such that the matrix (A1i − YiA2) is a stability matrix.
The following theorem gives the LMIs conditions which allow the determination of all GDO matrices.

Theorem 2.2. Under Assumption 2.1, there exists a parameter matrices Y and Yi such that system (2.74) is
asymptotically stable if there exist a symmetric positive matrix X1 and a matrix XY such that the following LMI is
satisfied

CT⊥[(T1Ai)
TX1 +X1(TAi)− (T2Ai)

TXT
Y −XY (T2Ai)]C

T⊥T < 0 (2.75)

and XY = X1Y .

Let X =

[
X1 X2

XT
2 X3

]
> 0, then all the matrix Yi are parameterized as

Yi = X−1(−σBT +
√
σLΓ

1/2
i )T (2.76)

where

Γi = σBBT −Di (2.77)

with Di =

[
(T1Ai)

TX1 +X1(TAi)− (T2Ai)
TXT

Y −XY (T2Ai) (∗)
XT

2 (T1Ai)−XT
2 Y (T2Ai) 0

]
, B =

[
CT 0
0 I

]
. L is any matrix such that ‖L‖ < 1

and σ > 0 is any scalar to obtain Γi > 0. In this case the parameter matrix Y = X−1
1 XY .

Proof. Consider the following Lyapunov function

V (ϕ(t)) = ϕ(t)TXϕ(t) > 0 (2.78)

with X =

[
X1 X2

XT
2 X3

]
> 0 and X1 = XT

1 . Its derivative along the trajectory of (2.74) is given by

V̇ (ϕ(t)) = ϕ(t)T [(A1i − YiA2)TX +X(A1i − YiA2)]ϕ(t) < 0 (2.79)

the inequality V̇ (ϕ(t)) < 0 is valid for all ϕ(t) 6= 0 if and only if

(A1i − YiA2)TX +X(A1i − YiA2) < 0 (2.80)

which can be written as

BX i + (BX i)T +Di < 0 (2.81)

where Xi = −YTi X, B = AT2 , and Di = AT1iX +XA1i.
According to [Skelton et al., 1997], the inequality (2.81) is equivalent to

B⊥DiB⊥T < 0 (2.82)

with B⊥ =
[
CT⊥ 0

]
. By using the definition of matrix Di we obtain (2.75).

From [Skelton et al., 1997], if condition (2.82) is satisfied, the parameter matrix Yi is obtained as in (2.76) and (2.77). �

2.3.4 Particular cases

This section shows how the PO and PIO can be directly designed from the results presented in this paper.
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2.3.4.1 Proportional observer

The PO corresponds to the following values of the parameter matrices of the GDO (2.55)-(2.57) : Hi = 0, Si = 0,
Mi = 0 and Li = 0, to obtain the following observer :

ζ̇(t) =

τ∑
i=1

µi(%(t))(Niζ(t) + Fiy(t) + Jiu(t)) (2.83)

x̂(t) =ζ(t) +Qy(t) (2.84)

and the observer error dynamics (2.74) becomes

ė(t) =

τ∑
i=1

µi(%(x(t)))(A1i − YiA2)e(t) (2.85)

where A1i = T1Ai − Y T2Ai, A2 = C, and Yi = Ki.
Consequently matrices Di and B of Theorem 2.2 become Di = (T1Ai)

TX +X(T1Ai)− (T2Ai)
TXT

Y −XY (T2Ai) and
B = CT , where XY = XY .

2.3.4.2 Proportional-Integral observer

The PIO corresponds to the following values of the parameter matrices of the GDO (2.55)-(2.57) : Li = 0, Si = −C
and Mi = −CQ+ Ip, to obtain the following observer :

ζ̇(t) =

τ∑
i=1

µi(%(t))(Niζ(t) +Hiv(t) + Fiy(t) + Jiu(t)) (2.86)

v̇(t) =y(t)− Cx̂(t) (2.87)
x̂(t) =ζ(t) +Qy(t) (2.88)

and the observer error dynamics (2.74) becomes[
ė(t)
v̇(t)

]
=

τ∑
i=1

µi(%(x(t)))(A1i − YiA2)

[
e(t)
v(t)

]
(2.89)

where A1i =

[
T1Ai − Y T2Ai 0

−C 0

]
, A2 =

[
C 0
0 −Iq1

]
, and

Yi =

[
Iq1
0

] [
Ki Hi

]
.

Consequently matrices Di and B of Theorem 2.2 become Di =

[
Πi (∗)

XT
2 (T1Ai)−XT

2 Y (T2Ai)−X3C 0

]
with Πi =

(T1Ai)
TX1 +X1(T1Ai)− (T2Ai)

TXT
Y −XY (T2Ai)− CTXT

2 −X2C, and B =

[
CT 0
0 Iq1

]
, where XY = X1Y .

2.3.5 Numerical example

Consider the quasi-LPV system in the form (2.54), where

A(%(x3(t))) =

−2.7%(x3(t)) 2 0.3
−0.2 −%(x3(t)) 0

−1 + %(x3(t)) 0 −1

 ,

B(%(x3(t))) =

 0
2%(x3(t))

1

 , G =

 0
0.7
1

 and C =
[
0 0 1

]
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and where the parameter %(x3(t)) depends explicitly of x3(t) and varies from 5 to 17. The scheduling functions
µi(%(x3(t))) are

µ1(%(x3))) =
%− %(t)

%− %
=

17− %(t)

12

µ2(%(x3))) =
%(t)− %
%− %

=
%(t)− 5

12

By selecting matrix L =

[
1 1 1 1
1 1 1 1

]
× 0.1 and a scalar σ = 15, the LMIs of Theorem 2.2 are solved to obtain the

matrices of the GDO

N1 =

−13.5 2 4.65
−3 −5 2.76
0 0 −1.33

 , F1 =

 1.7
−2.8

0

 ,
N2 =

−45.9 2 8.65
−11.4 −17 4.67

0 0 −1.33

 , F2 =

 1.7
−11.2

0

 ,
H1 =

4.34
2.07
0.14

 , J1 =

 0
9.3
0

 , M1 = 0,

H2 =

8.34
3.97
0.14

 , J2 =

 0
33.3

0

 , M2 = 0,

S1 =
[
0 0 0.15

]
, S2 =

[
0 0 0.15

]
,

L1 = −1.34, L2 = −1.34 and Q =

 0
0.7
1

 .
From Section 2.3.4.1 we can obtain the PO by considering matrix L =

[
1 1 1

]
× 0.6 and a scalar σ = 15, so that

the PO matrices are :

N1 =

−13.5 2 8.33
−3 −5 3.93
0 0 −0.15

 , F1 =

 1.7
−2.8

0

 ,
N2 =

−43.2 2 15.47
−10.7 −16 6.88

0 0 −0.23

 , F2 =

 1.7
−10.5

0

 ,
J1 =

 0
9.3
0

 , J2 =

 0
33.3

0

 and Q =

 0
0.7
1

 .
From Section 2.3.4.2 we can obtain the PIO by considering matrix L =

[
1 1 1 1
1 1 1 1

]
× 0.3 and a scalar σ = 15, so

that the PIO matrices are :

N1 =

−13.5 2 4.65
−3 −5 2.77
0 0 −1.29

 , H1 =

4.34
2.07
0.19

 ,
N2 =

−45.9 2 8.66
−11.4 −17 4.67

0 0 −1.29

 , H2 =

8.35
3.98
0.19

 ,
F1 =

 1.7
−2.8

0

 , F1 =

 1.7
−11.2

0

 ,
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J1 =

 0
9.3
0

 , J2 =

 0
33.3

0

 and Q =

 0
0.7
1

 .
To evaluate the performances of these observers, an uncertainty ∆A(t) is added in the system matrix Ai, then we obtain
the matrix (Ai + ∆A(t)), where

∆A(t) = δ(t)×

 0 0 0.5
0 2 0
0 1 0


The initial conditions for the system are x(0) = [0.5, 3, 6]T , for the GDO are ζ(0)GDO = [1,−2.2,−0.5]T , v(0)GDO = 1,
for the ζ(0)PIO = [1,−2.2,−0.5]T , v(0)PIO = 1 and for the PO are ζ(0)PO = [1,−2.2,−0.5]T . Despite x3 is measured,
the initial conditions between the system and the observer are different to show the performance of each observer. The
results of the simulation are depicted in Fig. 2.5-2.9. Fig. 2.5 shows the input u(t) and the unknown input d(t). Fig. 2.6
shows the uncertainty factor and the weighting functions of each model. Figs. 2.7-2.9 show the estimated states and the
estimation error obtained by the designed GDO, PO and PIO.
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Figure 2.5 – Input u(t) and unknown input d(t).

Table 2.3 – Performance indexes of each observer.

PPPPPPPPObs
Error

x̂1 − x1 x̂2 − x2 x̂3 − x3

GDO IAE 0.244 0.595 0.296
ITAE 1.247 3.806 0.169

PIO IAE 1.745 1.13 1.196
ITAE 7.103 4.545 5.562

PO IAE 0.717 1.088 2.266
ITAE 2.297 5.333 8.398

In order to compare the observer performances, the integral of absolute error (IAE) and the integral of time absolute
error (ITAE) are calculated in the Table 2.3. We can conclude that the GDO performance is better than the PO and
PIO in the presence of parameter uncertainties and unknown inputs, obtaining the minimum values of IAE and ITAE
on the estimation errors.
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Figure 2.6 – Uncertainty factor δ(t)and weighting functions µ1(%) and µ2(%) .
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Figure 2.7 – Estimation of x1(t) and estimation error of x1(t).
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Figure 2.8 – Estimation of x2(t) and estimation error of x2(t).
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Figure 2.9 – Estimation of x3(t) and estimation error of x3(t).

2.4 Generalized dynamic observers for quasi-LPV systems with unmeasu-
rable scheduling functions

2.4.1 Problem formulation

Let us consider the following quasi-LPV system

ẋ(t) =

τ∑
i=1

µi(%(t))(Aix(t) +Biu(t)) (2.90a)

y(t) = Cx(t) (2.90b)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm the input vector and y(t) ∈ Rp is the output vector. Matrices Ai ∈ Rn×n,
Bi ∈ Rn×m, C ∈ Rp×n are constant matrices and τ is the number of local models. The scheduling functions µi(%(t))
depend on the unmeasured state x(t) and they have the following convex properties :

τ∑
i=1

µi(%(t)) = 1 and µi(%(t)) ≥ 0. (2.91)

Now, let us consider the following GDO for system (2.90).

ζ̇(t) =

τ∑
i=1

µi(%̂(t))(Niζ(t) +Hiv(t) + Fiy(t) + Jiu(t)) (2.92a)

v̇(t) =

τ∑
i=1

µi(%̂(t))(Siζ(t) + Liv(t) +Miy(t)) (2.92b)

x̂(t) = Pζ(t) +Qy(t) (2.92c)

where ζ(t) ∈ Rq0 represents the state vector of the observer, v(t) ∈ Rq1 is an auxiliary vector and µi(%̂(t)) depends on x̂(t)
which is the estimate of x(t). Matrices Ni, Fi, Ji, Hi, Li, Mi, P and Q are unknown matrices of appropriate dimensions
which must be determined such that x̂(t) asymptotically converges to x(t). In order to facilitate the comparison between
the system (2.90) and the GDO (2.92), the system can be written with scheduling functions depending on the estimated
state vector by adding and subtracting

∑r
i=1 µi(%̂(t))(Aix(t) +Biu(t)) such that

ẋ(t) =

τ∑
i=1

µi(%̂(t))(Aix(t) +Biu(t)) + ω(t) (2.93a)

y(t) = Cx(t) (2.93b)
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where

ω(t) =

τ∑
i=1

(µi(%(t))− µi(%̂(t)))(Aix(t) +Biu(t)) (2.94)

Due to the convex properties described in (2.91) and the assumptions that x(t) and u(t) are norm bounded, the term
ω(t) can be considered as a perturbation of finite energy. Its effect on the estimation error must be minimized.

The problem of the observer design is to guarantee the convergence of the state estimation error toward zero when
ω(t) = 0 and minimizing the L2 gain for ω(t) 6= 0, which can be formulated as ‖e(t)‖2 < γ‖ω(t)‖2, where e(t) is the
estimation error e(t) = x̂(t)− x(t). The following lemma gives the existence conditions of observer (2.92) under the
assumption ω(t) = 0.

Lemma 2.3. For ω(t) = 0, there exists an observer of the form (2.92) for the system (2.93) if the following two
statements hold.

1. There exists a matrix T of appropriate dimension such that the following conditions are satisfied
(a) NiT + FiC − TAi = 0
(b) Ji = TBi
(c) SiT +MiC = 0
(d) PT +QC = In

2. The system ϕ̇(t) =
∑τ
i=1 µi(%̂(t))

[
Ni Hi

Si Li

]
ϕ(t) is asymptotically stable.

Proof. Let T ∈ Rqo×n be a parameter matrix and consider the transformed error ε(t) = ζ(t)− Tx(t), then its derivative
is given by :

ε̇(t) =

τ∑
i=1

µi(%̂(t))(Niε(t) + (NiT + FiC − TAi)x(t) +Hiv(t) + (Ji − TBi)u(t)) (2.95)

by using the definition of ε(t), equations (5.6b) and (5.6c) can be written as :

v̇(t) =

τ∑
i=1

µi(%̂(t))(Siε(t) + (SiT +MiC)x(t) + Liv(t)) (2.96)

x̂(t) = Pε(t) + (PT +QC)x(t) (2.97)

If the conditions (a)-(d) of Lemma 2.3 are satisfied, then the following observer error dynamics is obtained from (2.95)
and (2.96)

ϕ̇(t) =

τ∑
i=1

µi(%̂(t))

[
Ni Hi

Si Li

]
ϕ(t) (2.98)

where ϕ(t) =
[
ε(t) v(t)

]T . Also from (2.97) we have

x̂(t)− x(t) = e(t) = Pε(t) (2.99)

in this case if system (2.98) is asymptotically stable then

lim
t→∞

e(t) = 0.

�
It can note that the algebraic constraints established in Lemma 2.3 are equal that Lemma 2.1. Therefore, based on the
parameterization described in Section 2.2.2, the observer error dynamics (2.98) can be rewritten as :

ϕ̇(t) =

τ∑
i=1

µi(%̂(t))(Ai − YiA2)ϕ(t) (2.100a)

e(t) = Pϕ(t) (2.100b)

where Ai =

[
N1,i − Y1N2,i 0

0 0

]
, A2 =

[
N3 0
0 −Iq1

]
, Yi =

[
Zi Hi

U1,i Li

]
and P =

[
P 0

]
.
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2.4.2 GDO design
This section presents the GDO design by considering the LPV systems (2.93) and (2.92) with ω(t) 6= 0. From Lemma
2.3, the dynamic of error ε(t) becomes

ε̇(t) =

τ∑
i=1

µi(%̂(t))(Niε(t) +Hiv(t)− Tω(t)) (2.101)

the dynamic of variable v(t) is given by

v̇(t) =

τ∑
i=1

µi(%̂(t))(Siε(t) + Liv(t)) (2.102)

and the estimation error e(t) can be written as
e(t) = Pε(t). (2.103)

From the previous results we obtain the following system :

ϕ̇(t) =

τ∑
i=1

µi(%̂(t))((Ai − YiA2)ϕ(t) + Γω(t)) (2.104a)

e(t) = Pϕ(t) (2.104b)

where Γ =
[
−TT 0

]T .
Consequently, the observer design can be obtained from the analysis of system (2.104). It reduces to determine the
matrices Yi. The following theorem gives the existence conditions of the GDO by using the results of Lemma 2.3.

Theorem 2.3. Given a positive scalar γ, system (2.104) is asymptotically stable and ‖e(t)‖2 < γ‖ω(t)‖2 if there exist
parameter matrices Yi and symmetric positive definite matrices X1 and X3 such that the following LMI is satisfied. Πi NT⊥

3 (−X1T1 +WT2) NT⊥
3 PT

(∗) −γ2In 0
(∗) 0 −In

 < 0 (2.105)

where
Πi = NT⊥

3 (NT
1,iX1 −NT

2,iW
T +X1N1,i −WN2,1)NT⊥T

3 , (2.106)

and matrix Y1 = X−1
1 W .

Let X =

[
X1 X2

XT
2 X3

]
, then the matrices Yi are parameterized as

Yi = X−1(B+
r KiC+

l + Z − B+
r BrZClC+

l ) (2.107)

with

Ki =R−1BTl ϑiCTr (CrϑiCTr )−1 + S1/2
i φ(CrϑiCTr )−1/2 (2.108)

Si =R−1 −R−1BTl [ϑi − ϑiCTr (CTr ϑiCTr )−1Crϑi]BlR−1 (2.109)

ϑi =(BrR−1BTl −Di)−1 > 0 (2.110)

where

Di =

 ATi X +XAi XΓ PT
(∗) −γ2In 0
(∗) 0 −In


B =

 −I0
0

, C =
[
A2 0 0

]
, φ is an arbitrary matrix such that ||φ|| < 1 and R > 0. Matrices Cl, Cr, Bl and Br

are any full rank matrices such that C = ClCr and B = BlBr.
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Proof. Consider the following Lyapunov function candidate

V (ϕ(t)) = ϕ(t)TXϕ(t) > 0 (2.111)

with X =

[
X1 X2

XT
2 X3

]
> 0. Its derivative along the trajectory of (2.104) is given by

V̇ (ϕ(t)) =

τ∑
i=1

µi(%̂(t))(ϕT (t)((Ai − YiA2)TX +X(Ai − YiA2))ϕ(t) + ωT (t)ΓTXϕ(t) + ϕT (t)XΓω(t)) (2.112)

Now let S = V̇ (ϕ(t)) + eT (t)e(t)− γ2ωT (t)ω(t), then we have

S =

τ∑
i=1

µi(%̂(t))

[
ϕ(t)
ω(t)

]T
Θi

[
ϕ(t)
ω(t)

]
(2.113)

with

Θi =

[
(Ai − YiA2)TX +X(Ai − YiA2) + PTP XΓ

(∗) −γ2In

]
(2.114)

We can deduce that if Θi < 0 then S < 0. It implies that

V̇ (ϕ(t)) < γ2ωT (t)ω(t)− eT (t)e(t) (2.115)

By integrating the two sides of this inequality we obtain∫ ∞
0

V̇ (ϕ(t))dt <

∫ ∞
0

γ2ωT (t)ω(t)dt−
∫ ∞

0

eT (t)e(t)dt (2.116)

or equivalently
V (∞)− V (0) < γ2 ‖ω(t)‖22 − ‖e(t)‖

2
2 (2.117)

For the zero initial condition, it leads to
‖e(t)‖2
‖ω(t)‖2

< γ (2.118)

By applying the Schur complement to Θi < 0, we obtain the following inequality(Ai − YiA2)TX +X(Ai − YiA2) XΓ PT
(∗) −γ2In 0
(∗) 0 −In

 < 0 (2.119)

which can also be written as
BXiC + (BXiC)T +Di < 0 (2.120)

where B =

 −I0
0

, C =
[
A2 0 0

]
, Xi = XYi and Di is defined in Theorem 2.3. According to the solvability

conditions of elimination lemma [Skelton et al., 1997], the equation (2.120) is reduced to :

CT⊥DiCT⊥T < 0 (2.121)

with CT⊥ =

 [ NT⊥
3 0

]
0 0

0 In 0
0 0 In

. By using the definition of Di and W , the inequality (2.121) becomes (2.105).

If condition (2.105) is satisfied, then the matrix Yi is obtained as in (2.107)-(2.110). �
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2.4.3 Particular cases

The GDO (2.92) is in general form and generalizes the existing results on the observer design for LPV systems. In fact :

— If Hi = 0, Si = 0, Mi = 0 and Li = 0, then the observer reduces to the PO for LPV systems.

ζ̇(t) =

τ∑
i=1

µi(%̂(t))(Niζ(t) + Fiy(t) + Jiu(t))

x̂(t) = Pζ(t) +Qy(t)

the observer dynamic error (2.104) becomes

ε̇(t) =

τ∑
i=1

µi(%̂(t))((Ai − YiA2)ε(t) + Γω(t)) (2.122a)

e(t) = Pε(t) (2.122b)

where Ai = N1,i − Y1N2,i, A2 = N3, Yi = Zi and Γ = −T . Consequently, Theorem 2.3 can be applied to (2.122).
— For Li = 0, Si = −CP and Mi = −CQ+ I, then the following PIO for LPV systems is obtained

ζ̇(t) =

τ∑
i=1

µi(%̂(t))(Niζ(t) +Hiv(t) + Fiy(t) + Jiu(t))

v̇(t) = y(t)− Cx̂(t)

x̂(t) = Pζ(t) +Qy(t)

the observer dynamic error (2.104) becomes

ϕ̇(t) =

τ∑
i=1

µi(%̂(t))((Ai − YiA2)ϕ(t) + Γω(t)) (2.123a)

e(t) = Pϕ(t) (2.123b)

where Ai =

[
N1,i − Y1N2,i 0
−CP 0

]
and Yi =

[
I
0

] [
Zi Hi

]
. Consequently, Theorem 2.3 can be applied to (2.123).

Remark 2.2. From the structure of the GDO we can see that the order of the observer is equal to q0 ≤ n, when
q0 = n− p we obtain the reduced-order observer one and if q0 = n we obtain the full order one.

2.4.4 LPV quarter-car suspension model

In order to illustrate the previous results, let us consider a quarter-car model with a semi-active suspension, as seen
in the Figure 2.10 the quarter-car model is represented by a sprung mass ms and an unsprung mass mus, which are
connected by a spring with stiffness coefficient ks and a semi-active damper. A spring models the tire with stiffness
coefficient kt. The vertical displacements of the masses ms and mus are described by zs and zus, respectively, and zr is
the road profile. It is assumed that the tire contact is ensured.
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Semi active

   damper

Figure 2.10 – Model of quarter car with a semi-active damper.

The dynamical equations of a quarter-car model are given by

msz̈s =− Fks − Fmr (2.124a)
musz̈us =Fks + Fmr − kt(zus − zr) (2.124b)

where Fks = ks(zs − zus). In this paper, we consider the realistic behavior of an Magneto-Rheological (MR) damper by
using the following nonlinear equation as in [Lozoya-santos and Ramirez-mendoza, 2009]

Fmr = c0(żs − żus) + k0(zs − zus) + fI tanh(c1(żs − żus) + k1(zs − zus)) (2.125)

where c0, k0, k1 are constant parameters and the controllable force coefficient is described by fI = ymrI which varies
according to the electrical current I in the coil (0 ≤ fImin ≤ fI ≤ fImax). The parameter values used in this paper
belong to the quarter-car Reanult Mégane Coupé equipped with an MR damper presented in [Do et al., 2010a].
Therefore, the dynamical equations (2.124) are rewritten as

msz̈s =− kp(zs − zus)− c0(żs − żus)− fI tanh(c1(żs − żus) + k1(zs − zus)) (2.126a)
musz̈us =kp(zs − zus) + c0(żs − żus) + fI tanh(c1(żs − żus) + k1(zs − zus))− kt(zus − zr) (2.126b)

with kp = ks + k0.
From (2.126), the quarter-car model can be represented by the following quasi-LPV system.

ẋ(t) =Aox(t) +Bo1(%1(x(t)))fI(t) +Bo2zr(t) (2.127a)
y(t) =Cx(t) (2.127b)

where x(t) =
[
zs żs zus żus

]T ,
Ao =


0 1 0 0

− kp
ms

− c0
ms

kp
ms

c0
ms

0 0 0 1
kp
mus

c0
mus

−kp−kt
mus

− c0
mus

 , Bo1(x(t)) =


0

−%1(x(t))
ms
0

%1(x(t))
mus

 , Bo2 =


0
0
0
kt
mus


C =

[
1 0 −1 0

]
and the scheduling variable %1(x(t)) = tanh(c1(żs − żus) + k1(zs − zus)) ∈ [%1, %1] = [−1, 1]. The

variable fI is positive and fulfill with the dissipativity constraint. According to works [Do et al., 2010a, Do et al., 2010b],
the positivity problem is solved by defining u1 = fI − F0, where F0 is the mean value of fI such that F0 = (fImin+
fImax)/2 where fImin = 0 [N ] and fImax = 800 [N ]. Therefore, based on the previous results, system (2.127) is
rewritten as

ẋ(t) =A(%2(x(t)))x(t) +B(%1(x(t)))u(t) (2.128a)
y(t) =Cx(t) (2.128b)

37



Chapter 2. H∞ generalized dynamic observers for LPV systems

where u(t) =
[
u1(t) zr(t)

]
and

A(%2(x(t))) = A0 + %2(x(t))F0


0 0 0 0

− k0
ms

− c0
ms

k0
ms

c0
ms

0 0 0 0
k0
mus

c0
mus

− k0
mus

− c0
mus

 , B(%1(x(t))) =


0 0

−%1(x(t))
ms

0

0 0
%1(x(t))
mus

kt
mus

,


the scheduling variable %2(x(t)) = tanh(c1(żs− żus) + k1(zs− zus))/(c0(żs− żus) + k0(zs− zus)) ∈ [%2, %2] = [0, 1]. The
scheduling functions are defined as follows :

µ1 =

(
%1 − %1(x(t))

%1 − %1

)(
%2 − %2(x(t))

%2 − %2

)
, µ2 =

(
%1 − %1(x(t))

%1 − %1

)(
%2(x(t))− %2

%2 − %2

)
,

µ3 =

(
%1(x(t))− %1

%1 − %1

)(
%2 − %2(x(t))

%2 − %2

)
, µ4 =

(
%1(x(t))− %1

%1 − %1

)(
%2(x(t))− %2

%2 − %2

)
.

These scheduling functions must satisfy the convex properties described in (2.91).

2.4.5 Simulation
The presented approach for the GDO design is applied to the quarter-car suspension system. In this case, the measurement
output is the suspension deflection (zs − zus), however the suspension deflection velocity (żs − żus) can be estimated.
The scheduling functions are related to the states and outputs, therefore, the scheduling variables are considered
unmeasurable and need to be estimated.
The observer gains are obtained by solving the LMIs of Theorem 2.3 using Yalmip Toolbox [Lofberg, 2004] by selecting

matrix φ = 18×5 × 0.15, R = 0.02 × I8, Z = 0, E = 80 ×


1 1 0 0
1 1 0 0
0 0 1 0
0 1 0 1

. The attenuation level for each observer

is γ = 0.059. To evaluate the performance of the presented observes, an uncertainty ∆A(t) is added in the system
dynamics Ao, then the following matrix (Ao + ∆A(t)) is obtained, where ∆A = δ(t)A, with

A =


0 0 0.009 0
5
ms

−2
ms

−5
ms

2
ms

0.002 0 0 0
7

mus
2

mus
−7
mus

−2
mus

.

 .
The initial condition for the system is x(0) = [0, 0, 0, 0]T , for the GDO we take ζ(0)GDO = [0, 0, 0, 2.4]T , v(0)GDO =
[0, 0, 0, 0]T , for PIO we take ζ(0)PIO = [0, 0, 0, 2.4]T , v(0)PIO = 0 and PO we take ζ(0)PO = [−0.002, 0.002, 0, 0.24]T ,
these values correspond to the same initial condition of the state which is x̂(0) = [0, 0, 0, 0.03]T . The results are depicted
in Figures 2.11-2.19. Figure 2.11 shows the input u1(t) and the road profile zr(t). Figure 2.12 depicts the uncertainty
factor δ(t) and the scheduling functions. The estimated states obtained by GDO, PIO and PO are shown in figures
2.13-2.14. The estimation error of the suspension velocity deflection is shown in Figure 2.15. In Figure 2.13, we can note
that the estimated suspension deflection is almost equal to the measured for each observer. Figures 2.16-2.19 show the
estimated states and the estimation errors obtained by the designed GDO, PIO and PO.

In order to compare the observer performances, the integral of absolute error (IAE) and the integral of time absolute
error (ITAE) obtained for the estimation error. Table 2.4 shows that the minimum values of IAE and ITAE are obtained
for the GDO in the presence of parameter uncertainties. These results show that the GDO presents a good performances
in presence of uncertainties compared to the existing PO and PIO.

2.5 Conclusions
In this chapter, the GDO designs for continuous-time LPV systems was presented. It addressed the cases when the
scheduling parameters are measured and unmeasured. In each case, it presents the problem formulations, such as
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Table 2.4 – Performance indexes of each observer

GDO PIO PO
żs − żus IAE 0.192 0.214 0.227

ITAE 2.328 2.593 2.714
zs − zus IAE 1.99× 10−13 2.76× 10−13 3.55× 10−13

ITAE 1.74× 10−13 1.50× 10−13 2.03× 10−12

x̂1 − x1 IAE 0.022 0.031 0.033
ITAE 0.351 0.547 0.586

x̂2 − x2 IAE 0.3549 0.441 0.458
ITAE 4.889 6.623 6.983

x̂3 − x3 IAE 0.022 0.031 0.033
ITAE 0.351 0.547 0.586

x̂4 − x4 IAE 0.2184 0.3 0.313
ITAE 3.37 5.063 5.389
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Figure 2.11 – Estimation of x2(t) and estimation error of x2(t).
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Figure 2.12 – Uncertainty factor δ(t) and scheduling functions.

the parameterization method, to satisfy the observer existence. The stability conditions for each design are presented
through the solution of LMIs. Academic examples are used to demonstrate the performances of each design. Similarly,
it has made a comparison among the particular cases of the GDO to highlight the GDO characteristics.
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Figure 2.13 – Suspension deflection zdef (t) = zs(t)− zus(t).
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Figure 2.14 – Suspension velocity deflection żdef .
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Figure 2.15 – Estimation error e(t) = ˆ̇zdef − żdef .
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Figure 2.16 – Estimation of x1(t) and estimation error of x1(t).
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Figure 2.17 – Estimation of x2(t) and estimation error of x2(t).
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Figure 2.18 – Estimation of x3(t) and estimation error of x3(t).
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Figure 2.19 – Estimation of x4(t) and estimation error of x4(t).
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Chapter 3

H∞ generalized dynamic unknown inputs
observer design for discrete LPV systems.
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3.1 Introduction

This chapter presents the GDO design for discrete LPV systems with measurable scheduling variables. It considers
unknown inputs and disturbances affecting states and outputs of the system. This structure is general, and the PO and
PIO designs can be considered as particular cases. Parameter Dependent Lyapunov (PDL) functions are used to obtain
sufficient conditions for the existence and design of the GDO in terms of LMI, as an attempt to reduce the conservatism.
In Section 3.2 the GDO design problem is presented. In Section 3.3 and 3.4 present, a parameterization method which
is provided for the proposed GDO, then the observer design for the LPV system is developed. Section 3.5 presents the
efficiency of the proposed design by using an engineering system as the 4.8 MW wind turbine benchmark system.

3.2 Problem formulation

Consider the LPV discrete time system described by

xk+1 = A(ρk)xk +B(ρk)uk +Ddk +Rwk (3.1a)
yk = Cxk +R1wk (3.1b)

where xk ∈ Rn is the state vector, uk ∈ Rm the known input vector, dk ∈ Rs the unknown input vector, wk ∈ Rl the dis-
turbance vector of finite energy, yk ∈ Rp represents the measured output vector and ρk ∈ Rj is a varying parameter vector.
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Remark 3.1. The system (5.1) describes a general form in the presence of unknown inputs. In fact when the unknown
inputs affect the output yk, system (5.1) can be written as

xk+1 = A(ρk)xk +B(ρk)uk +Ddk +Rwk (3.2a)
yk = Cxk +D1dk +R1wk (3.2b)

Let D1 ∈ Rp×s, assume that rankD1 = s1 ≤ s and let p > s1. Then, there exist two nonsingular matrices U and V such

that UD1 =

[
Is1 0
0 0

]
V , let also V dk =

[
dzk
dθk

]
and DV −1 =

[
D1 D2

]
, then system (3.2) is described as

xk+1 = A1(ρk)xk +B1(ρk)uk +D2d
θ
k +Rwk (3.3a)

yθk = C2xk +R12wk (3.3b)

where A1(ρk) = A(ρk)−D1C1, R = R−D1R11, B1(ρk) =
[
B(ρk) D1

]
, uk =

[
uk
yzk

]
, Uyk =

[
yzk
yθk

]
, UR1 =

[
R11

R12

]
and

UC =

[
C1

C2

]
. With the previous considerations, the system (3.3) is in form (3.1).

It is assumed that each component ρik, i ∈ {1, 2, . . . , j} of the time-varying parameter vector ρk is bounded, measurable
and their values remain into a hyper-rectangle such that

ρk ∈ P =
{
ρik
∣∣ρi ≤ ρik ≤ ρi} , ∀i ∈ {1, 2, . . . , j},∀k ≥ 0 (3.4)

Based on the affine parameter dependence (3.4), the matrices A(ρk) and B(ρk) of the LPV system (3.1) can be
represented in the following form :

A(ρk) = A0 +

j∑
i=1

ρikAi, B(ρk) = B0 +

j∑
i=1

ρikBi (3.5)

From this characterization, system (3.1) can be transformed in a convex combination where the vertices Si of the
polytope are the images of the vertices of P such that Si = [Ai, Bi, D, R, C, R1], ∀i ∈ {1, 2, . . . , τ} where τ = 2j . The
polytopic coordinates are denoted by µ(ρk) and vary into the convex set Λ where

Λ =

{
µ(ρk) ∈ Rτ , µ(ρk) = [µ1(ρk), µ2(ρk), . . . , µτ (ρk)]T , µi(ρk) ≥ 0,

τ∑
i=1

µi(ρk) = 1

}
(3.6)

The polytopic coordinates can be computed as in [Pellanda et al., 2002]. The polytopic LPV system with the time-varying
parameter vector µi(ρk) ∈ Λ is represented by

xk+1 =

τ∑
i=1

µi(ρk)(Aixk +Biuk +Ddk +Rwk) (3.7a)

yk = Cxk +R1wk (3.7b)

where the matrices Ai ∈ Rn×n, Bi ∈ Rn×m, D ∈ Rn×s, R ∈ Rn×l, C ∈ Rp×n and R1 ∈ Rp×l are constant known
matrices.
Now, let us consider the GDO for system (3.7) in the following form

ζk+1 =

τ∑
i=1

µi(ρk)(Niζk +Hivk + Fiyk + Jiuk) (3.8a)

vk+1 =

τ∑
i=1

µi(ρk)(Siζk + Livk +Miyk) (3.8b)

x̂k =Pζk +Qyk (3.8c)

where ζk ∈ Rq0 represents the state vector of the observer, vk ∈ Rq1 is an auxiliary vector and x̂k ∈ Rn is the estimate
of xk. Ni, Hi, Fi, Si, Li, Mi, P and Q are unknown matrices of appropriate dimensions which must be determined
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3.2. Problem formulation

such that ek = x̂k − xk converges asymptotically to zero for wk = 0. For wk 6= 0, we must minimize the effect of wk on
ek such that sup

w∈L2−{0}

‖ek‖22
‖wk‖22

< γ2 where γ is a given positive scalar.

For the sake of simplicity, the following notation is used

Ψ(ρk) =

τ∑
i=1

µi(ρk)Ψi, ∀i ∈ {1, . . . , τ}

Thus, system (3.8) can be rewritten as follows :

ζk+1 =N(ρk)ζk +H(ρk)vk + F (ρk)yk + J(ρk)uk (3.9a)
vk+1 =S(ρk)ζk + L(ρk)vk +M(ρk)yk (3.9b)
x̂k =Pζk +Qyk (3.9c)

The following lemma gives the existence conditions of the observer (3.9).

Lemma 3.1. For wk = 0, there exists an observer of the form (3.9) for the system (3.7) if the following two statements
hold

1. There exists a matrix T of appropriate dimension such that the following conditions are satisfied
(a) N(ρk)T + F (ρk)C − TA(ρk) = 0
(b) J(ρk) = TB(ρk)
(c) TD = 0
(d) S(ρk)T +M(ρk)C = 0
(e) PT +QC = In

2. The system ϕk+1 =

[
N(ρk) H(ρk)
S(ρk) L(ρk)

]
ϕk is asymptotically stable.

Proof. Let T ∈ Rqo×n be a parameter matrix and consider the transformed error εk = ζk − Txk, then its dynamics is
given by :

εk+1 =N(ρk)εk + (N(ρk)T + F (ρk)C − TA(ρk))xk +H(ρk)vk+

(J(ρk)− TB(ρk))u(k)− TDdk + (F (ρk)R1 − TR)wk (3.10)

by using the definition of εk, equations (3.9b) and (3.9c) can be written as :

vk+1 =S(ρk)εk + (S(ρk)T +M(ρk)C)xk + L(ρk)vk +M(ρk)R1wk (3.11)
x̂k =Pεk + (PT +QC)xk +QR1wk (3.12)

If conditions a)-e) of Lemma 3.1 are satisfied, the following observer error dynamics is obtained from (3.10) and (3.11)[
εk+1

vk+1

]
︸ ︷︷ ︸

ϕk+1

=

[
N(ρk) H(ρk)
S(ρk) L(ρk)

]
︸ ︷︷ ︸

A(ρk)

[
εk
vk

]
︸ ︷︷ ︸
ϕk

+

[
F (ρk)R1 − TR
M(ρk)R1

]
︸ ︷︷ ︸

B(ρk)

wk (3.13)

From (3.12), we have
x̂k − xk = ek = Pεk +QR1wk (3.14)

in this case if wk = 0 and ϕk+1 = A(ρk)ϕk is asymptotically stable then lim
k→∞

ek = 0.

�
The problem of the GDO design is reduced to find all the parameter matrices of the observer such that conditions
a)− e) of Lemma 3.1 are satisfied and system (3.13) is stable for wk = 0 and for wk 6= 0, sup

w∈L2−{0}

‖ek‖22
‖wk‖22

< γ2 where γ

is a given positive scalar.
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3.3 Observer parameterization
This section, we shall give the parameterization of the algebraic constraint equations (a)-(e) of Lemma 3.1. Let E ∈ Rq0×n

be any full row rank matrix such that the matrix Ω =

[
E
C

]
is of full column rank. Conditions d)-e) can be written as :

[
S(ρk) M(ρk)
P Q

] [
T
C

]
=

[
0
In

]
(3.15)

the necessary and sufficient condition for equation (3.15) to have a solution is :

rank
[
T
C

]
= rank


T
C
0
In

 = n (3.16)

Now, since rank
[
T
C

]
= n, there always exist matrices T ∈ Rq0×n and K ∈ Rq0×p such that :

T +KC = E (3.17)

On the other hand from equation (3.17) we obtain :[
T
C

]
=

[
Iq0 −K
0 Ip

]
Ω (3.18)

inserting equation (3.18) into equation (3.15) we get :[
S(ρk) M(ρk)
P Q

] [
Iq0 −K
0 Ip

]
Ω =

[
0
In

]
(3.19)

Since matrix Σ is of full column rank and
[
Iq0 −K
0 Ip

]−1

=

[
Iq0 K
0 Ip

]
the general solution to equation (3.19) is

given by : [
S(ρk) M(ρk)
P Q

]
=

([
0
In

]
Ω+ − U(ρk)(Iq0+p − ΩΩ+)

)[
Iq0 K
0 Ip

]
(3.20)

where U(ρk) is a matrix with arbitrary elements of appropriate dimensions. Then matrices S(ρk), M(ρk), P and Q can
be determined as :

S(ρk) =− U1(ρk)S1, (3.21)
M(ρk) =− U1(ρk)M1, (3.22)
P (ρk) =P1 − U2(ρk)S1 (3.23)
Q(ρk) =Q1 − U2(ρk)M1 (3.24)

where U1(ρk) =
[
I 0

]
U(ρk), U2(ρk) =

[
0 I

]
U(ρk), P1 = Ω+

[
Iq0
0

]
, Q1 = Ω+

[
K
Ip

]
, S1 = (Iq0+p −

ΩΩ+)

[
I
0

]
and M1 = (Iq0+p − ΩΩ+)

[
K
Ip

]
.

The estimation error (3.14) shows that ek → 0 when εk → 0, i.e., the error ek is independent of the matrix P . Then we
can suppose that U2(ρk) = 0 and obtain P = P1 and Q = Q1.
Consequently, from the equation (3.17) and c) of Lemma 3.1, we have the equation :

KCD = ED (3.25)

which has solution if and only if

rank

[
E
C

]
D = rank CD (3.26)
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or, since
[
E
C

]
is of full column rank

rankD = rank CD (3.27)

Assumption 3.1. We assume that condition (3.26) (or its equivalent (3.27)) is satisfied.

The previous rank conditions are established in [Darouach, 2009]. Under Assumption 3.1, the one solution of equation
(3.25) is

K = ED(CD)+ (3.28)

and it is possible to deduce matrices K and T when the matrix E is chosen.
By replacing T from equation (3.17) into equation a) of Lemma 3.1 we obtain :

N(ρk)(E −KC) + F (ρk)C = (E −KC)A(ρk) (3.29)

or [
N(ρk) K̃(ρk)

]
= Θ(ρk) (3.30)

where K̃(ρk) = F (ρk)−N(ρk)K, Θ(ρk) = (E −KC)A(ρk) and the general solution of (3.30) is given by[
N(ρk) K̃(ρk)

]
= Θ(ρk)Ω+ − Z(ρk)(I − ΩΩ+) (3.31)

which can be rewritten as :

N(ρk) = N1(ρk)− Z(ρk)N2 (3.32)
K̃(ρk) = K̃1(ρk)− Z(ρk)K̃2 (3.33)

where N1(ρk) = Θ(ρk)Ω+

[
Iq0
0

]
, N2 = (I − ΩΩ+)

[
Iq0
0

]
, K̃1(ρk) = Θ(ρk)Ω+

[
0
Ip

]
, K̃2 = (I − ΩΩ+)

[
0
Ip

]
and

Z(ρk) are matrices with arbitrary elements of appropriate dimensions.
From the previous results, the observer error dynamics (3.13) can be rewritten as :

ϕk+1 = (A1(ρk)− Y(ρk)A2)ϕk + (B1(ρk)− Y(ρk)B2)wk (3.34a)
ek = Pϕk + Qwk (3.34b)

where A1(ρk) =

[
N1(ρk) 0

0 0

]
, A2 =

[
N2 0
0 −Iq1

]
, Y(ρk) =

[
Z(ρk) H(ρk)
U1(ρk) L(ρk)

]
B1(ρk) =

Θ(ρk)Ω+

[
K
Ip

]
R1 − TR

0

,
B2 =

[
M1R1

0

]
, P =

[
P 0

]
and Q = QR1.

3.4 H∞ generalized dynamic observer design
In this section, a method to design the H∞ GDO from (3.8) is presented. This method is obtained from the determination
of matrix Y(ρk), such that system (3.34) is poly-quadratically stable and an upper bound γ to the H∞ performance is
minimized. This problem is described as

sup
w∈L2−{0}

‖ek‖22
‖wk‖22

< γ2 (3.35)

which can be solved by the discrete-time version of the bounded real lemma in terms of LMI’s based condition of
poly-quadratic stability presented in [Heemels et al., 2010, Daafouz et al., 2002]. Those results are extended to the H∞
generalized dynamic observer in the context of linear parameter varying systems by using the following theorem.

Theorem 3.1. Under Assumption 3.1, there exists a parameter matrices Yi, matrices Gi, a scalar γ > 0 and matrices
Xi = XT

i > 0 of appropriate dimensions satisfying

CT⊥


Xj −Gi −GTi 0 (∗) (∗)

0 −I (∗) (∗)
AT1,iGi PT −Xi 0
BT1,iGi QT 0 −γI

 CT⊥T < 0 (3.36)
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and  −I (∗) (∗)
PT −Xi 0
QT 0 −γI

 < 0 (3.37)

∀i, j ∈ {1, . . . , τ} with γ =
√
γ, such that (3.34) is asymptotically stable with an H∞ disturbance attenuation level γ.

The matrix Yi is parametrized as

Yi = G−Ti (B+
r KC+

l + Zi − B+
r BrZiClC+

l ) (3.38)

where

K =−R−1BTl ϑCTr (CrϑCTr )−1 + S1/2φ(CrϑCTr )−1/2 (3.39)

S =R−1 −R−1BTl [ϑ− ϑCTr (CrϑCTr )−1Crϑ]BlR−1 (3.40)

ϑ =(BrR−1BTl −Du)−1 > 0 (3.41)

with Du as the matrix Dij with λmax(Dij) where

Dij =


Xj −Gi −GTi 0 (∗) (∗)

0 −I (∗) (∗)
AT1,iGi PT −Xi 0
BT1,iGi QT 0 −γ2I



B =


−I
0
0
0

, C =
[

0 0 A2 B2

]
. φ is an arbitrary matrix such that ||φ|| < 1 and R > 0. Matrices Cl, Cr, Bl and

Br are any full rank matrices such that C = ClCr and B = BlBr.

Proof. Consider the PDL function

V (ϕk, ρk) = ϕTkX(ρk)ϕk (3.42)

where X(ρk) = X(ρk)T > 0, then the difference ∆V (ϕk) along the solution of (3.13) is given by

∆V (ϕk, ρk) =ϕTk (A(ρk)TX(ρk+1)A(ρk)−X(ρk))ϕk−
wTk B(ρk)TX(ρk+1)A(ρk)ϕk + ϕTkA(ρk)TX(ρk+1)B(ρk)wk+

wTk B(ρk)TX(ρk+1)B(ρk)wk (3.43)

Now let S = ∆V (ϕk, ρk) + eTk ek − γ2wTk wk, then we obtain

S =

[
ϕk
wk

]T [ AT (ρk)X(ρk+1)A(ρk)−X(ρk) + PTP AT (ρk)X(ρk+1)B(ρk) + PTQ
(∗) BT (ρk)X(ρk+1)B(ρk) + QTQ− γ2I

] [
ϕk
wk

]
(3.44)

We have used the fact that ek = Pϕk + Qwk.
Now S < 0, implies that

∆V (ϕk, ρk) < −eTk ek + γ2wTk wk (3.45)

or equivalently
∞∑
k=0

∆V (ϕk, ρk) < −‖ek‖22 + γ2 ‖wk‖22 (3.46)

which gives
V (∞)− V (0) < −‖ek‖22 + γ2 ‖wk‖22 (3.47)

which leads to (3.35) since V (0) = 0 and V (∞) > 0.
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On the other hand, S < 0 if[
AT (ρk)X(ρk+1)A(ρk)−X(ρk) + PTP AT (ρk)X(ρk+1)B(ρk) + PTQ

(∗) BT (ρk)X(ρk+1)B(ρk) + QTQ− γ2I

]
< 0 (3.48)

We can decompose the inequality (3.48) as follows[
−X(ρk) 0

0 −γ2I

]
−
[

AT (ρk)X(ρk+1) PT
BT (ρk)X(ρk+1) QT

] [
−X(ρk+1)−1 0

0 −I

] [
X(ρk+1)A(ρk) X(ρk+1)B(ρk)

P Q

]
< 0

(3.49)
and by applying Schur complement to the inequality (3.49) we get


−X(ρk+1) 0 (∗) (∗)

0 −I (∗) (∗)
AT (ρk)X(ρk+1) PT −X(ρk) 0
BT (ρk)X(ρk+1) QT 0 −γ2I

 < 0 (3.50)

Consider X(ρk) =
∑τ
i=1 µi(ρk)Xi and X(ρk+1) =

∑τ
j=1 µj(ρk+1)Xj and using the convex properties (3.6), the inequality

(3.50) is equivalent to 
−Xj 0 (∗) (∗)

0 −I (∗) (∗)
ATi Xj PT −Xi 0
BTi Xj QT 0 −γ2I

 < 0 (3.51)

Premultiplying (3.51) by


GTi X

−1
j 0 0 0

0 I 0 0
0 0 I 0
0 0 0 I

 and postmultiplying it by its transpose we obtain


−GTi X

−1
j Gi 0 (∗) (∗)

0 −I (∗) (∗)
ATi Gi PT −Xi 0
BTi Gi QT 0 −γ2I

 < 0, ∀i, j ∈ {1, 2, . . . , h} (3.52)

Now, by applying the Young’s Inequality to the (1,1) entry of the inequality (3.52) we obtain

−GTi X−1
j Gi ≤ Xj −Gi −GTi

which implies, from equation (3.52), that if
Xj −Gi −GTi 0 (∗) (∗)

0 −I (∗) (∗)
ATi Gi PT −Xi 0
BTi Gi QT 0 −γ2I

 < 0, (3.53)

is satisfied then (3.52) is also satisfied.
By replacing Ai and Bi from (3.34) into (3.53)

Xj −Gi −GTi 0 (∗) (∗)
0 −I (∗) (∗)

(A1,i − YiA2)TGi PT −Xi 0
(B1,i − YiB2)TGi QT 0 −γ2I

 < 0. (3.54)
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The inequality (3.54) can be decomposed as
−I
0
0
0

GTi Yi [ 0 0 A2 B2

]
+



−I
0
0
0

GTi Yi [ 0 0 A2 B2

]
T

+


Xj −Gi −GTi 0 (∗) (∗)

0 −I (∗) (∗)
AT1,iGi PT −Xi 0
BT1,iGi QT 0 −γ2I

 < 0 (3.55)

which can be also written as
BX iC + (BX iC)T +Dij < 0 (3.56)

where B =


−I
0
0
0

, C =
[

0 0 A2 B2

]
and Xi = GTi Yi. According to elimination lemma [Skelton et al., 1997] the

solvability conditions of equation (3.56) are reduced to :

CT⊥DijCT⊥T < 0 (3.57)

B⊥DijB⊥T < 0 (3.58)

Now, from the solution of (3.57) and (3.58) we can determine matrices Dij and therefore matrix Du. Then we have that
(3.57) and (3.58) are equivalent to

BX iC + (BX iC)T +Du < 0 (3.59)

If condition (3.59) is satisfied, then the parameter matrix Yi is obtained from (5.50). �

Remark 3.2. The choice of matrix Du as the matrix Dij with λmax(Dij) allow us to obtain matrix Yi, so that matrix
Du represents the worst case of matrices Dij. Therefore, if we solve (3.56) for the worst case, it implies that the other
cases for matrices Dij are also satisfied.

3.4.1 Particular cases
The GDO (5.6) is in a generalized form. In fact :

— For Li = 0, Si = −CP and Mi = −CQ+ I then the following PIO for LPV systems is obtained

ζk+1 =

τ∑
i=1

µi(ρk)(Niζk +Hivk + Fiyk + Jiuk) (3.60a)

vk+1 =yk − Cx̂k (3.60b)
x̂k =Pζk +Qyk (3.60c)

the observer dynamic error (3.34) becomes

ϕk+1 =

τ∑
i=1

µi(ρk)((Ai − YiA2)ϕk + (Bi − YiB2)wk) (3.61a)

ek = Pϕk + Qwk (3.61b)

where Ai =

[
N1,i 0
−CP 0

]
, A2 =

[
N2 0
0 −I

]
, Bi =

 ΘiΩ
+

[
K
Ip

]
R1 − TR

R1 − CQR1

, B2 =

[
M1R1

0

]
and Yi =[

I
0

] [
Zi Hi

]
. Consequently, Theorem 1 is applied to (3.61) .
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— For Hi = 0, Si = 0, Mi = 0 and Li = 0 the observer reduces to the PO for LPV systems.

ζk+1 =

τ∑
i=1

µi(ρk)(Niζk + Fiyk + Jiuk) (3.62a)

x̂k = Pζk +Qyk (3.62b)

the observer dynamic error (3.34) becomes

εk+1 =

τ∑
i=1

µi(ρk)((Ai − YiA2)εk + (Bi − YiB2)wk) (3.63a)

ek = Pεk +QR1wk (3.63b)

where Ai = N1,i, A2 = N2, Bi = ΘiΩ
+

[
K
Ip

]
R1 − TR, B2 = M1R1 and Yi = Zi. Consequently, Theorem 1 is

applied to (3.63) .

3.5 Wind turbine system

3.5.1 LPV modeling of benchmark wind turbine

In this section a benchmark wind turbine system is used to illustrate the observer design approach proposed previously.
This benchmark was designed by [Odgaard et al., 2013] based on a 4.8 MW wind turbine, which is composed by the
blade and pitch systems, drive train, generator and converter, and controller. In [Shao et al., 2018, Liu et al., 2017b] a
global wind turbine model is obtained by interconnecting the models of each subsystem, then the global wind turbine
model is represented by the following state-space form

ẋ(t) =A(λ, β, ωr)x(t) +Bu(t) (3.64a)
y(t) =Cx(t) (3.64b)

where x(t) =
[
ωr(t) ωg(t) θ∆(t) β(t) β̇o(t) τg(t)

]T
is the state vector, u(t) =

[
βr(t) Tgr(t)

]T is the control

input vector obtained by the benchmark model and y(t) =
[
ωr(t) ωg(t) β(t) τg(t)

]T is the output vector. λ, β
and ωr are the measurable scheduling variables, λ is calculated through the measuring variables vr and ωr, hence is
known. The system matrices (3.64) are described as :

A(λ, β, ωr) =



a11(λ, β, ωr)
Bdt
NgJr

−Kdt
Jr

0 0 0
ηdtBdt
NgJg

−ηdtBdtN2
gJg
− Bg

Jg

ηdtKdt
NgJg

0 0 − 1
Jg

1 − 1
Ng

0 0 0 0

0 0 0 0 ω2
n 0

0 0 0 −1 −2ςω2
n 0

0 0 0 0 0 −αgc


,

B =


0 0
0 0
0 0
0 0
1 0
0 αgc

 , C =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1


with a11(λ, β, ωr) = 1

2λ2Jr
ρwπR

5
wCq(λ, β)ωr − Bdt+Br

Jr . The symbols used are shown in Table 3.1, the parameter values
are extracted from [Odgaard et al., 2013].
Cq(λ, β) is a strong non-linear term which represents the torque coefficients depending on tip-speed-ratio λ and the
pitch angle β. In [Shao et al., 2018], the term Cq(λ, β) is identified by the curve fitting method using the real data,
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Table 3.1 – Parameter symbols of benchmark model

Symbol Meaning Symbol Meaning

ωr Rotor angular speed τgr Generator torque reference
ωg Generator rotating speed βr Pitch reference
θ∆ Torsion angle Ng Gear ratio
β Pitch angle Jr Rotor moment of inertia
τg Generator torque Kdt Torsion stiffness
λ Tip-speed-ratio ρw Air density
ς Damping ration ηdt Efficiency of drive train
αgc Generator and converter parameter Rw Rotor radius
Bg Generator external damping Cq Torque coeficient
ωn Natural frequency Bdt Torsion damping coeficient
Br Rotor external damping Jg Generator moment of inertia

from the Lookup Table scheme illustrated in the benchmark model, and Linear Least Square method. The polynomial
obtained of two input parameters is described as follows :

Cq(λ, β) = p00 + p10β + p01λ+ p11βλ+ p02λ
2 (3.65)

where p00 = −0.101, p10 = 0.003, p01 = 0.054, p11 = −0.002 and p02 = −0.004. The states comparison between the
parameter varying model and benchmark model is depicted in [Shao et al., 2018].
To design the discrete-time observer presented in Section 3.4, an Euler discretization is used for the model (3.64) taking
into account the same sampling time used in the pre-designed controller. The nonlinear discrete-time model is

xk+1 =Ad(λk, βk, ωrk)xk +Bduk (3.66a)
yk =Cxk (3.66b)

where
Ad(λk, βk, ωrk ) =

1 + Tsa11(λ, β, ωr)
TsBdt
NgJr

−TsKdt
Jr

0 0 0
TsηdtBdt
NgJg

1− TsηdtBdt
N2
gJg

− TsBg
Jg

TsηdtKdt
NgJg

0 0 −Ts
Jg

Ts −Ts 1
Ng

0 0 0 0

0 0 0 0 Tsω2
n 0

0 0 0 −Ts 1− 2Tsςω2
n 0

0 0 0 0 0 1− Tsαgc


,

Bd = TsB

with sampling time Ts = 0.01. In order to obtain the LPV model of the parameter varying model (3.66), the scheduling
variables and the scheduling functions are defined as follows

ρ1 =
1

2λ2Jr
ρwπR

5
wCq(λ, β) ∈ [ρ1, ρ1] = [−250, 150], ρ2 = ωr ∈ [ρ2, ρ2] = [0, 3],

µ1 =

(
ρ1 − ρ1

ρ1 − ρ1

)(
ρ2 − ρ2

ρ2 − ρ2

)
, µ2 =

(
ρ1 − ρ1

ρ1 − ρ1

)(
ρ2 − ρ2

ρ2 − ρ2

)
,

µ3 =

(
ρ1 − ρ1

ρ1 − ρ1

)(
ρ2 − ρ2

ρ2 − ρ2

)
, µ4 =

(
ρ1 − ρ1

ρ1 − ρ1

)(
ρ2 − ρ2

ρ2 − ρ2

)
,

the minimum and maximum bounds are selected according to the Lookup Table in [Odgaard et al., 2013]. These
scheduling functions must satisfy the convex properties described in (5.4).
To demonstrate the effectiveness and performance of the proposed robust estimation approach, we consider actuator
fault fk and disturbance wk of finite energy. In [Shao et al., 2018, Liu et al., 2017b], the generator torque is assumed
to be faulty due to faults in either generator or converter torque producing a bias on the generator torque reference.
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Considering the actuator fault and disturbance affecting both states and outputs of the system, the system (3.66) is
rewritten as

xk+1 =Ad(λk, βk, ωrk)xk +Bduk +Bdffk +Bdwwk (3.67a)
yk =Cxk +R1wk (3.67b)

Bdf , Bdw and R1 are the distribution matrices of the actuator fault and disturbance which are represented by
Bdf =

[
0 0 0 0 0 αgc

]T , Bdw =
[
0.04 1 0 0 0 1

]T and R1 =
[
0.04 0.25 0.02 0.4

]T .

3.5.2 Simulation

The problem is to estimate the state variables of the benchmark wind turbine model by using the GDO proposed. The
observer initial conditions are ζk(0) =

[
0.01 20 0 40 0 1

]T and vk(0) =
[

0 0 0 0 0 0
]T .

The observer parameters are computed by solving the LMIs of Theorem 3.1 through Yalmip Toolbox [Lofberg, 2004]

and the SeDuMi solver [Sturm, 1999] by choosing the matrices E = 0.01×


1 0 2 0 0 0
0 20 0 0 0 0
0 0 1 0 0 0
0 40 0 1 0 0
0 0 1 0 1 0
0 0 0 0 0 8

, φ = 112×8 × 0.08,

Z = 0 and R = 100× I12.

The obtained attenuation level is γ = 2.1 which guarantee a good disturbance attenuation. Figure 3.2 represents the
disturbance process wk and the actuator fault fk. To evaluate the performance of the presented observers, we add an uncer-

tainty ∆A1(t) to the system dynamics A(λ, β, ωr), where ∆A1(t) = α(t)A and A =


0.01 0 0 0 0 0

0 −0.002 0 0 0 0
0 0 0.2 0 0 0
0 0 0 0 0.3 0
0 0 0 0.1 0 0
0 0 0 0 0 0

.
Figure 3.1 shows the variable α(t) and the evolution of the scheduling functions.

Similarly, we designed a PIO and PO based on the method proposed with the same parameter design with γ = 2.1 to
compare the performances of each observer. Figures 3.3-3.8 represent the state variables of the benchmark wind turbine
system and their estimates.

In Table 3.2, the integral of absolute error (IAE) is calculated for the obtained observers. We can see that the GDO
performances are better than those of PO and PIO in the presence of parameter uncertainties and unknown inputs,
obtaining the minimum values of IAE on the estimation errors.

Table 3.2 – Parameter index of each observer

x̂1 − x1 x̂2 − x2 x̂3 − x3 x̂4 − x4 x̂5 − x5 x̂6 − x6

GDO IAE 1.72 56.39 0.594 18.04 2.98 6584
PIO IAE 1.72 240.4 1.67 20.65 3.07 6584
PO IAE 1.72 253.9 1.65 18.5 3.4 6584
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Figure 3.1 – Uncertainty factor α and scheduling functions
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Figure 3.2 – Disturbance from plant and sensors and actuator fault
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3.5. Wind turbine system
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Figure 3.3 – Rotor angular speed estimation and its estimation error.
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Figure 3.4 – Generator rotating speed estimation and its estimation error.
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3.5. Wind turbine system
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Figure 3.5 – Torsion angle estimation and its estimation error.
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Figure 3.6 – Pitch angle estimation and its estimation error.
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3.5. Wind turbine system
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Figure 3.7 – Pitch rate estimation and its estimation error.
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Figure 3.8 – Generator torque estimation and its estimation error.

3.6 Conclusions
In this chapter, a GDO design for discrete-time unknown inputs LPV systems is presented. The conditions for the
existence of this observer design is given in the form of a set of LMIs. The design uses the PDL function to obtain results
less conservative than the ones obtained from the quadratic stability. In order to illustrate the observer performances,
a benchmark wind turbine model was used. From the simulation results, the GDO has the best performances and
robustness compared to PO and PIO in the presence of parametric uncertainties.
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4.1 Introduction

This chapter presents the design of an adaptive observer for LPV systems. This observer structure must be able to
estimate states and parameters simultaneously. The estimated parameter vector is used to compute the scheduling
functions and thus interpolate the local linear models. A case in which an unknown input affects the system is presented.
The observer design is obtained in terms of a set of linear matrix inequalities (LMI), and the conditions of existence
and stability are given. Academic examples illustrate the efficiency of the proposed approach.

4.2 Adaptive observer design for LPV systems

4.2.1 Problem statement

Consider the following linear system subject to time varying parametric uncertainty θ(t)

ẋ(t) =A(θ(t))x(t) +B(θ(t))u(t) (4.1a)
y(t) =Cx(t) (4.1b)

with A(θ(t)) = A0 +
∑nθ
j=1 θj(t)Aj , B(θ(t)) = B0 +

∑nθ
j=1 θj(t)B, θj(t) ∈ [θ1

j , θ
2
j ] where the superscripts 1 and 2 represent

the lower and upper bound of θj(t), respectively. nθ is the number of unknown parameters. x(t) ∈ Rn is the state vector,
u(t) ∈ Rm the input vector, y(t) ∈ Rp represents the output vector. θ(t) ∈ Rnθ is a time varying parameter vector, non
measurable but bounded, hence, each parameter can be written as

θj(t) = µ1
j (θj(t))θ

1
j + µ2

j (θj(t))θ
2
j (4.2)
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where µ1
j(θj) =

θ2j−θj(t)
θ2j−θ1j

and µ2
j(θj) =

θj(t)−θ1j
θ2j−θ1j

. The system (4.1) can be represented in a polytopic form where the
parameter θ(t) evolves inside a polytope represented by τ = 2nθ vertices.

ẋ(t) =

τ∑
i=1

µi(θ(t))(Aix(t) + Biu(t)) (4.3a)

y(t) =Cx(t) (4.3b)

with µi(θ(t)) =
∏nθ
j=1 µ

k
j (θj(t)) and Ai = A0 +

∑nθ
j=1 θ

k

jAj , Bi = B0 +
∑nθ
j=1 θ

k
jBj where k is equal to 1 or 2 depending

of the partition of the jth parameter (µ1
j or µ2

j ). A0, B0, Aj and Bj are known matrices with suitable dimensions. Now,
let us consider the following adaptive dynamic observer for system (4.3)

ζ̇(t) =

τ∑
i=1

µi(θ̂(t))(Niζ(t) +Hiv(t) + Fiy(t) + Jiu(t)) (4.4a)

v̇(t) =

τ∑
i=1

µi(θ̂(t))(Siζ(t) + Liv(t) +Miy(t)) (4.4b)

˙̂
θ(t) =

τ∑
i=1

µi(θ̂(t))(Ko,i(Cx̂(t)− y(t)) + αiθ̂(t)) (4.4c)

x̂(t) =Pζ(t) +Qy(t) (4.4d)

where ζ(t) ∈ Rq0 represents the state vector of the observer, v(t) ∈ Rq1 is an auxiliary vector, x̂(t) ∈ Rn is the estimate
of x(t), θ̂(t) ∈ Rnθ is the estimate of θ(t). The matrices Ni, Hi, Fi, Ji, Si, Li, Mi, Q, Ko,i and αi are unknown matrices
of appropriate dimensions.
In order to facilitate the comparison between system (4.3) and adaptive observer (4.4), the system can be written with
scheduling functions depending on the estimated state vector adding and subtracting

∑τ
i=1 µi(θ̂(t))(Aix(t) + Biu(t))

such that

ẋ(t) =

τ∑
i=1

µi(θ̂(t))(Aix(t) + Biu(t)) +

τ∑
i=1

(µi(θ(t))− µi(θ̂(t)))(Aix(t) + Biu(t)) (4.5)

Now, let us define :

∆A(t) =

τ∑
i=1

(µi(θ(t))− µi(θ̂(t)))Ai = ZAΨA(t)EA (4.6)

∆B(t) =

τ∑
i=1

(µi(θ(t))− µi(θ̂(t)))Bi = ZBΨB(t)EB (4.7)

where ZA =
[
A1,A2, . . .Aτ

]
, ΨA(t) =

δ1(t)In . . . 0
...

. . .
...

0 · · · δτ (t)In

, ZB =
[
B1,B2, . . .Bτ

]
, ΨB(t) =

δ1(t)Im . . . 0
...

. . .
...

0 · · · δτIm

,
EA =

[
In1 , In2 , . . . , Inτ

]T and EB =
[
Im1

, Im2
, . . . Imτ

]T .
δi(t) = µi(θ(t))− µi(θ̂(t)) for i = 1, 2, . . . τ and due to the convex property implies that −1 ≤ δi(t) ≤ 1. Therefore the
matrices ΨA(t) and ΨB(t) have the following property

ΨA(t)TΨA(t) ≤ I, ΨB(t)TΨB(t) ≤ I, (4.8)

which it is used to bound the time varying difference between the known and estimated scheduling functions. With the
previous conditions, the system (4.3) is represented as an uncertain system with scheduling functions depending on
time-varying parameter estimation :

ẋ(t) =

τ∑
i=1

µi(θ̂(t))((Ai + ∆A(t))x(t) + (Bi + ∆B(t))u(t)) (4.9a)

y(t) =Cx(t) (4.9b)
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For the sake of simplicity, the following notation is used
∑τ
i=1 µ̂i =

∑τ
i=1 µi(θ̂(t)).

Let T ∈ Rq0×n be a parameter matrix and considering the transformed error ε(t) = ζ(t)− Tx(t), we have its derivative
given by

ε̇(t) =

τ∑
i=1

µ̂i(Niε(t) + (NiT + FiC − TAi)x(t) +Hiv(t) + (Ji − TBi)u(t)− T∆A(t)x(t)− T∆B(t)u(t)) (4.10)

By using the definition of ε(t), equations (4.4b) and (4.4d) can be written as

v̇(t) =

τ∑
i=1

µ̂i(Siε(t) + (SiT +MiC)x(t) + Liv(t)) (4.11)

x̂(t) =Pε(t) + (PT +QC)x(t) (4.12)

If the following conditions are satisfied

NiT + FiC − TAi = 0 (4.13)
Ji − TBi = 0 (4.14)

SiT +MiC = 0 (4.15)
PT +QC = I (4.16)

the equations (4.10) and (4.11) are reduced to the following system

[
ε̇(t)
v̇(t)

]
︸ ︷︷ ︸

ϕ̇(t)

=

τ∑
i=1

µ̂i


[
Ni Hi

Si Li

]
︸ ︷︷ ︸

Ai

[
ε(t)
v(t)

]
︸ ︷︷ ︸

ϕ(t)

+

[
−T
0

]
︸ ︷︷ ︸

Ff

∆A(t)x(t) +

[
−T
0

]
∆B(t)u(t)

 (4.17)

and according to (4.12) the estimation error is written as

e(t) = x̂(t)− x(t) = Pε(t). (4.18)

Let us establish the parameter estimation error as θ̃(t) = θ̂(t)− θ(t). Using the θ̃(t) definition, the dynamics of this
error is given by

˙̃
θ(t) =

˙̂
θ(t)− θ̇(t)

=

τ∑
i=1

µi(θ̂(t))(Ko,i(Cx̂(t)− y(t)) + αiθ̂(t))− θ̇(t)

=

τ∑
i=1

µ̂i(Ko,iCPε(t) + αiθ̃(t) + αiθ(t)− θ̇(t)) (4.19)

The algebraic constraints described by (4.13)-(4.16) are satisfied through the parameterization detailed in Section 2.2.2.

There exist two approaches to joint state-parameter estimation. The first one is based on adaptive laws derived from
the observer stability analysis under some persistent excitation condition [Zhang, 2002, Cho and Rajamani, 1997]. The
second one, it considers an augmented system taking into account the dynamics of the parameter estimation error avoiding
the persistent excitation condition which is difficult to fulfill in some engineering applications [Bezzaoucha et al., 2013,
Srinivasarengan et al., 2018]. Therefore, in order to estimate simultaneously the states and unknown parameters, the
following augmented system is proposed by considering system (4.9), observer error dynamics (4.17) and parameter
estimation error dynamics (4.19) :

β̇(t) =

τ∑
i=1

µ̂i (Φi(t)β(t) + ξi(t)ω(t)) (4.20a)

eo(t) = P1β(t) (4.20b)
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where β(t) =

 x(t)
ϕ(t)

θ̃(t)

, ω(t) =

 u(t)
θ(t)

θ̇(t)

, e0(t) =

[
e(t)

θ̃(t)

]
, Φi(t) =

 Ai + ∆A(t) 0 0
Ff∆A(t) A1,i − YiA2 0

0
[
Ko,iCP 0

]
αi

,
P1 =

[
0 P 0
0 0 I

]
, ξi(t) =

 Bi + ∆B(t) 0 0
Ff∆B(t) 0 0

0 αi −I

, A1,i =

[
N1,i − Y1N2,i 0

0 0

]
, P =

[
P 0

]
, Yi =

[
Zi Hi

U1,i Li

]
and A2 =

[
N3 0
0 −I

]
.

4.2.2 Observer stability analysis

For ω 6= 0, we must satisfy sup
w∈L2−{0}

‖eo(t)‖22
‖ω(t)‖22

< Γ2. Based on the parameterization and the stability analysis, the following

Theorem gives the stability conditions which allow the determination of all observer matrices.

Theorem 4.1. System (4.20) is asymptotically stable with an attenuation level Γ, such that sup
ω∈L2−{0}

‖eo(t)‖22
‖ω(t)‖22

< Γ2 if

there exist parameter matrices Yi, X0 = XT
0 > 0, X1 =

[
X11 X12

XT
12 X13

]
> 0, X2 = XT

2 > 0 and diagonal matrices Γ2
1, Γ2

2,

Γ2
3 with appropriate dimensions. ϑ, λ1, λ2, αi and Ki which satisfy the optimization problem (4.21) under LMIs (4.23)

min
X0,X1,X2,λ1,λ2,Γ2

1,Γ
2
2,Γ

2
3

ϑ (4.21)

Γ2
s < ϑI, for s = 1, 2, 3 (4.22)



He{X0Ai} 0 0 X0Bi 0 0 0 0 λ1E
T
A X0ZA 0 X0ZB

0 Π1,i NT⊥
3 PTCTK

T
i 0 0 0 NT⊥

3 PT 0 0 Π2 0 Π3

0 KiCPN
T⊥T
3 αi + αTi 0 αi −X2 0 I 0 0 0 0

BTi X0 0 0 −Γ2
1 0 0 0 0 0 0 λ2E

T
B 0

0 0 αTi 0 −Γ2
2 0 0 0 0 0 0 0

0 0 −XT
2 0 0 −Γ2

3 0 0 0 0 0 0

0 PNT⊥T
3 0 0 0 0 −I 0 0 0 0 0

0 0 I 0 0 0 0 −I 0 0 0 0
λ1EA 0 0 0 0 0 0 0 −λ1I 0 0 0
ZTAX0 ΠT

2 0 0 0 0 0 0 0 −λ1I 0 0
0 0 0 λ2EB 0 0 0 0 0 0 −λ2I 0

ZTBX0 ΠT
3 0 0 0 0 0 0 0 0 0 −λ2I



< 0

(4.23)

where Π1,i = NT⊥
3 (X11N1,i − W1N2,i + NT

1,iX11 − NT
2,iW

T
1 )NT⊥T

3 , Π2 = NT⊥
3 W1T2ZA − NT⊥

3 X11T1ZA, Π3 =

NT⊥
3 W1T2ZB −NT⊥

3 X11T1ZB with Y1 = X−1
11 W1, αi = X−1

2 αi and Ko,i = X−1
2 Ki.

According to the elimination lemma [Skelton et al., 1997], the matrix Yi is parameterized as

Yi = X−1
1 (B+

r KiC+
l + Z − B+

r BrZClC+
l ) (4.24)

with

Ki =−R−1BTl ΛiCTr (CrΛiCTr )−1 + S1/2
i φ(CrΛiCTr )−1/2 (4.25)

Si =R−1 −R−1BTl [Λi − ΛiCTr (CTr ΛiCTr )−1CrΛi]BlR−1 (4.26)

Λi =(BrR−1BTl − Di)−1 > 0 (4.27)
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where φ is an arbitrary matrix such that ||φ|| < 1 and R > 0,

Di =



He{X0Ai} 0 0 X0Bi 0 0 0 0 λ1E
T
A X0ZA 0 X0ZB

0 He{X1A1,i} YT2,iX2 0 0 0 PT 0 0 X1FfZA 0 X1FfZB
0 X2Y2,i X2αi + αTi X2 0 X2αi −X2 0 I 0 0 0 0

BTi X0 0 0 −Γ2
1 0 0 0 0 0 0 λ2E

T
B 0

0 0 αTi X2 0 −Γ2
2 0 0 0 0 0 0 0

0 0 −XT
2 0 0 −Γ2

3 0 0 0 0 0 0
0 P 0 0 0 0 −I 0 0 0 0 0
0 0 I 0 0 0 0 −I 0 0 0 0

λ1EA 0 0 0 0 0 0 0 −λ1I 0 0 0
ZTAX0 ZTAF

T
f X1 0 0 0 0 0 0 0 −λ1I 0 0

0 0 0 λ2EB 0 0 0 0 0 0 −λ2I 0
ZTBX0 ZTBF

T
f X1 0 0 0 0 0 0 0 0 0 −λ2I



,

(4.28)

Y2,i =
[
Ko.iCP 0

]
, B =

[
0 −I 0 0 0 0 0 0 0 0 0 0

]T ,
C =

[
0 A2 0 0 0 0 0 0 0 0 0 0

]
. Matrices Cl, Cr, Bl and Br are any full rank matrices such that

C = ClCr and B = BlBr.

Proof. Consider the following Lyapunov function

V (β(t)) = β(t)TXβ(t) > 0 (4.29)

with X =

X0 0 0
0 X1 0
0 0 X2

 > 0, X1 =

[
X11 X12

XT
12 X13

]
. Its derivative along the trajectory of (4.20) is given by

V̇ (β(t)) =

τ∑
i=1

µ̂i(β
T (t)(ΦTi X +XΦi)β(t) + ωT (t)ξTi (t)Xβ(t) + βT (t)Xξi(t)ω(t)) (4.30)

Now let S = V̇ (β(t)) + eTo (t)eo(t)− Γ2ωT (t)ω(t), then we have

S =

τ∑
i=1

µ̂i

[
β(t)
ω(t)

]T [
ΦTi X +XΦi + PT1 P1 Xξi

(∗) −Γ2

]
︸ ︷︷ ︸

Θi

[
β(t)
ω(t)

]
(4.31)

with Γ2 = diag(Γ2
1,Γ

2
2,Γ

2
3).

We can deduce that if Θi < 0 then S < 0. It implies that

V̇ (β(t)) < Γ2ωT (t)ω(t)− eTo (t)eo(t) (4.32)

By integrating the two sides of this inequality we obtain∫ ∞
0

V̇ (β(t)dt <

∫ ∞
0

Γ2ωT (t)ω(t)dt−
∫ ∞

0

eTo (t)eo(t)dt (4.33)

or equivalently
V (∞)− V (0) < Γ2 ‖ω(t)‖22 − ‖eo(t)‖

2
2 (4.34)

For the zero initial condition, it leads to ‖eo(t)‖22
‖ω(t)‖22

< Γ2.
By applying the Schur complement to Θi < 0, we obtain the following inequalityΦTi X +XΦi Xξi PT1

(∗) −Γ2 0
P1 0 −I

 < 0 (4.35)
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which can also be written as

He{X0(Ai + ∆A(t))} ∆AT (t)FTf X1 0 X0(Bi + ∆B(t)) 0 0 0 0
(∗) He{X1(A1,i − YiA2)} YT2,iX2 X1Ff∆B(t) 0 0 PT 0
(∗) (∗) He{X2αi} 0 X2αi −X2 0 I
(∗) (∗) (∗) −Γ2

1 0 0 0 0
(∗) (∗) (∗) 0 −Γ2

2 0 0 0
(∗) (∗) (∗) 0 0 −Γ2

3 0 0
(∗) (∗) (∗) 0 0 0 −I 0
(∗) (∗) (∗) 0 0 0 0 −I


< 0 (4.36)

where Y2,i =
[
Ko,iCP 0

]
.

It is noted that there exist time varying terms in the previous inequality whereby based on Lemma 1.1, it will obtain
the upper bound of each one.
By using the definitions (4.6) and (4.7) the inequality (4.36) can be decomposed into the following terms

Qi + T (t) + T T (t) < 0 (4.37)

where

Qi =



He{X0Ai} 0 0 X0Bi 0 0 0 0
(∗) He{X1(A1,i − YiA2)} YT2,iX2 0 0 0 PT 0
(∗) (∗) He{X2αi} 0 X2αi −X2 0 I
(∗) (∗) (∗) −Γ2

1 0 0 0 0
(∗) (∗) (∗) 0 −Γ2

2 0 0 0
(∗) (∗) (∗) 0 0 −Γ2

3 0 0
(∗) (∗) (∗) 0 0 0 −I 0
(∗) (∗) (∗) 0 0 0 0 −I


and

T (t) =



X0ZA
X1FfZA

0
0
0
0
0
0


ΨA(t)



ETA
0
0
0
0
0
0
0



T

+



X0ZB
X1FfZB

0
0
0
0
0
0


ΨB(t)



0
0
0
ETB
0
0
0
0


.

Using Lemma 1.1 on T (t) + T T (t), there exists positive scalars λ1 and λ2 such that

T (t) + T T (t) ≤λ−1
1



X0ZA
X1FfZA

0
0
0
0
0
0





X0ZA
X1FfZA

0
0
0
0
0
0



T

+ λ1



ETA
0
0
0
0
0
0
0





ETA
0
0
0
0
0
0
0



T

+ λ−1
2



X0ZB
X1FfZB

0
0
0
0
0
0





X0ZB
X1FfZB

0
0
0
0
0
0



T

+

λ2



0
0
0
ETB
0
0
0
0





0
0
0
ETB
0
0
0
0



T

. (4.38)

The quadratic entries of the previous inequality can be handled by Schur’s complement. Consequently, the inequality
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(4.37) becomes 

He{X0Ai} 0 0 X0Bi
0 He{X1(A1,i − YiA2)} YT2.iX2 0
0 X2Y2,i X2αi + αTi X2 0

BTi X0 0 0 −Γ2
1

0 0 αTi X2 0
0 0 −XT

2 0
0 P 0 0
0 0 I 0

λ1EA 0 0 0
ZTAX0 ZTAF

T
f X1 0 0

0 0 0 λ2EB
ZTBX0 ZTBF

T
f X1 0 0

0 0 0 0 λ1E
T
A X0ZA 0 X0ZB

0 0 PT 0 0 X1FfZA 0 X1FfZB
αi −X2 0 I 0 0 0 0
0 0 0 0 0 0 λ2E

T
B 0

−Γ2
2 0 0 0 0 0 0 0

0 −Γ2
3 0 0 0 0 0 0

0 0 −I 0 0 0 0 0
0 0 0 −I 0 0 0 0
0 0 0 0 −λ1I 0 0 0
0 0 0 0 0 −λ1I 0 0
0 0 0 0 0 0 −λ2I 0
0 0 0 0 0 0 0 −λ2I



< 0 (4.39)

which can also be written as
BXiC + (BXiC)T + Di < 0 (4.40)

where B =
[

0 −I 0 0 0 0 0 0 0 0 0 0
]T ,

C =
[

0 A2 0 0 0 0 0 0 0 0 0 0
]
, Xi = X1Yi and Di is represented by (4.28).

According to the elimination lemma, the solvability conditions of equation (4.40) is reduced to :

CT⊥DiCT⊥T < 0 (4.41)

�

4.2.3 Illustrative example : DC motor
In order to illustrate the previous results, let us consider the physics-based model of a DC motor which considers
an electric equivalent circuit of the armature and the rotor free of charge. Its dynamics is described by the following
state-space representation

ẋ(t) =

[
−R(t)

L −KaL
kτ
J −KwJ

]
x(t) +

[
1
L
0

]
ve(t) (4.42a)

y(t) =Cx(t) (4.42b)

where x(t) =

[
i(t)
w(t)

]
. The parameter values are Ka = 0.01V/rad/s, L = 0.5H, kτ = 0.01N ·m/A, Kw = 0.1N ·m · s

and J = 0.01Kg ·m2. It is assuming that the electric resistance is an unmeasured time-varying parameter therefore,
the DC motor model can be considered as an LPV system where the scheduling function θ(t) = R(t) ∈ [0, 1.3]Ω. The
system (4.42a) is rewritten as

ẋ(t) =(A0 + θ(t)A)x(t) +Bve(t) (4.43a)
y(t) =Cx(t) (4.43b)
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Figure 4.1 – Uncertainty.

with

A0 =

[
0 −KaL
kτ
J −KwJ

]
, A =

[
− 1
L 0

0 0

]
, B =

[
1
L
0

]
, C =

[
1 0

]
The input variable ve = 6V . The initial condition for the system is x(0) = [0, 0]T , the initial condition for all the
observers is x̂(0) = [0, 0.7]T and the initial condition of the estimated parameter is θ̂(0) = 0.1. The observer gains are
obtained by solving the LMIs of the Theorem 4.1 using YALMIP toolbox using ’lmilab’ as solver. In order to evaluate
the performances of these observers an uncertainty ∆A(t) is added to the system matrices A0 + θ(t)A, where

∆A(t) = δ(t)

[
0.01 0

0 2

]
. (4.44)

The obtained results for the adaptive observer with GDO and PO structures are depicted in the Figures 4.1-4.4. In this
academic example, the measured state is x1(t), for the case of observation, it is important to estimate the dynamics
behavior of the unmeasured state described in Figure 4.5 which it is illustrated that the GDO has a less steady-state
error in comparison with the PO. Likewise, in Figure 4.6 is estimated the electric resistance of the DC motor. We can
observe that the estimation of this unknown parameter is acceptable in both observers.
In order to compare the observer performances, the integral of absolute error (IAE) is calculated in the Table 4.1. The
parameters Γ1, Γ2, Γ3 and λ1 described in Table 4.2 were chosen for the LMI feasibility problem.

Table 4.1 – Parameter index of each observer

GDO PO
x̂1 − x1 IAE 0.279 0.530
x̂2 − x2 IAE 0.196 3.01
θ̂ − θ IAE 0.622 0.775
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Figure 4.2 – Scheduling functions for adaptive PO.
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Figure 4.3 – Scheduling functions for adaptive observer
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Figure 4.4 – State x1 and its estimate.
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Figure 4.5 – State x2 and its estimate.
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Figure 4.6 – Unknown parameter and their estimations.
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Table 4.2 – Design parameters

Γ1 Γ2 Γ3 λ1

GDO 0.5 0.5 0.5 0.591
PO 0.5 0.5 0.5 0.561

4.3 Adaptive generalized dynamic unknown input observer

4.3.1 Problem statement

For this design, an unknown input is considered in the system (4.1), which becomes as follows :

ẋ(t) =A(θ(t))x(t) +B(θ(t))u(t) +Dd(t) (4.45a)
y(t) =Cx(t) (4.45b)

with A(θ(t)) = A0 +
∑nθ
j=1 θj(t)Aj , B(θ(t)) = B0 +

∑nθ
k=1 θj(t)Bj , θj(t) ∈ [θj , θj ] and nθ is the number of unknown

parameters. x(t) ∈ Rn is the state vector, u(t) ∈ Rm the input vector, y(t) ∈ Rp represents the measured output vector,
d(t) ∈ Rnd represents the unknown input. The description and properties of the unknown parameter vector θ(t) are
detailed in Section 4.2.1. Based on the conditions described in Section 4.2.1, the system (4.45) becomes

ẋ(t) =

τ∑
i=1

µi(θ̂(t))((Ai + ∆A(t))x(t) + (Bi + ∆B(t))u(t)) +Dd(t) (4.46a)

y(t) =Cx(t) (4.46b)

Now let us consider the following adaptive dynamic observer for system (4.46)

ζ̇(t) =

τ∑
i=1

µi(θ̂(t))(Niζ(t) +Hiv(t) + Fiy(t) + Jiu(t)) (4.47a)

v̇(t) =

τ∑
i=1

µi(θ̂(t))(Siζ(t) + Liv(t) +Miy(t)) (4.47b)

˙̂
θ(t) =

τ∑
i=1

µi(θ̂(t))(Ko,i(Cx̂(t)− y(t)) + αiθ̂(t)) (4.47c)

x̂(t) =Pζ(t) +Qy(t) (4.47d)

where ζ(t) ∈ Rq0 represents the state vector of the observer, v(t) ∈ Rq1 is an auxiliary vector, x̂(t) ∈ Rn is the estimate
of x(t), θ̂(t) ∈ Rnθ is the estimate of θ(t). The matrices Ni, Hi, Fi, Ji, Si, Li, Mi, Q, Ko,i and αi are unknown matrices
of appropriate dimensions.
Let T ∈ Rq0×n be a parameter matrix and considering the transformed error ε(t) = ζ(t)− Tx(t), we have its derivative
given by

ε̇(t) =

τ∑
i=1

µi(θ̂(t))(Niε(t)+(NiT+FiC−TAi)x(t)+Hiv(t)+(Ji−TBi)u(t)−T∆A(t)x(t)−T∆B(t)u(t)−TDd(t)) (4.48)

By using the definition of ε(t), equations (4.47b) and (4.47d) can be written as

v̇(t) =

τ∑
i=1

µi(θ̂(t))(Siε(t) + (SiT +MiC)x(t) + Liv(t)) (4.49)

x̂(t) =Pε(t) + (PT +QC)x(t) (4.50)
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If the following conditions are satisfied

NiT + FiC − TAi = 0 (4.51)
Ji − TBi = 0 (4.52)

TD = 0 (4.53)
SiT +MiC = 0 (4.54)
PT +QC = I (4.55)

the equations (4.48)and (4.49) reduce to the following system

[
ε̇(t)
v̇(t)

]
︸ ︷︷ ︸

ϕ̇(t)

=

τ∑
i=1

µi(θ̂(t))


[
Ni Hi

Si Li

]
︸ ︷︷ ︸

Ai

[
ε(t)
v(t)

]
︸ ︷︷ ︸

ϕ(t)

+

[
−T
0

]
︸ ︷︷ ︸

Ff

∆A(t)x(t) +

[
−T
0

]
∆B(t)u(t)

 (4.56)

and the estimation error is written as
e(t) = x̂(t)− x(t) = Pε(t). (4.57)

Let us define the parameter estimation error as θ̃(t) = θ̂(t)− θ(t), its dynamics is given by

˙̃
θ(t) =

τ∑
i=1

µi(θ̂(t))(KiCPε(t) + αiθ̃(t) + αiθ(t)− θ̇(t)) (4.58)

The algebraic conditions (4.51)-(4.55) are satisfied using the parameterization described in Section 3.3 since both
observer designs share the same algebraic constraints.

Assumption 4.1. It assumes that rank
[
E
C

]
D =rank CD or, since

[
E
C

]
is of full column rank, rank D =rank CD.

In order to deal with the uncertain term, by considering system (4.46), observer error dynamics (4.56) and parameter
estimation error dynamics (4.58), we obtain the following augmented system

 ẋ(t)
ϕ̇(t)
˙̃
θ(t)


︸ ︷︷ ︸

β̇(t)

=

τ∑
i=1

µi(θ̂(t))


 Ai + ∆A(t) 0 0

Ff∆A(t) A1,i − YiA2 0
0

[
Ko,iCP 0

]
αi


︸ ︷︷ ︸

Φi

 x(t)
ϕ(t)

θ̃


︸ ︷︷ ︸

β(t)

+

 Bi + ∆B(t) 0 0 D
Ff∆B(t) 0 0 0

0 αi −I 0


︸ ︷︷ ︸

ξi(t)

ω(t)


(4.59a)

eo(t) =

[
0 P 0
0 0 I

]
︸ ︷︷ ︸

P1

β(t) (4.59b)

where P =
[
Iq0 0

]
, Ff =

[
−T
0

]
, ω(t) =


u(t)
θ(t)

θ̇(t)
d(t)

, A1,i =

[
N1,i 0

0 0

]
, Yi =

[
Zi Hi

U1,i Li

]
and A2 =

[
N3 0
0 −I

]
.

4.3.2 Stability conditions

The following Theorem shows sufficient stability conditions of the problem of the observer design guarantying the
convergence of the system β̇(t) towards zero when ω(t) is null. For ω 6= 0 we must minimize the effect of ω(t) on eo(t)
such that sup

w∈L2−{0}

‖eo(t)‖22
‖ω(t)‖22

< Γ2.
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Theorem 4.2. Under assumption 4.1, there exists the parameter matrix Yi, X0 = XT
0 > 0, X1 =

[
X11 X12

XT
12 X13

]
> 0,

X2 = XT
2 > 0 and diagonal matrices Γ2

1, Γ2
2, Γ2

3, Γ2
4 with appropriate dimensions. ϑ, λ1, λ2, αi and Ki which satisfy

the optimization problem (4.60) under LMIs (4.62)

min
X0,X1,X2,λ1,λ2,Γ2

1,Γ
2
2,Γ

2
3,Γ

2
4

ϑ (4.60)

Γ2
k1 < ϑI, for k1 = 1, 2, 3, 4 (4.61)



He{X0Ai} 0 0 X0Bi 0 0 X0D 0 0 λ1E
T
A X0ZA 0 X0ZB

0 Π1,i NT⊥
3 PTCTK

T
i 0 0 0 0 NT⊥

3 PT 0 0 Π2 0 Π3

0 KiCPN
T⊥T
3 αi + αTi 0 αi −X2 0 0 I 0 0 0 0

BTi X0 0 0 −Γ2
1 0 0 0 0 0 0 0 λ2E

T
B 0

0 0 αTi 0 −Γ2
2 0 0 0 0 0 0 0 0

0 0 −XT
2 0 0 −Γ2

3 0 0 0 0 0 0 0
DTX0 0 0 0 0 0 −Γ2

4 0 0 0 0 0 0

0 PNT⊥T
3 0 0 0 0 0 −I 0 0 0 0 0

0 0 I 0 0 0 0 0 −I 0 0 0 0
λ1EA 0 0 0 0 0 0 0 0 −λ1I 0 0 0
ZTAX0 ΠT

2 0 0 0 0 0 0 0 0 −λ1I 0 0
0 0 0 λ2EB 0 0 0 0 0 0 0 −λ2I 0

ZTBX0 ΠT
3 0 0 0 0 0 0 0 0 0 0 −λ2I



< 0

(4.62)

with Π1,i = NT⊥
3 (X11N1,i + NT

1,iX11)NT⊥T
3 , with αi = X−1

2 αi, Π2 = −NT⊥
3 X11TA, Π3 = −NT⊥

3 X11TB and
Ki = X−1

2 Ki, then (4.59) is asymptotically stable with an H∞ disturbance attenuation level Γ.
According to the elimination lemma, the matrix Yi is parameterized as

Yi = X−1
1 (B+

r KiC+
l + Z − B+

r BrZClC+
l ) (4.63)

with

Ki =R−1BTl ΛiCTr (CrΛiCTr )−1 + S1/2
i φ(CrΛiCTr )−1/2 (4.64)

Si =R−1 −R−1BTl [Λi − ΛiCTr (CTr ΛiCTr )−1CrΛi]BlR−1 (4.65)

Λi =(BrR−1BTl −Di)−1 > 0 (4.66)

where

Di =

He{X0Ai} 0 0 X0Bi 0 0 X0D 0 0 λ1E
T
A X0ZA 0 X0ZB

0 He{X1A1,i} YT2,iX2 0 0 0 0 PT 0 0 X1FfZA 0 X1FfZB
0 X2Y2,i X2αi + αTi X2 0 X2αi −X2 0 0 I 0 0 0 0

BTi X0 0 0 −Γ2
1 0 0 0 0 0 0 0 λ2E

T
B 0

0 0 αTi X2 0 −Γ2
2 0 0 0 0 0 0 0 0

0 0 −XT
2 0 0 −Γ2

3 0 0 0 0 0 0 0
DTX0 0 0 0 0 0 −Γ2

4 0 0 0 0 0 0
0 P 0 0 0 0 0 −I 0 0 0 0 0
0 0 I 0 0 0 0 0 −I 0 0 0 0

λ1EA 0 0 0 0 0 0 0 0 −λ1I 0 0 0
ZTAX0 ZTAF

T
f X1 0 0 0 0 0 0 0 0 −λ1I 0 0

0 0 0 λ2EB 0 0 0 0 0 0 0 −λ2I 0
ZTBX0 ZTBF

T
f X1 0 0 0 0 0 0 0 0 0 0 −λ2I


(4.67)

Y2,i =
[
Ko.iCP 0

]
, B =

[
0 −I 0 0 0 0 0 0 0 0 0 0 0

]T ,
C =

[
0 A2 0 0 0 0 0 0 0 0 0 0 0

]
, φ is an arbitrary matrix such that ||φ|| < 1 and R > 0. Matrices

Cl, Cr, Bl and Br are any full rank matrices such that C = ClCr and B = BlBr.
The proof of this theorem is similar to Theorem 4.1.
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Figure 4.7 – Input.
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Figure 4.8 – Actuator fault.

4.3.3 Numerical example
Let us consider de linear time varying system defined by :

ẋ(t) =(A0 + θ(t)A)x(t) +B(u(t) + d(t)) (4.68a)
y(t) =Cx(t) (4.68b)

A0 =

 −2 1.4 0.3
0.2 −3 0
0.1 0 −1

 , A =

 0 0 0
0 0 0
0 0 −1.1

 , B =

 1
0.5
0

 C =

[
1 0 0
0 0 1

]
In this example, an actuator fault d(t) added to the system. The time varying parameter is θ(t) ∈ [−1, 1] . The initial
condition for the system is x(0) = [2, 1, 2.5]T , the initial condition for the observer is x̂(0) = [2, 1.4, 2.5]T and the initial
condition of the estimated parameter is θ̂(0) = 0.2.

The observer gains are obtained by solving the LMIs of the Theorem 4.2 using YALMIP toolbox. The obtained results
are depicted in Figures 4.7-4.11. Figure 4.9 illustrates the state estimation against unknown input, it can observe that
the unmeasured state has an acceptable estimation despite the actuator fault which is illustrated in Figure 4.8. Figure
4.10 shows the estimation of the real dynamics behavior of θ(t) and its estimation θ̂(t). It can be noted that there exists
an acceptable estimation of this unknown parameter despite the actuator fault which occurs in the steady-state of the
simulation as long as the Assumption 4.1 holds.

4.4 Conclusions
In this chapter, we consider the joint estimation of states and parameters for linear parameter varying (LPV) systems.
Its conditions of existence and stability are given in terms of a set of LMIs. On the other hand, it has addressed rank
conditions to decouple the estimation and the unknown input. This fact is satisfied using the parameterization used
in the previous GDO designs. In order to illustrate the efficiency of the proposed approach, academic examples were
presented.
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Figure 4.9 – Real and estimated state variables
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Figure 4.11 – Scheduling functions
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Chapter 5

Fault tolerant control using reference model
for LPV systems
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5.1 Introduction
In the previous chapters, results related to generalized dynamic unknown input observers, adaptive observers for LPV
with measured and unmeasured scheduling variables were presented. In this chapter, some techniques for fault estimation
and model reference control for LPV systems are studied. Afterward, based on the obtained results, an active FTC will
be proposed with the purpose to detect actuator faults which produce measurement errors or changes in the nominal
operation. A model-based fault diagnosis unit is proposed to monitor, locate, and identify the actuator faults. The
FTC strategy will use the fault and parameter variation information to satisfy the control objectives with the minimum
performance degradation after the fault occurrence.
The following sections describe in detail the FTC system used in this research work.

5.2 Actuator fault tolerant control for LPV systems
The active FTC scheme used in this section is illustrated in Figure 5.1.

5.2.1 Problem statement
Consider the following linear parameter varying (LPV) system subject to actuator faults

ẋ(t) =A(ρ(t))x(t) +Buc(t) +Gf(t) (5.1a)
y(t) =Cx(t) (5.1b)
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Figure 5.1 – Fault tolerant control scheme.

where x(t) ∈ Rn is the state vector, uc(t) ∈ Rm the control input vector, f(t) ∈ Rnf is the fault vector, y(t) ∈ Rp is the
output vector and ρ(t) ∈ Rj is a varying parameter vector.
It is assumed that each component ρi(t), i ∈ {1, 2, . . . , j} of the time-varying parameter vector ρ(t) is bounded,
measurable and their values remain into a hyper-rectangle such that

ρ(t) ∈ P =
{
ρi(t)

∣∣∣ρi ≤ ρi(t) ≤ ρi} , ∀i ∈ {1, 2, . . . , j}, ∀t ≥ 0 (5.2)

Based on the affine parameter dependence (5.2), the matrices A(ρ(t)) of the LPV system (5.1) can be represented by
the following form :

A(ρ(t)) = A0 +

j∑
i=1

ρi(t)Ai (5.3)

From this characterization, system (5.1) can be transformed into a convex combination where the vertices Si of the
polytope are the images of the vertices of P such that Si = [Ai, B, G, C], ∀i ∈ {1, 2, . . . , τ} where τ = 2j . The polytopic
coordinates are denoted by µ(ρ(t)) and they vary into the convex set Λ where

Λ =

{
µ(ρ(t)) ∈ Rτ , µ(ρ(t)) = [µ1(ρ(t)), µ2(ρ(t)), . . . , µτ (ρ(t))]T , µi(ρ(t)) ≥ 0,

τ∑
i=1

µi(ρ(t)) = 1

}
(5.4)

The polytopic LPV system with the time-varying parameter vector µi(ρ(t)) ∈ Λ is described by

ẋ(t) =

τ∑
i=1

µi(ρ(t))Aix(t) +Buc(t) +Gf(t) (5.5a)

y(t) = Cx(t) (5.5b)

where matrices Ai ∈ Rn×n, B ∈ Rn×m, G ∈ Rn×nf and C ∈ Rp×n are constant known matrices.
Now, let us consider the GDO for system (5.5) in the following form

ζ̇(t) =

τ∑
i=1

µi(ρ(t))(Ni(ζ(t) + TGf̂(t)) +Hiv(t) + Fiy(t) + TGf̂(t) + Juc(t)) (5.6a)

v̇(t) =

τ∑
i=1

µi(ρ(t))(Si(ζ(t) + TGf̂(t)) + Liv(t) +Miy(t)) (5.6b)

x̂(t) = P (ζ(t) + TGf̂(t)) +Qy(t) (5.6c)

˙̂
f(t) =

τ∑
i=1

µi(ρ(t))Ko,i(Cx̂− y(t)) (5.6d)

where ζ(t) ∈ Rq0 represents the state vector of the observer, v(t) ∈ Rq1 is an auxiliary vector, x̂(t) is the estimate of
x(t) and f̂(t) ∈ Rnf is the estimate of f(t). Matrices Ni, Fi, J , Hi, Li, Si, Mi, P , Q, T and Ko,i are unknown and of
appropriate dimensions.
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For the sake of simplicity, the following notation is used

Ψ(ρ) =

τ∑
i=1

µi(ρ(t))Ψi, ∀i ∈ {1, . . . , τ}

Thus, system (5.6) can be rewritten as follows :

ζ̇(t) = N(ρ)(ζ(t) + TGf̂(t)) +H(ρ)v(t) + F (ρ)y(t) + TGf̂(t) + Juc(t) (5.7a)

v̇(t) = S(ρ)(ζ(t) + TGf̂(t)) + L(ρ)v(t) +M(ρ)y(t) (5.7b)

x̂(t) = P (ζ(t) + TGf̂(t)) +Qy(t) (5.7c)
˙̂
f(t) = Ko(ρ)(Cx̂− y(t)) (5.7d)

Let T ∈ Rq0×n be a parameter matrix and considering the transformed error ε(t) = ζ(t) − Tx(t) + TGf(t), f̃(t) =

f̂(t)− f(t) and that ḟ(t) = 0, we have the derivative of ε(t) given by

ε̇(t) = N(ρ)ε(t) + (N(ρ)T + F (ρ)C − TA(ρ))x(t) +H(ρ)v(t) + (J − TB)uc(t) + (N(ρ)TG+ TG)f̃(t) (5.8)

By using the definition of ε(t), equations (5.6b) and (5.6c) can be written as

v̇(t) =S(ρ)ε(t) + (S(ρ)T +M(ρ)C)x(t) + L(ρ)v(t) + S(ρ)TGf̃(t) (5.9)

x̂(t) =Pε(t) + (PT +QC)x(t) + PTGf̃(t) (5.10)

If the following conditions are satisfied
(a) N(ρ)T + F (ρ)C − TA(ρ) = 0
(b) J − TB = 0
(c) S(ρ)T +M(ρ)C = 0
(d) PT +QC = I

the equations (5.8)-(5.10) are reduced to the following system[
ε̇(t)
v̇(t)

]
=

[
N(ρ) H(ρ)
S(ρ) L(ρ)

] [
ε(t)
v(t)

]
+

[
N(ρ)TG+ TG

S(ρ)TG

]
f̃(t) (5.11)

and the state estimation error is written as

e(t) = x̂(t)− x(t) = Pε(t) + PTGf̃(t). (5.12)

In this case, if f̃(t) = 0 and the system (5.11) is asymptotically stable then lim
t→∞

e(t) = 0.

On the other hand, since ḟ(t) = 0 and the condition (d) is satisfied so, the derivative of f̃(t) is given by
˙̃
f(t) = Ko(ρ)CPε(t) +Ko(ρ)CPTGf̃(t) (5.13)

Fault tolerant tracking controller

The FT tracking controller design is based on the information provided by the adaptive observer (5.6). It consists in
tracking a given trajectory xd(t) corresponding to a desired input ud(t). The following equation describes the dynamics
of xd(t)

ẋd(t) = A(ρ)xd(t) +Bud(t). (5.14)
Consequently, the FTC law is given by

uc(t) = −Kc(ρ)(x̂(t)− xd(t))−B+Gf̂(t) + ud(t) (5.15)

such that the system x(t) affected by actuator fault converges towards the healthy state xd(t) even when the faults
appear on the system.

Assumption 5.1. We assume that rankB = rank
[
B G

]
The tracking error is described by x̃(t) = x(t)− xd(t) which its dynamics is

˙̃x(t) = (A(ρ)−BKc(ρ))x̃(t)−BKc(ρ)Pε(t)− (BKc(ρ)PTG+G)f̃(t) (5.16)

Remark 5.1. Under Assumption 5.1, the equation (5.16) is satisfied if there exists a matrix B+ such that

(In −BB+)G = 0. (5.17)
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5.2.2 Observer parameterization
In this section, we will give the parameterization of the algebraic constraints (a)-(d). Let E ∈ Rq0×n be any full row

rank matrix such that the matrix Σ =

[
E
C

]
is of full column rank and let Ω =

[
In
C

]
. Conditions (c) and (d) can be

written as : [
S(ρ) M(ρ)
P Q

] [
T
C

]
=

[
0
In

]
(5.18)

The necessary and sufficient condition for (5.18) to be consistent is that R
([

0
In

])
⊂ R

([
T
C

])
or equivalently

rank
[
T
C

]
= rank


T
C
0
In

 = n (5.19)

On the other hand, since rank
[
T
C

]
= n, there always exist matrices T ∈ Rq0×n and K ∈ Rq0×p such that :

T +KC = E (5.20)

which can be written as : [
T K

]
Ω = E (5.21)

and since rank(Ω)=rank
[

Ω
E

]
. The general solution to equation (5.21) is given by :[

T K
]

= EΩ+ − Y1(In+p − ΩΩ+) (5.22)

From equation equation (5.22) we deduce that

T = T1 − Y1T2 (5.23)
K = K1 − Y1K2 (5.24)

where T1 = EΩ+

[
In
0

]
, T2 = (In+p − ΩΩ+)

[
In
0

]
, K1 = EΩ+

[
0
Ip

]
and K2 = (In+p − ΩΩ+)

[
0
Ip

]
.

By inserting the value of matrix T given by equation (5.20) into condition (a) we obtain

N(ρ)E + K̃(ρ)C = TA(ρ) (5.25)

where K̃(ρ) = F (ρ)−N(ρ)K and equation (5.25) can be written as :[
N(ρ) K̃(ρ)

]
Σ = TA(ρ) (5.26)

Since matrix Σ is of full column rank, the general solution to (5.26) is given by :[
N(ρ) K̃(ρ)

]
= TA(ρ)Σ+ − Z(ρ)(In+p − ΣΣ+) (5.27)

and by inserting the value of matrix T given in (5.23) into equation (5.27) we obtain

N(ρ) = N1(ρ)− Y1N2(ρ)− Z(ρ)N3 (5.28)
K̃(ρ) = K̃1(ρ)− Y1K̃2(ρ)− Z(ρ)K̃3 (5.29)

whereN1(ρ) = T1A(ρ)Σ+

[
Iq0
0

]
,N2(ρ) = T2A(ρ)Σ+

[
Iq0
0

]
,N3 = (Iq0+p−ΣΣ+)

[
Iq0
0

]
, K̃1(ρ) = T1A(ρ)Σ+

[
0
Ip

]
,

K̃2(ρ) = T2A(ρ)Σ+

[
0
Ip

]
, K̃3 = (Iqo+p − ΣΣ+)

[
0
Ip

]
and Z(ρ) is an arbitrary matrix of appropriate dimension. As

matrices N(ρ), T , K, K̃(ρ) have structure known, we can deduce the matrix F (ρ) as :

F (ρ) = F1(ρ)− Y1F2(ρ)− Z(ρ)F3 (5.30)

84



5.2. Actuator fault tolerant control for LPV systems

where F1(ρ) = T1A(ρ)Σ+

[
K
Ip

]
, F2(ρ) = T2A(ρ)Σ+

[
K
Ip

]
, F3 = (In+p − ΣΣ+)

[
K
Ip

]
.

On the other hand from equation (5.20) we obtain :[
T
C

]
=

[
Iq0 −K
0 Ip

]
Σ (5.31)

inserting equation (5.31) into the equation (5.18) we get :[
S(ρ) M(ρ)
P Q

] [
Iq0 −K
0 Ip

]
Σ =

[
0
In

]
(5.32)

Since matrix Σ is of full column rank and [
Iq0 −K
0 Ip

]−1

=

[
Iqo K
0 Ip

]
the general solution to equation (5.32) is given by :[

S(ρ) M(ρ)
P Q

]
=

([
0
In

]
Σ+ − U(ρ)(Iq0+p − ΣΣ+)

)[
Iq0 K
0 Ip

]
(5.33)

where U(ρ) is an arbitrary matrix of appropriate dimension.
Then matrices S(ρ), M(ρ), P and Q can be determined as :

S(ρ) = −U1(ρ)N3 (5.34)
M(ρ) = −U1(ρ)F3 (5.35)

P = Σ+

[
Iq0
0

]
− U2(ρ)N3 (5.36)

Q = Σ+

[
K
Ip

]
− U2(ρ)F3 (5.37)

where U1(ρ) =
[
I 0

]
U(ρ), U2(ρ) =

[
0 I

]
U(ρ). The estimation error (5.12) shows that e(t)→ 0 when ε(t)→ 0. i.e.,

the error e(t) is independent of the matrix P . Then we can suppose that U2(ρ) = 0 and obtain P = Σ+

[
Iq0
0

]
and

Q = Σ+

[
K
Ip

]
.

By inserting the previous parameterization into the observer error dynamics (5.11), there exists a bilinearity in the
product of matrices N(ρ)TG. In order to avoid this bilinearity, an adaptation in the parameterization is carried out. Let
T 2 = T2G and Y1 = Y (In+p − T 2T

+

2 ), where Y is an arbitrary matrix of appropriate dimension, so that, the product of
matrices N(ρ)TG becomes

N(ρ)TG = N1(ρ)T1G− YN2(ρ)T1G− Z(ρ)N3T1G, (5.38)

where the fact of T 2T
+

2 T 2 = T 2 is considered. In the same way, the following expressions are obtained for matrices T ,
K, N(ρ) and F (ρ)

T =T1 − Y T2, (5.39)
K =K1 − YK2, (5.40)

N(ρ) =N1(ρ)− YN2(ρ)− Z(ρ)N3, (5.41)
F (ρ) =F1(ρ)− Y F2(ρ)− Z(ρ)F3, (5.42)

where T2 = (In+p − T 2T
+

2 )T2, K2 = (In+p − T 2T 2)K2, N2(ρ) = (In+p − T 2T
+

2 )N2(ρ), F2(ρ) = (In+p − T 2T
+

2 )F2(ρ).
Using the previous considerations, the observer error dynamics (5.11) can be written as

ϕ̇(t) = (A(ρ)− Y(ρ)A2)ϕ(t) + (F(ρ)− Y(ρ)F2)f̃(t) (5.43)
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where A(ρ) =

[
N1(ρ)− YN2(ρ) 0

0 0

]
, A2 =

[
N3 0
0 0

]
, Y(ρ) =

[
Z(ρ) H(ρ)
U1(ρ) L(ρ)

]
, F(ρ) =

[
N1(ρ)T1G+ T1G− YN2(ρ)T1G

0

]
,

F2 =

[
N3T1G

0

]
and ϕ(t) =

[
ε(t)
v(t)

]
.

By putting together the observer error dynamics (5.43), the fault estimation error dynamics (5.13) and state tracking
error dynamics (5.16) we get

β̇(t) = Φ(ρ)β(t) (5.44)

where

Φ(ρ) =

[
A(ρ)−BKc(ρ)

[
−BKc(ρ)P 0

]
−BKc(ρ)PTG−G

0 A(ρ)− Y(ρ)A2 F(ρ)− Y(ρ)F2

0
[
Ko(ρ)CP 0

]
Ko(ρ)CPTG

]
, and β(t) =

x̃(t)
ϕ(t)

f̃(t)

 .
A solution to the fault tolerant control problem is given by finding matrices Y(ρ), Y , Ko(ρ) and Kc(ρ) such that the
system (5.44) is asymptotically stable.

5.2.3 Fault tolerant control design
In this section, an observer-based fault tolerant control is presented. This method is obtained from the determination of
the matrices Y(ρ), Kc(ρ) and Ko(ρ) through the stability analysis of the system (5.44). The stability conditions are
established in the following theorem.

Theorem 5.1. Under Assumption 5.1, there exist parameter matrices Kc,i, Yi, Ko,i, and Y such that the system (5.44)

is asymptotically stable if there exist matrices X1 = XT
1 > 0, X2 =

[
X21 X21

X21 X22

]
> 0, with X21 = XT

21, and a matrix

X3 > 0 such that the following LMIs are satisfied

CT⊥


He{AiXx −BMi} −BKc,iP 0 −BKc,iPT1G−G

(∗) He{X21N1.i −W1N2,i} Π1 Π2

(∗) (∗) 0 X21(N1,iT1G+ T1G)−W1N2,iT1G
(∗) (∗) (∗) Π3

 CT⊥T < 0 (5.45)

where Π1 = NT
1,iX21 −N T

2,iW
T
1 , Π2 = X21(N1,iT1G+ T1G)−W1N2,iT1G+ PTCTKT

o,iX3,
Π3 = X3Ko,iCPTG+ (Ko,iCPTG)TX3 and[

He{AiXx −BMi} −BKc,iPT1G−G
(∗) Π3

]
< 0. (5.46)

In this case Y = X−1
21 W1, X1 = X−1

x and Kc,i = MiX1. Matrices Yi are parameterized as

Yi = X−1
2 (B+

r KiC+
l + Z − B+

r BrZClC+
l ) (5.47)

with

Ki =R−1BTl ϑiCTr (CrϑiCTr )−1 + S1/2
i φ(CrϑiCTr )−1/2 (5.48)

Si =R−1 −R−1BTl [ϑi − ϑiCTr (CTr ϑiCTr )−1Crϑi]BlR−1 (5.49)

ϑi =(BrR−1BTl −Di)−1 > 0 (5.50)

where

Di =


He{AiXx −BMi} −BKc,iP 0 −BKc,iPT1G−G

(∗) He{X21N1.i −W1N2,i} Π1 Π2

(∗) (∗) 0 X21(N1,iT1G+ T1G)−W1N2,iT1G
(∗) (∗) (∗) Π3

 (5.51)

B =

 0
−I
0

, C =
[
0 A2 F2

]
, CT⊥ =

In 0

0

[
AT2
BT2

]⊥ and B⊥ =

[
I 0 0
0 0 I

]
, φ is an arbitrary matrix such that ||φ||2 < 1

and R > 0. Matrices Cl, Cr, Bl and Br are any full rank matrices such that C = ClCr and B = BlBr.
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Proof. Consider the Lyapunov function V (β(t)) = β(t)TXβ(t) with a positive definite symmetric matrix X =X1 0 0
0 X2 0
0 0 X3

. Then its derivative is given by

V̇ (β(t)) = βT (t)(ΦT (ρ)X +XΦ(ρ))β(t) (5.52)

The asymptotic stability of system (5.44) is guaranteed if and only if V̇ (β(t)) < 0. By inserting the form of matrices
Φ(ρ) and X, the following inequality is obtainedHe{X1(A(ρ)−BKc(ρ))} X1

[
−BKc(ρ)P 0

]
−X1(BKc(ρ)PTG+G)

(∗) He{X2(A(ρ)− Y(ρ)A2)} X2(F(ρ)− Y(ρ)F2) +
[
Ko(ρ)CP 0

]T
X3

(∗) (∗) X3Ko(ρ)CPTG+ (Ko(ρ)CPTG)TX3

 < 0 (5.53)

which is equivalent toHe{X1(Ai −BKc,i)} X1

[
−BKc,iP 0

]
−X1(BKc,iPTG+G)

(∗) He{X2(Ai − YiA2)} X2(Fi − YiF2) +
[
Ko,iCP 0

]T
X3

(∗) (∗) X3Ko,iCPTG+ (Ko,iCPTG)TX3

 < 0 (5.54)

Pre- and post-multiplying (5.54) by
[
X−1

1 0
0 I

]
and

[
X−T1 0

0 I

]
we obtain the following inequality

He{(Ai −BKc,i)X
−1
1 }

[
−BKc,iP 0

]
−BKc,iPTG−G

(∗) He{X2(Ai − YiA2)} X2(Fi − YiF2) +
[
Ko,iCP 0

]T
X3

(∗) (∗) X3Ko,iCPTG+ (Ko,iCPTG)TX3

 < 0 (5.55)

which can be written as :
BX iC + (BX iC)T +Di < 0 (5.56)

where B =

 0
−I
0

, C =
[
0 A2 F2

]
, Xi = X2Yi and

Di =


He{AiXx −BMi} −BKc,iP 0 −BKc,iPT1G−G

(∗) He{X21N1.i −W1N2,i} Π1 Π2

(∗) (∗) 0 X21(N1,iT1G+ T1G)−W1N2,iT1G
(∗) (∗) (∗) Π3

 ,
where Y = X−1

21 W1, X1 = X−1
x and Kc,i = MiX1. The solvability conditions of inequality (5.56) are

CT⊥DiCT⊥T < 0 (5.57)

B⊥DiB⊥T < 0 (5.58)

with CT⊥ =

In 0

0

[
AT2
BT2

]⊥ and B⊥ =

[
I 0 0
0 0 I

]
. Inequalities (5.57) and (5.58) correspond to (5.45) and (5.46),

respectively. If condition (5.56) is satisfies, then the parameter matrix Yi is obtained from (5.47). �

5.2.4 Application to vehicle lateral dynamics
In order to illustrate the previous results, let us consider the single-track vehicle model that is a simplified model for
the vehicle lateral motion [Rajamani, 2012] represented in the state space form[

v̇y
ψ̈(t)

]
=

[
−Cf+Cr

mvx
−afCf−arCrmvx

− vx
−afCf−arCrIzvx

−a
2
fCf+a2rCr
Izvx

] [
vy(t)

ψ̇(t)

]
+

[
Cf
m

afCf
Iz

]
δf (t) +

[
0
1
Iz

]
Mz(t) (5.59a)

y(t) =
[
0 1

] [vy(t)

ψ̇(t)

]
(5.59b)
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where vy(t) and ψ̇(t) denote the lateral velocity an the yaw rate, respectively. δf (t) represents the steering angle which
is considered as a measured input. The controlled input is the yaw moment Mz(t) generated by a differential braking on
the rear wheels. The parameters are summarized in Table 5.1.

Table 5.1 – Model parameters

Variable Description Value
Cf front cornering stiffness 61000 N/rad
m total mass 1700 kg
vx longitudinal velocity 15 m/s
af distance from gravity center to front axle 1.1 m
ar distance from gravity center to rear axle 1.44 m
Iz vehicle yaw moment inertia 2454 Kg.m2

For this example, it supposes that rear cornering stiffness Cr is varying over time in the interval Cr ≤ Cr(t) ≤ Cr N/rad,
this variation is known. Consequently, the system (5.59) can be represented by the following LPV system considering
additive actuator fault fa(t) :

ẋ(t) =

[
−Cf+Cr(t)

mvx
−afCf−arCr(t)

mvx
− vx

−afCf−arCr(t)
Izvx

−a
2
fCf+a2rCr(t)

Izvx

]
x(t) +

[
Cf
m

afCf
Iz

]
δf (t) +

[
0
1
Iz

]
(uc(t) + fa(t)) (5.60a)

y(t) =Cx(t) (5.60b)

where x(t) =

[
vy(t)

ψ̇(t)

]
and C =

[
0 1

]
. The scheduling variable is Cr(t) and the scheduling functions are defined as

follow :

µ1(t) =
Cr − Cr(t)
Cr − Cr

, µ2(t) =
Cr(t)− Cr
Cr − Cr

The fault-free reference model is

ẋd(t) =

[
−Cf+Cr(t)

mvx
−afCf−arCr(t)

mvx
− vx

−afCf−arCr(t)
Izvx

−a
2
fCf+a2rCr(t)

Izvx

]
xd(t) +

[
Cf
m

afCf
Iz

]
δf (t) (5.61)

The solution of LMIs constraints (5.45)-(5.46) of the Theorem 5.1 and choosing the matrix E =

[
1 0
0 1

]
× 104,

L = 14×3 × 0.1 and R = I4 × 0.01 leads to the following FTC gains.

N1 =

[
−4.156 −13.9436
−0.031 −2.2231

]
, N2 =

[
−4.352 −13.735
0.066 −2.288

]
, H1 =

[
0.301 −0.054
−0.106 0.305

]
, H2 =

[
0.299 −0.065
−0.097 0.306

]
,

F1 =

[
−8.118
−1.158

]
× 104, F2 =

[
−7.940
−1.266

]
× 104, J =

[
3.58 0
1.367 0

]
× 105, S1 =

[
0 −0.151
0 −0.012

]
,

S2 =

[
0 −0.1421
0 −0.022

]
, L1 =

[
−0.132 −0.006
−0.001 −0.125

]
, L2 =

[
−0.132 −0.001
−0.003 −0.125

]
, M1 =

[
758.739
59.889

]
, M2 =

[
714.347
112.156

]
Ko,1 = Ko,2 = −4000, Kc,1 =

[
−4.705 −1.873

]
× 104, Kc,2 =

[
−4.551 −1.9227

]
× 104

P =

[
1 0
0 1

]
× 10−4, and Q =

[
0

0.5

]
.

The obtained results are depicted in Figures 5.2-5.6. Figure 5.2 represents the steering angle variation and rear cornering
stiffness variation. We suppose that this parameter is varying due to environmental conditions. For example, the change
in the tire-floor friction coefficient caused by ice or snow on a winter road [Bennani et al., 2019].
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Figure 5.2 – Sterring angle and rear cornering stiffness variation.

Figures 5.3-5.4 depicts the estimation of the state variables. Likewise, it can be noted that the trajectory tracking is
acceptable despite the actuator fault. Tha control action is illustrated in Figure 5.5 which represents the yaw moment
generated by a differential braking on the rear wheels. At last, the fault magnitude estimation is represented in Figure
5.6.
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Figure 5.3 – Reference lateral velocity and its faulty estimated state with FTC.
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Figure 5.4 – Reference yaw rate and its faulty estimated state with FTC.
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Figure 5.5 – Fault tolerant control law.
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Figure 5.6 – Actuator fault and its estimate.

5.3 Parameter estimation and actuator fault tolerant control

5.3.1 Problem formulation

The FTC design is based on the following LPV system

ẋ(t) =A(θ(t))x(t) +Bu(t) +Gf(t) (5.62a)
y(t) =Cx(t) (5.62b)

with A(θ(t)) = A0 +
∑nθ
j=1 θj(t)Aj , θj(t) ∈ [θ1

j , θ
2
j ] and nθ is the number of unknown parameters. Bi ∈ Rn×m, C ∈ Rp×n

and G ∈ Rn×nf are constant matrices. x(t) ∈ Rn is the state vector, u(t) ∈ Rm the input vector, y(t) ∈ Rp represents
the output vector and f(t) ∈ Rnf is the fault vector.

The variable θ(t) is a vector integrated by unmeasured parameters that vary on a convex polytope. These scheduling
parameters do not take into account the state variables (quasi-LPV case), only parameters that vary over time.
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Figure 5.7 – Fault tolerant control scheme.

Similar to the design shown in Section 5.2, the FTC law u(t) undertake a reference state tracking using the information
provided by the FD unit, in order, to minimize the state trajectory deviation caused by actuator faults. In a fault case,
the current system will remain close to the desired performance and preserve stability conditions.

The following points describe the performance of the FD unit which is conformed by two dedicated observers as depicted
in Figure 5.7.

— The dedicated observer for parameter estimation depends on a scheduling parameter θ(t) which is not available.
Similarly, this dedicated observer is robust against the actuator fault, if and only if, the Assumption 4.1 of section
(4.3) holds. The information obtained through this observer is the estimated state variables of the system (5.62)
and the estimated time-varying parameter θ(t), which its dynamic is unknown. The last information is essential
for the following dedicated observer.

— The dedicated observer for fault estimation depends on the scheduling parameter estimation θ̂(t), which is
obtained from the previous observer. Therefore, the scheduling parameter is taken as available because it is
estimated previously.

— At last, the fault diagnosis unit can give information about the unknown time-varying parameter θ(t) and the
actuator fault f(t). This information must be useful to design the controller proposed in section (5.2).

The dedicated observer for parameter estimation for the system (5.62) is written as follows :

ζ̇a(t) =Na(θ̂(t))ζ(t) +Ha(θ̂(t))va(t) + Fa(θ̂(t))y(t) + Jau(t) (5.63a)

v̇a(t) =Sa(θ̂(t))ζa(t) + La(θ̂(t))va(t) +Ma(θ̂(t))y(t) (5.63b)
˙̂
θ(t) =Ka(θ̂(t))(Cx̂a(t)− y(t)) + α(θ̂(t))θ̂(t) (5.63c)
x̂a(t) =Paζa(t) +Qay(t) (5.63d)

where ζa(t) ∈ Rq0 represents the state vector of the observer, va(t) ∈ Rq1 is an auxiliary vector, x̂a(t) ∈ Rn is the
estimate of x(t), θ̂(t) ∈ Rnθ is the estimate of θ(t). The Theorem 4.2 is applied to obtain the observer gains for this one.

Consequently, to identify the actuator fault, a dedicated observer for fault estimation is proposed. The structure for this
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one is described below

ζ̇(t) = N(θ̂(t))(ζ(t) + TGf̂(t)) +H(θ̂)v(t) + F (θ̂(t))y(t) + TGf̂(t) + Juc(t) (5.64a)

v̇(t) = S(θ̂(t))(ζ(t) + TGf̂(t)) + L(θ̂)v(t) +M(θ̂(t))y(t) (5.64b)

x̂(t) = P (ζ(t) + TGf̂(t)) +Qy(t) (5.64c)
˙̂
f(t) = Ko(θ̂(t))(Cx̂− y(t)) (5.64d)

where ζ(t) ∈ Rq0 represents the state vector of the observer, v(t) ∈ Rq1 is an auxiliary vector, x̂(t) is the estimate of
x(t) and f̂(t) ∈ Rnf is the estimate of f(t). The Theorem 5.1 is used to obtain its observer gains.

Remark 5.2. In the FD unit, the observer (5.64) depends on θ̂(t) which is known since the dynamic behavior of θ(t) is
estimated by the observer (5.63). Hence, the Theorem 5.1 can be applied.

Likewise, the reference model is described in (5.14) and the FTC law in (5.15). The active FTC scheme is described in
detail in Figure 5.8.

5.3.2 Numerical example

The results shown in this section refer to an FTC strategy previously established applied in the following numerical
example.

ẋ(t) =(A0 + θ(t)A)x(t) +B(u(t) + f(t)) (5.65)
y(t) =Cx(t) (5.66)

where A0 =

−2 1.4 0.3
0.2 −3 0
0.1 0 −1

, A =

 0 1 0
0.1 0 0
0 0 −1.1

, B =

 1
0.5
0

 and C =

[
1 0 0
0 0 1

]
. The scheduling variable is

bounded θ(t) ∈ [−1 1] and it assumes that θ(t) is unmeasured. The FTC scheme depicted in Figure 5.8 is applied. The
initial condition for the reference model is xr(0) = [3, 1, 2.5]T ; for the system is x(0) = [1.5, 2.5, 2]T ; for the adaptive
observer (5.63) is ζa(0) = [0.25, 0.04, 0.25]T , va(0) = [0, 0, 0]T and θ̂(0) = 0.2 ; for the fault estimation observer (5.64) is
ζ(0) = [−2.05, 0,−2.6]T , v(0) = [0, 0, 0]T and f̂(0) = 1. The gains of each observer are obtained by the Theorems 4.2
and 5.1.

Remark 5.3. For this example, the reference model considers the real behavior of θ(t).

The results of this FTC strategy are illustrated in Figures 5.9-5.15. Figures 5.9-5.11 illustrate the estimation of the
states variables from the adaptive observers described in (5.63) and (5.64). The trajectory tracking is efficient despite the
actuator fault. Figure 5.12 depicts the parameter estimation θ̂(t) which is obtained by the adaptive observer (5.63). The
actuator fault estimation is represented in Figure 5.3.2 which is reconstructed by the observer (5.64). Figures 5.14-5.15
represent the desired input of the LPV reference model and the control input granted by the FTC law, respectively.
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Figure 5.8 – Fault tolerant control scheme.94
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Figure 5.10 – Reference x2 and their estimates.
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Figure 5.15 – FTC input.

5.4 Conclusions
In this chapter, an actuator fault-tolerant control strategy for LPV systems is presented. The FTC is based on an
adaptive observer which estimates the states and actuator faults simultaneously. The conditions for the existence of
the observer-based fault-tolerant control have been given in the form of LMIs. In order to illustrate the fault-tolerant
control performances, an academic example with an actuator fault was presented. From the simulation results, it can be
seen that the developed scheme is robust to a certain class of uncertainties in the steady-state regime.
It takes into account the observer design described in Chapter 4 to address the case when the scheduling variables are
unmeasured or inexact ; therefore, an FD unit is built, which can estimate states, faults, and parameter variation.
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Chapter 6

Conclusions and perspectives

This thesis has contributed to polytopic LPV systems in different categories as state and parameter estimation, fault
diagnosis, and fault-tolerant control. A bibliographical review based on these categories is presented to give the direction
of this work.

Chapter 2 focuses on the GDO synthesis for LPV systems. It is introduced the GDO structure into the LPV framework
considering the cases when the scheduling variables depend on either exogenous or endogenous signals considering
unknown inputs. If the scheduling variables depend on endogenous signals (quasi-LPV), usually, the unmeasured
scheduling variables case comes out. Conditions for the existence of the GDO are given, and its stability was proved
to address this problematic. Based on the bounded real lemma and other mathematics complements, the stability
conditions are given in terms of LMIs. Along with these designs, parameterizations of the algebraic constraints were
detailed.

In the same way, Chapter 3 concerns on discrete-time LPV in the presence of unknown inputs and disturbances.
It highlights the use of parameter-dependent Lyapunov function, which is less conservative that the observer desi-
gns obtained from the quadratic stability. It assumes that the disturbance is norm bounded to apply the L2 gain approach.

The state and parameter estimation are addressed in Chapter 4, using the GDO structure. This design relaxes some
conditions established in the literature, such as the persistent excitation condition, which must fulfill specific signals to
estimate the unknown parameters. Moreover, the observer design conditions for LPV systems with unknown inputs are
defined. Time-varying terms are bounded, taking advantage of the polytopic properties.

Combining the previous results, in Chapter 5 is proposed an active FTC. An FTC law uses the state and fault estimation
provided by an adaptive observer, which is based on the GDO structure. The control law can be modified in order to
undertake reference state tracking minimizing the system state trajectory deviation caused by faults. After that, it
takes into account the observer design described in Chapter 4 to address the case when the scheduling variables are
unmeasured or inexact ; therefore, an FD unit is built, which can estimate states, faults, and parameter variation.

Academic examples were used in each observer design to prove the performance of each one. It can note that the
performance of the GDO achieves a better performance index in comparison to their particular structures (PO, PIO).

Along with this research work, many open problems were detected, giving opportunities for more contributions to the
topics encompassed in this thesis. Some of the open problems are presented below :

• The problematic of decoupling was studied in this research. The solutions given in the designs could be conserva-
tive since the distribution matrix of the unknown input does not depend on parameter variation. It can take into
account that dependency and improving the observer designs previously showed.

• The adaptive observer design in Chapter 4 uses the parameter variation to interpolate the local linear models. It
can generalize this design using endogenous signals to interpolate it in the same way.
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Chapter 6. Conclusions and perspectives

• For the FTC design presented in Chapter 5, it considers the case when the scheduling variable is estimated.
The observer design can become more robust against the inexact parameter estimation using the techniques for
unmeasured scheduling variables.

• Along with the last FTC scheme of this thesis, it could study the identifiability concept to know if the system
structure fulfills the necessary conditions to estimate the unknown parameter vector. Likewise, this concept could
give more information on how to distinguish the changes induces by either faults or variations in parameter due
to the nonlinear nature of the model.
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