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A B S T R A C T

This thesis presents the design of fault diagnosis and fault–tolerant control meth-
ods for the trajectory tracking problem in quad–rotors. The problem considers external
disturbances, and two different actuator faulty scenarios: multiple losses of rotor effec-
tiveness or a complete rotor failure. To deal with the fault–tolerant problem, the design
of robust flight controllers is required in order to counteract the effect of external dis-
turbances affecting the quad–rotor. For this purpose, Continuous Sliding-Mode Control
strategies and an Attractive Ellipsoid–Based robust control method are designed to deal
with the effect of external disturbances achieving the trajectory tracking. For the fault di-
agnosis strategy a finite–time sliding–mode observer is proposed to estimate the whole
system state and provide a set of residuals. These residuals allow us to detect, isolate
and identify multiple actuator faults despite the presence of uniformly bounded and
Lipschitz disturbances. Using the proposed fault diagnosis, an actuator fault accommo-
dation controller is developed to solve the trajectory tracking problem in quad–rotors
under the effects of multiple losses of rotor effectiveness and external disturbances. The
fault accommodation partially compensates the actuator faults allowing the use of a
baseline robust–nominal controller that deals with external disturbances. Additionally,
in order to deal with the rotor failure scenario, an active fault–tolerant control is pro-
posed. First, the rotor failure is isolated using the proposed fault diagnosis, and then,
a combination of a finite–time sliding–mode observer, PID controllers, and continuous
high–order sliding–modes controllers is proposed. Such a strategy allows the yaw an-
gular velocity to remain bounded and the position tracking to be achieved even in
the presence of some external disturbances. Numerical simulations and experimental
results on the Quanser’s QBall2 show the performance of the proposed strategies.
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1
I N T R O D U C T I O N

Summary. This chapter introduces the motivation of the work and the considered problem
statements as well as the goals. Afterwards, we provide the state of the art related to the problem
statements. Then, the main contribution of the thesis is presented in addition to the scientific
production. Finally, we provide the structure of the rest of the document.

1.1 motivation

Among the Unmanned Aerial Vehicles (UAVs), the quad–rotor remains as the most
used vehicle due to flight flexibility to perform vertical take–off and landing tasks, sim-
plicity of operation and low cost. Consequently, they are used by a wide variety of
applications, e.g., agriculture (see Fig 1a), civil events (see Fig 1b), military applications
(see Fig 1c), security, industrial supervision, etc. (see, for instance, [1]). The growing de-
mand for safety, reliability and acceptable performance level for these tasks is a priority,
being a topic of interest in the field of robust control design for these vehicles (see, for
instance, [2] and [3]).

However, the design of autonomous flight control systems for quad–rotors is not an
easy task in general. The complexity in the controller design for these systems arises
from a combination of its under–actuated nature, coupling between translational and
rotational dynamics, which are nonlinear, and of course due to the effects of distur-
bances associated with the environment and payload mass variations. Several control
methods have been proposed for the stabilization of quad–rotors; for instance, adaptive
control (e.g., [4] and [5]), backstepping control (e.g., [6] and [7]), nested saturation control
[8], H∞ control [9], immersion and invariance methodology [10], Proportional–Integral–
Derivative (PID) controllers [11], feedback linearization (e.g., [12] and [13]), etc. Among
all these control techniques, the sliding–mode control (SMC) theory (see, e.g., [14] and
[15]) has demonstrated to be one of the most useful strategies due to its accuracy and
robustness properties as well as finite–time convergence. However, in practical applica-
tions, the standard SMC techniques have presented the so–called chattering effect (see,
e.g., [16] and [17]), one of the main drawbacks of this control technique.

On the other hand, the Continuous–SMC techniques mitigate the chattering problem
since the applied control signal is continuous [18]. Nevertheless, such an advantage is
compromised by the class of disturbances that these controllers counteract, i.e., Lips-
chitz continuous. The Super–Twisting algorithm (STA) [19] is a pioneer in these types
of controllers, while more recent strategies include the Continuous Twisting Controller
(CTC) [20], Continuous Singular Terminal Sliding–Mode Control (STSMC) [21] and Con-
tinuous Nonsingular Terminal Sliding–Mode Control (NTSMC) [22].

However, most of these techniques are effective when the system works under rotor
nominal conditions. In the presence of actuators faults, the performance level may con-
siderably be degraded when the control commands are operating in a faulty scenario.
Moreover, a rotor failure can provoke a dangerous midair collision or hit the ground,
being dangerous in the surrounding environment. Such was the case of an accident

1



2 introduction

(a) Quad–rotors in agriculture (b) Quad–rotors in civil events

(c) Quad–rotors in military applications (d) Quad–rotor crashing due to actuator failure

Figure 1: Quad–rotors in practical environments

caused by the sudden rotor failure of a quad–rotor during the Ski World Cup 2016 held
in Italy. In this civil event, one competitor nearly suffered serious injuries, or even the
death, when a news quad–rotor crashed near him, sending blades, gears and machinery
all over the place (see Fig 1d). Therefore, in order to increase safety and robustness, the
design of a Fault Diagnosis (FD) method, in order to detect, isolate and identify the
magnitude of multiple faults, and the design of a Fault–Tolerant Control (FTC), must be
taken into account in order to guarantee system stability and acceptable performance
in presence of actuator faults, or even under a rotor failure. Making use of an FTC, it is
possible to cope with the faulty quad–rotor and accomplish the tracking task, or, if it is
necessary, to carry out landing actions.

1.2 problem statements

The simplified quad–rotor dynamics (see Fig. 2, and for modeling details, see [23]), is
given by

ξ̇1 = ξ2, (1a)

ξ̇2 = gξ(η1)um −G−Λξξ2 + dξ, (1b)

η̇1 = η2, (1c)

η̇2 = Jτ+ Ξwη(η2) −Ληη2 + dη, (1d)

where ξ1 := (x,y, z)T ∈ R3, ξ2 := (ẋ, ẏ, ż)T ∈ R3, η1 := (ϕ, θ,ψ)T ∈ R3, η2 :=

(ϕ̇, θ̇, ψ̇)T ∈ R3, dξ := (dx,dy,dz)T ∈ R3 and dη := (dϕ,dθ,dψ)T ∈ R3. The vari-
ables x, y ∈ R are the coordinates in the horizontal plane, z ∈ R is the vertical
position, while ϕ, θ and ψ ∈ R are the roll angle around the X–axis, the pitch an-
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gle around the Y–axis, and the yaw angle around the Z–axis, respectively. The terms
G := (0, 0,g)T ∈ R3, J := diag(J−1x , J−1y , J−1z ) ∈ R3×3 and τ := (τϕ, τθ, τψ)T ∈ R3

are the gravity vector, the inertial matrix and the angular moment vector, with g as
the gravitational acceleration, Jx, Jy and Jz as the moments of inertia along X, Y and
Z–axis, while τϕ, τθ and τψ ∈ R represent the roll, pitch and yaw angular moments,
respectively. The term um := uz/m, with uz ∈ R representing the main thrust and
m ∈ R+ the mass of the quad–rotor. The matrices Λξ := diag(ax,ay,az) ∈ R3×3, Λη :=

diag(aϕ/Jx,aθ/Jy,aψ/Jz) ∈ R3×3 and Ξ := diag(bϕ,bθ,bψ) ∈ R3×3 are given by the
aerodynamic damping coefficients ax, ay and az, the rotational resistance moment coef-
ficients aϕ, aθ and aψ, and the inertial coefficients bϕ := (Jy− Jz)/Jx, bθ := (Jz− Jx)/Jy
and bψ := (Jx − Jy)/Jz. The functions gξ : R3 → R3 and wη : R3 → R3 are given as:
gξ(η1) := (cϕsθcψ+ sϕsψ, cϕsθsψ− sϕcψ, cϕcθ)T and wη(η2) := (θ̇ψ̇, ϕ̇ψ̇, ϕ̇θ̇)T , re-
spectively. The terms dx, dy, dz, dϕ, dθ and dψ ∈ R represent disturbances given
by uncertainties and external perturbations, e.g., some unmodeled dynamics and wind
gusts. Take into account that the notation s⋆ := sin(⋆) and c⋆ := cos(⋆) is considered.

In this thesis, the “+” configuration of the quad–rotor is considered. Then, the relation
between the control inputs uz, τϕ, τθ, τψ and the thrusts Ti, generated by the i–th rotor,
is given by 

uz

τϕ

τθ

τψ


︸ ︷︷ ︸

u

=


1 1 1 1

0 0 L −L

L −L 0 0

Kτ Kτ −Kτ −Kτ


︸ ︷︷ ︸

M


T1

T2

T3

T4


︸ ︷︷ ︸

T

, (2)

where u is the control input vector, T is the thrust vector and M is the full rank matrix
that relates the control signals to the thrusts. The constant L represents the distance
between the motors and the center of mass of the quad–rotor, while Kτ represents the
thrust coefficient.

As in [24], [25] and [26], actuator faults are represented by a partial Loss Of Effective-
ness (LOE) in the rotors. For instance, a propeller structural damage or an unexpected
change in the rotor physical parameters, would result in an LOE on the thrust generated
by the respective rotor.

Therefore, in presence of faults, the current command thrust T̄ is given as

T̄ (t) = (I4 − Γ (t)) T (t) = T (t) − f(t), (3)

where Γ(t) := diag(γ1 (t) ,γ2 (t) ,γ3 (t) ,γ4 (t)) ∈ R4×4 is the LOE matrix and f(t) =

Γ(t)T (t) := (f1 (t) , f2 (t) , f3 (t) , f4 (t))T ∈ R4 is the fault vector. The term γi(t) ∈ (0, 1)

X

Y

Z

Figure 2: Schematic representation of the quad–rotor
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represents the case of an LOE fault in the i–th rotor. The case of γi(t) = 0 represents a
healthy rotor, while γi(t) = 1 means that the i–th actuator is fully damaged. Note that
the current command thrust T̄ is not measured and therefore is unknown.

The goals of this work are listed below:

1. To design robust control strategies to robustly track a desired trajectory for the
coordinates x, y, z and the angle ψ, despite some uncertainties and external per-
turbations.

2. To design an FD method to detect (discern if there are faults or not), isolate (if
there are faults, determine which rotors are faulty) and identify the magnitude of
each LOE.

3. To design an actuator Fault Accommodation Controller (FAC) to achieve the track-
ing of a desired trajectory under the influence of possible multiple LOEs.

4. To design an active FTC to achieve the tracking of a desired trajectory under the
influence of a rotor failure.

It is assumed that only the positions and angles of the vehicle are measurable.

1.3 state of the art

The design of robust controllers applied to quad–rotors is a well treated topic in
the literature. A wide variety of strategies have been reported. For instance, in [10] an
asymptotic tracking controller is proposed using an immersion and invariance–based
adaptive control. A robust cascade controller is presented in [27] based on a robust
compensation–based hierarchical control for quad–rotors under external perturbations
and multiple delays. In [28], a hierarchical controller for UAVs is proposed based on
singular perturbation theory. Different observer–based controllers are designed in [29],
[30], [31] and [32] for the trajectory tracking problem of quad–rotors. In [33] a nonlinear
ellipsoid based attitude control is proposed for aggressive trajectories in a quad–rotor.
However, as mention in Section 1.1, the SMC theory highlights due to its accuracy and
robustness properties as well as finite–time convergence.

In the context of SMC theory, in [34] an STA based control is proposed for robust
tracking attitude in a quad–rotor under the presence of external perturbations. In [35], a
discontinuous model–free–based terminal SMC is presented to control the attitude and
position of a quad–rotor despite some uncertainties in a finite time. In the same vein,
[36] presents the design of a controller based on the block control technique combined
with the STA for the trajectory tracking problem. In [37], a second–order SMC approach
is proposed to solve the tracking problem for a quad–rotor. In [38], a chattering–free
SMC approach is provided for a real–time application on a quad–rotor to control the at-
titude. A model–free based terminal SMC is proposed in [35] to control the attitude and
position of a quad–rotor under external perturbations. In [39], an integral backstepping
combined with the SMC is applied in a quad–rotor to accomplish trajectory tracking.
An adaptive fuzzy integral SMC is proposed in [40] for the robust stabilization of a
quad–rotor. In [41] an SMC driven by a Sliding–Mode Observer (SMO) is proposed for
a quad–rotor under the presence of unknown disturbances. In the same context, in [42]
and [43] a high–order SMO has been applied to robustify a flight controller for a quad–
rotor. In [2], a robust tracking output–based control strategy with a SMO is proposed for
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a quad–rotor under the influence of disturbances, and validated through experimental
results.

The work presented in [2] is of great interest since a series of Continuous–SMCs (TC,
STSMC, NTSMC), together with an Finite–Time Sliding–Mode Observer (FT–SMO), are
proposed to the robust trajectory tracking problem in a quad–rotor. Nevertheless, real–
time experimental results are only presented for the STSMC. In [44] the previous work
is extended, where all these controllers are implemented experimentally, showing a
comparative study of their performances.

In all the above strategies, it is ensured that the quad–rotor fulfills the task as long
as it works under rotor nominal conditions. In the presence of actuators faults, the
performance level may considerably be degraded when the control commands are oper-
ating in a faulty scenario. Therefore, in order to increase safety and robustness, an FTC
must be designed in order to guarantee system stability and acceptable performance in
presence of actuator faults, or even under a rotor failure. The FTC techniques can be
classified as two types: passive and active [45].

In the passive techniques, the control law is not changed when a fault occurs and,
similar to the robust control approach, the faults can be considered as disturbances.
Such approaches have the advantage of not changing the control law in faulty situations
but the fault tolerance deteriorates [45]. In the literature there are several works related
to passive FTCs applied to quad–rotors. For instance, in [4], a model reference adaptive
controller is designed to deal with actuator faults and external perturbations. In [46], an
adaptive FTC, based on radial basis function neural networks, is proposed to deal with
actuator faults and external perturbations. A passive FTC is proposed in [47] based on
the inherent robustness of SMCs. In [48], an adaptive SMC is used to estimate an upper
bound of the actuator fault and compensate it. In [49], an adaptive SMC allocation
scheme is proposed for accommodating simultaneous actuator faults. However, in the
previous works, the faults are not detected and are suitable for goals associated with
low performance levels. In this sense, the faults may exceed the FTC capability causing
a dangerous collision.

On the other hand, in active FTCs, the FD, i.e., detection, isolation and identification
of the faults, plays a major role. In this sense, making use of an FD, the control law can
be modified in order to cope with the faulty quad–rotor and accomplish the trajectory
tracking task, or, if it is necessary, to carry out landing actions. There are also several
works related to active FTCs applied to quad–rotors. For instance, in [50], an adaptive
finite–time extended state observer is designed to compensate external perturbations
and accommodating actuator faults. In [51], a robust adaptive fault estimation observer
is proposed for the design of an active FTC. In the same vein, in [52], an active FTC,
based on an adaptive sliding–mode control and recurrent neural networks, is designed
only for the rotational subsystem of a quad–rotor considering faults and model un-
certainties. An active FTC, based on a nonlinear adaptive FD, is employed for a fault
accommodation technique in [24]. In the previous works, the active FTC allows much
more demanding objectives in presence of faults. However, knowledge of the fault effect
is essential, and it depends mainly on the FD.

Regarding the FD problem in quad–rotors, there are several works reported in the
literature. In [53], a torque model, with an FD method, is proposed for the Z–axis ac-
celerometer and the magnetic sensor. An approach for sensor fault reconstruction in
presence of external perturbations is designed in [54]. In [55], an FD based on a polyno-
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mial observer is proposed for actuator faults without considering disturbances. In the
same context, [56] deals with the design of a model–based FD, which can be used to
detect sensor and actuator faults, based on a set of residuals. In [57], a residual is gen-
erated by the parity space method for actuator faults, and the recursive least squares
algorithm is used to identify the fault. In [58], an FD method, based on a two–stage
Kalman filter, is designed for actuator faults. In [25], an FD scheme, based on an adap-
tive augmented state Kalman filter, is designed for actuators faults and external pertur-
bations in the attitude subsystem. In [26], an adaptive Thau observer is developed to
build a set of residuals to identify actuators faults. In [59], an adaptive observer–based
fault identification scheme is presented for actuator faults without considering external
perturbations in the analysis. Nevertheless, in the previous works, the disturbances can
affect the performance level since most of the proposed methodologies do not deal with
faults and disturbances simultaneously.

In the previous context, SMOs are frequently adopted to deal with disturbance/fault
estimation because of their robustness and finite–time convergence. For instance, in
[60], an actuator fault reconstruction method is developed for a quad–rotor using an
SMO. In [61], a residual–based FD approach is proposed for a 3–degrees of freedom
helicopter by using SMOs. In [62], an FD scheme is developed based on a bank of
SMOs, which identifies certain types of disturbances and faults. In [63], an FTC driven
by SMOs is proposed to deal with disturbances and sudden actuator faults in a quad–
rotor. However, in the previous works, the SMOs identify the total uncertainty without
distinguishing between faults and disturbances. The problem of distinguishing the fault
effect from the disturbances is complex because both of them act in the same input
channels, and hence, it is not possible to decouple the faults from disturbances, and deal
with the FD. It is worth mentioning that very few works, related to the development of
FD methodologies for the quad–rotor, have been reported in the literature addressing
the problem of distinguishing between faults and disturbances (see, for instance, [25]).

In the context of rotor failures, in [64], after the complete loss of an actuator, a transfor-
mation of the quad–rotor system into a tri–rotor system is proposed. In this approach,
disturbances are not considered in the analysis and it is essential to redistribute the
quad–rotor weight in order to shift its gravity center toward the rear rotor. Following
a similar idea, in [65], a strategy to transform the quad–rotor system into a bi–rotor
system is considered neglecting the effect of disturbances. Such an approach turns off
the propeller that is aligned on the same axis of the faulty rotor, losing the pitch or roll
angle, depending on the pair of rotors that stopped working, as well as the yaw angle.
In [66], an FTC, based on periodic solutions, is proposed for a quad–rotor to maintain a
regulation task after the loss of one, two or three propellers. However, disturbances are
not taken into account, the stability analysis is not addressed and only regulation tasks
are considered. In [67], once the yaw rate is stabilized, a cyclic reference is provided
for the roll and pitch command angles in order to achieve a regulation goal, but distur-
bances are not considered. In [68], a multi–loop hybrid nonlinear controller is designed
for the quad–rotor system with a single failure. Such a scheme is validated through
experimental tests for high–speed tasks in the failure scenario, but it lacks a formal
closed–loop stability proof. In [69], an FTC is proposed for a quad–rotor considering a
rotor failure and disturbances. The proposed strategy is based on a NTSMC, exploiting
its robustness properties, but the yaw dynamics is totally ignored and cannot guarantee
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the generation of positive thrusts. In the aforementioned works, the effect of a rotor
failure on the angular moments is not considered but there exists.

1.4 contribution

To sum up, the literature shows the following gaps in the considered problem state-
ments:

1. Trajectory tracking control design:

• Several works do not consider the disturbed case.

• Most of the works assume that the whole state is measurable.

• Only the attitude subsystem is addressed.

• Experimental implementation remains as a challenging problem.

2. FD design:

• Most of the works do not consider the disturbed case.

• Distinguishing between faults and disturbances remains as an open problem.

• Experimental implementation remains as a challenging problem.

3. FTC design under:
(a) Multiple losses of rotor effectiveness:

• Most of the works do not consider the disturbed case.

• Only the attitude subsystem and hover tasks are addressed.

• Many works do not deal with the problem of multiple actuator faults.

• The magnitude of each fault is not identified.

• Experimental implementation remains as a challenging problem.

(b) A rotor failure:

• Most of the works do not consider the disturbed case.

• Only hover tasks are addressed.

• Not a single work considers the restriction of the signs in the pitching and
rolling moments.

• Not a single work formally analyzes the behavior of the yaw dynamics.

Motivated by the aforementioned gaps, this thesis contributes with:

1. The design of robust trajectory tracking control strategies given by:

• Continuous High–Order Sliding–Mode Controllers (HOSMCs) and PID con-
trollers, together with an FT–SMO;

• An Attractive Ellipsoid Method (AEM) controller, together with Generalized
Super–Twisting observers (GSTOs).

The proposed strategies have the following features:

• Disturbances acting on the whole quad–rotor dynamics are considered.
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• Only the position and angles are measurable.

• Experimental results show the performance of such strategies

2. An FD strategy, based on an FT–SMO, is proposed to detect, isolate and identify
faults. The proposed strategy possesses the following features:

• Multiple actuators faults are considered.

• The presence of disturbances is considered.

• Experimental results show the performance of the proposed FD strategy.

3. The design of FTCs to deal with:
(a) Multiple losses of rotor effectiveness, where:

• An FAC strategy partially compensate multiple actuator faults.

• The presence of disturbances is considered.

• The trajectory tracking task is considered.

• Experimental results show the performance of the proposed FTC.

(b) A rotor failure, where:

• The presence of disturbances is considered.

• The trajectory tracking task is considered.

• The physical restrictions are not violated.

• The yaw dynamics behavior is analyzed.

• Numerical results show the performance of the proposed FTC.

A schematic diagram of the above–mentioned main contributions about the FD and
FTC in quad–rotors is depicted in Fig. 3.

1.5 published results

The content of this thesis has been partially published as follows:

• Chapter 2 – Robust Control Strategies

1. IEEE Transactions on Industrial Electronics 2019 [2].

2. Control Engineering Practice 2019 [44].

3. IEEE Transactions on Industrial Electronics 2020 [3].

4. International Workshop on Variable Structure Systems 2018 [72].

5. Congreso Mexicano de Robótica 2018 [73].

6. Congreso Nacional de Control Automático 2019 [74]

7. Congreso Nacional de Control Automático 2022 [75]
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Figure 3: Schematic diagram of the academic contribution about the FTC in quad–rotors
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• Chapter 3 – Fault Diagnosis Strategy

1. IEEE/ASME Transactions on Mechatronics 2022 [77].

2. Congreso Nacional de Control Automático 2019 [76].

• Chapter 4 – Active Fault Accommodation Control Design

1. Congreso Nacional de Control Automático 2021 [78].

2. Conference on Decision and Control 2021 [79].

• Chapter 5 – Fault Tolerant Control for a Rotor Failure

1. International Journal of Robust and Nonlinear Control 2022 [82].

2. Congreso Argentino de Control Automático 2020 [80]

3. Congreso Mexicano de Robótica 2021 [81].

The Appendix C presents a detailed list of the publications made throughout the
doctoral studies.

1.6 thesis structure

This thesis is organized as follows. Chapter 2 presents different robust control strate-
gies to deal with the effect of disturbances. The proposed FD method is described in
Chapter 3. The active FAC is designed in Chapter 4. An active FTC is proposed to deal
with the rotor failure scenario in Chapter 5. Some concluding remarks are given in
Chapter 6. Finally, the proofs of some of the proposed results are given in the Appendix
A, some details of the experimental platform are given in the Appendix B, and a list of
the publications made throughout the PhD studies is given in the Appendix C.



2
R O B U S T C O N T R O L S T R AT E G I E S

Summary. This chapter introduces the notation and some preliminaries concepts considered
in this work. Then, the problem statement of this chapter is formally established. Afterward, dif-
ferent HOSMCs and PID controllers, together with an FT–SMO, as well as an AEM–based
controller, together with GSTOs for a quad–rotor under the influence of disturbances are pro-
posed. Experimental results of both strategies are shown.

2.1 preliminaries

2.1.1 Notation

0n ∈ Rn×n and In ∈ Rn×n denote the zero and identity matrices of dimension
n, respectively; ∧ denotes the logical operator AND; denote R+ := {x ∈ R : x ⩾ 0};
for a Lebesgue measurable function d : R+ → Rm, define the norm ||d||[t0,t1) =

esssupt∈[t0,t1)||d(t)||, then ||d||f = ||d||[tf,+∞) and ||d||∞ = ||d||[0,+∞); the set of d(t) with
the property ||d||∞ < +∞ is denoted as L∞; and LD = {d ∈ L∞ : ||d||∞ ⩽ D}, for anyD >
0. A sequence of integers 1, . . . ,n is denoted as 1,n. The function ⌈s⌋β := |s|βsign(s), for
any s ∈ R and β ∈ R⩾0, and ⌈s⌋β := (⌈s1⌋β, . . . , ⌈sn⌋β)T , for any s ∈ Rn.

2.1.2 Stability Concepts

A continuous function α : R+ → R+ belongs to class K if it is strictly increasing
and α(0) = 0; it belongs to class K∞ if it is also unbounded. A continuous function
β : R+ × R+ → R+ belongs to class KL if for each fixed s, β(·, s) ∈ K, and β(r, ·) is
strictly decreasing to zero for any fixed r ∈ R+. The function β belongs to class KLT if
for each fixed s, β(·, s) ∈ K, and for each fixed r, there exists 0 < T(r) < ∞ such that
β(r, s) is decreasing to zero with respect to s < T(r), and β(r, s) = 0 for all s ⩾ T(r).

Consider a time–dependent differential equation [83]:

dx(t)

dt
= f(t, x(t)), t ⩾ t0, t0 ∈ R, (4)

where x(t) ∈ Rn is the state vector; f : R × Rn → Rn is a continuous function with
respect to x and piece–wise continuous with respect to t, and f(t, 0) = 0 for all t ∈ R.
The solution of the system (4), for an initial condition x0 ∈ Rn at time instant t0 ∈ R,
is denoted as x(t, t0, x0) and defined on some finite time interval [t0, t0 + T) such that
0 ⩽ T <∞. Let Ω be open neighborhood of the origin in Rn, 0 ∈ Ω.

Definition 1 (see [83] and [84]): At the steady state x = 0, the system (4) is said to have the
following properties
a) Uniformly Stable (US) if for any ϵ > 0 there is δ(ϵ) such that for any x0 ∈ Ω, if

||x0|| ⩽ δ(ϵ) then ||x(t, t0, x0)|| ⩽ ϵ for all t ⩾ t0, for any t0 ∈ R;

11
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b) Uniformly Exponentially Stable (UES) if it is US and exponentially converging from Ω,
i.e. for any x0 ∈ Ω there exist k,γ > 0 such that ||x(t, t0, x0)|| ⩽ k||x0||e−γ(t−t0) for all t ⩾ t0,
for any t0 ∈ R;
c) Uniformly Finite–Time Stable (UFTS) if it is US and finite–time converging from Ω, i.e.

for any x0 ∈ Ω there exists 0 ⩽ Tx0 < +∞ seuch that x(t, t0, x0) = 0 for all t ⩾ t0 + Tx0 , for
any t0 ∈ R. The function T0(x0) = inf{Tx0 ⩾ 0 : x(t, t0, x0) = 0 ∀t ⩾ t0 + Tx0} is called the
settling-time of the system (4).

If Ω = Rn, then x = 0 is said to be globally US (GUS), UES (GUES), or UFTS (GUFTS),
respectively.

Definition 2 [85]. System (4) is called Input–to–State Stable (ISS) if for any input u ∈ L∞
there exist functions β ∈ KL and γ ∈ K such that

||x(t, t0, x0,u)|| ⩽ β(||x0||, t) + γ(||u||∞), ∀t ⩾ 0.

Moreover, if the function β ∈ KLT , system (4) is said to be Finite–Time Input–to–State Stable
(FT–ISS).

2.2 problem statement

Let us recall the quad–rotor dynamics:

ξ̇1 = ξ2, (5a)

ξ̇2 = gξ(η1)um −G−Λξξ2 + dξ, (5b)

η̇1 = η2, (5c)

η̇2 = Jτ+ Ξwη(η2) −Ληη2 + dη, (5d)

where ξ1 := (x,y, z)T ∈ R3, ξ2 := (ẋ, ẏ, ż)T ∈ R3, η1 := (ϕ, θ,ψ)T ∈ R3 and η2 :=

(ϕ̇, θ̇, ψ̇)T ∈ R3 represent the quad–rotor positions, linear velocities, angles and angular
velocities , respectively. The term um := uz/m, with uz ∈ R representing the main
thrust and m ∈ R+ the mass of the quad–rotor. τ := (τϕ, τθ, τψ)T ∈ R3 represents
the angular moment vector with τϕ, τθ and τψ ∈ R as the roll, pitch and yaw angular
moments, respectively. dξ := (dx,dy,dz)T ∈ R3 and dη := (dϕ,dθ,dψ)T ∈ R3 represent
disturbances given by uncertainties and external perturbations, e.g., some unmodeled
dynamics and wind gusts.

The goal in this chapter is to design robust control strategies to robustly track a
desired trajectory for the coordinates x, y, z and the angle ψ, despite some uncertainties
and external perturbations. It is assumed that only the positions and angles of the
vehicle are measurable.

Before proceeding, the following assumptions are introduced.

Assumption 1 The desired trajectories xd(t), yd(t), zd(t) and ψd(t) are bounded and contin-
uously differentiable.

Assumption 2 The disturbances are uniformly bounded and Lipschitz, i.e., dx ∈ LD1 , dy ∈
LD2 , dz ∈ LD3 , dϕ ∈ LD4 , dθ ∈ LD5 , dψ ∈ LD6 , ḋx ∈ LD̄1 , ḋy ∈ LD̄2 , ḋz ∈ LD̄3 , ḋϕ ∈
LD̄4 , ḋθ ∈ LD̄5 , ḋψ ∈ LD̄6 ; with known positive constants Dj and D̄j, with j = 1, 6.
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Assumptions 1 and 2 characterize the class of desired trajectories and disturbances
that the proposed controllers will be able to deal with. It is worth mentioning that ex-
ternal perturbations, as wind gusts, are generally modeled as sinusoidal signals, which
are clearly bounded and Lipschitz [86]. However, since the quad–rotor does not per-
form aggressive maneuvers, then the load disturbances can be classified into this class
of perturbations.

In the following, the design of multiple robust tracking output–control strategies for
a quad–rotor is addressed.

2.3 continuous sliding–mode control strategies

The robust tracking controllers designed in this Section are composed on a combina-
tion between PID controllers and cascaded HOSMCs, together with an FT–SMO. Firstly,
the design of the FT–SMO is presented.

2.3.1 Finite–Time Sliding Mode-Observer

Let us introduce the following constraint.

Assumption 3 The term wη(η2) is Lipschitz, i.e., ∥wη(η2) −wη(η̂2)∥∞ ⩽ Lϑ ∥η2 − η̂2∥∞,
for any η2, η̂2 ∈ R4.

Note that the previous constraint is satisfied as long as the quad–rotor does not per-
form aggressive maneuvers, i.e., any trajectory for which the roll and pitch angles exceed
±π/2 [rad], and whose angular velocities growth faster than a linear rate.

In this sense, Assumption 3 implies that the pitch and roll angles must hold |ϕ| < π/2

and |θ| < π/2, respectively; and this could be possible if the desired trajectories are
Lipschitz; therefore, such a constraint is satisfied.

The FT–SMO has the following structure [18]

˙̂ξ1 = ξ̂2 + K̂1φ1(êξ), (6a)
˙̂ξ2 = gξ(η1)um −G−Λξξ2 + ξ̂3 + K̂2φ2(êξ), (6b)
˙̂ξ3 = K̂3φ3(êξ), (6c)
˙̂η1 = η̂2 + K̂4φ1(êη), (6d)
˙̂η2 = Jτ+ Ξwη(η2) −Ληη2 + η̂3 + K̂5φ2(êη), (6e)
˙̂η3 = K̂6φ3(êη), (6f)

where êξ := ξ1 − ξ̂1 ∈ R3 and êη := η1 − η̂1 ∈ R3 are the output errors, respectively;
the nonlinear output injections φ1, φ2, φ3 : R3 → R3 are given as φ1(s) := ⌈s⌋ 23 ,
φ2(s) := ⌈s⌋ 13 and φ3(s) := ⌈s⌋0, for any s ∈ R3, with some design diagonal gain
matrices K̂j = diag(k̂j1, k̂j2, k̂j3) ∈ R3×3 with j = 1, 6.

Define the state estimation error as êr := (êξ, ε̂ξ, êη, ε̂η, ϵ̂ξ, ϵ̂η)T ∈ R18, where ε̂ξ :=

ξ2 − ξ̂2 ∈ R3 and ε̂η := η2 − η̂2 ∈ R3 are the linear and angular velocity estimation
errors, respectively, while ϵ̂ξ := dξ(t) − ξ̂3 and ϵ̂η := dη(t) − η̂3 are the estimation



14 robust control strategies

errors of the disturbances. In this sense, the total uncertainty affecting the estimation
error between system (1) and the FT–SMO (6) is given by

∆ =

(
∆ξ

∆η

)
:=

(
dξ −Λξε̂ξ

dη −Ληε̂η + Ξ(wη(η2) −wη(η̂2))

)
.

Due to Assumptions 2 and 3, such disturbances, velocities and nonlinear terms are
bounded and Lipschitz, i.e., ∆ ∈ Lδ and ∆̇ ∈ Lδ̄, with known positive constants δ and δ̄.

The following theorem describes the finite–time convergence properties of the FT–
SMO.

Theorem 1 [2], [87]. Let the observer (6) be applied to system (5), and Assumptions 2 and 3 be
satisfied. Suppose that the observer parameters are selected as K̂1 = K̂4 = 2δ̄

1
3 I3, K̂2 = K̂5 =

1.5δ̄
1
2 I3 and K̂3 = K̂6 = 1.1δ̄I3; then, at the steady state êr = 0, the state estimation error

dynamics is UFTS.

Under Assumptions 2, and 3, the state estimation error dynamics is decoupled into six
independent Single–Input Single–Output (SISO) systems, where each error dynamics
is in the same form given by [18]. The design parameter δ̄, for the gain matrices K̂j,
j = 1, 6, ensures the finite–time convergence to zero for the six SISO state estimation
error dynamics.

Hence, the corresponding error dynamics can be written as follows

˙̂eξ = ε̂ξ − K̂1φ1(êξ), ˙̂eη = ε̂η − K̂4φ1(êη),
˙̂εξ = ϵ̂ξ − K̂2φ2(êξ), ˙̂εη = ϵ̂η − K̂5φ2(êη),
˙̂ϵξ = ḋξ − K̂3φ3(êξ), ˙̂ϵη = ḋη − K̂6φ3(êη).

According to Theorem 1, such an error dynamics is UFTS, which implies that ξ̂1(t) =
ξ1(t), ξ̂2(t) = ( ˙̂x, ˙̂y, ˙̂z)T = ξ2(t), ξ̂3(t) = dξ(t) and η̂1(t) = η1(t), η̂2(t) = ( ˙̂ϕ, ˙̂θ, ˙̂ψ)T =

η2(t), η̂3(t) = dη(t), for all t ⩾ T0 > 0. Hence, if Assumption 2 holds, then the FT–SMO
given by (6) provides the following disturbance identifications for all t ⩾ T0

ξ̂3(t) = (ξ̂x(t), ξ̂y(t), ξ̂z(t))T = (dx(t),dy(t),dz(t))T , (7a)

η̂3(t) = (η̂x(t), η̂y(t), η̂z(t))T = (dϕ(t),dθ(t),dψ(t))T . (7b)

Note that such identification terms can be used to robustify any type of control strat-
egy, including a simple linear strategy.

2.3.2 Control Design

The proposed strategy is based on two cascading loops. The internal loop controls
the attitude of the vehicle, while the external loop contains the controllers of the trans-
lational coordinates. In this way, the external loop generates a desired roll and pitch
angles, that the internal loop will use in the attitude control.

Let us define the tracking errors as

eξ = (ex, ey, ez)
T := ξ1 − ξd, eη =

(
eϕ, eθ, eψ

)T
:= η1 − ηd,

εξ = (εx, εy, εz)
T := ξ̂2 − ξ̇d, εη =

(
εϕ, εθ, εψ

)T
:= η̂2 − η̇d,
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where ξd := (xd,yd, zd)T ∈ R3 and ηd := (ϕ⋆, θ⋆,ψd)T ∈ R3 are the desired trajectories,
with ϕ⋆ and θ⋆ being reference signals to be designed. Then, the tracking error dynamics
is given as follows:

ėξ = εξ, (8a)

ε̇ξ = gξ(η1)um −G−Λξξ2 + dξ − ξ̈d, (8b)

ėη = εη, (8c)

ε̇η = Jτ+ Ξwη(η2) −Ληη2 + dη − η̈d. (8d)

Note that due to the underactuated nature of the quad–rotor, one cannot control all
the positions and angles independently. Hence, the references signals ϕ⋆ and θ⋆ as well
as the control input um and τ must be properly designed in order to achieve a desired
position ξd and a desired angle ψd . To do this, a virtual control ν := (νx,νy,νz)T ∈ R3

is introduced in the position error dynamics, i.e.,

ėξ = εξ, (9a)

ε̇ξ = ν+wξ(η1,uz,ν) + gξ(η1)um −G−Λξξ2 + dξ − ξ̈d, (9b)

ėη = εη, (9c)

ε̇η = Jτ+ Ξwη(η2) −Ληη2 + dη − η̈d. (9d)

where the disturbance term wξ ∈ R3 is given as wξ(η1,uz,ν) := umgξ(η1) −G − ν.
Thus, the virtual control ν may be chosen as follows [2]:

ϕ⋆ = arcsin[u−1m (νx sin(ψd) − νy cos(ψd))], (10a)

θ⋆ = arctan[(νz + g)−1(νx cos(ψd) + νy sin(ψd))], (10b)

um =
√
ν2x + ν

2
y + (νz + g)2, (10c)

where the virtual control ν, and the angular moment vector τ take the following form

ν = ν̄+Λξξ2 + ξ̈d − ξ̂3, (11a)

τ = J−1(τ̄− Ξwη(η2) +Ληη2 + η̈d − η̂3). (11b)

The virtual controller ν̄ is designed as a PID controller, i.e.,

ν̄ = Kiξēξ +Kpξeξ +Kdξεξ, (12)

where Kiξ = diag(kx1,ky1,kz1) ∈ R3×3, Kpξ = diag(kx2,ky2,kz2) ∈ R3×3, Kdξ =

diag(kx3,ky3,kz3) ∈ R3×3 and ēξ := (ēx, ēy, ēz)T ∈ R3, with ēp :=
∫t
0 ep(τ)dτ, p =

x,y, z; and the gains are selected such that the matrices 0 1 0

0 0 1

kp1 kp2 kp3

 , (13)

are Hurwitz.
On the other hand, each term of τ̄ := (τ̄ϕ, τ̄θ, τ̄ψ) ∈ R3 can be designed by any of the

following five controllers:
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a) PID Controller:
τ̄q = kq1ēq + kq2eq + kq3εq, (14)

where ēq :=
∫t
0 eq(τ)dτ, with q = ϕ, θ,ψ; and the gains are selected such that the

matrices  0 1 0

0 0 1

kq1 kq2 kq3

 , (15)

are Hurwitz.

b) Continuous Super–Twisting Algorithm (STA) [19]:

sq = εq + kq1eq, (16a)

τ̄q = υ− kq2⌈sq⌋
1
2 , (16b)

υ̇ = −kq3⌈sq⌋0. (16c)

A possible selection for the gains is given by [88] and shown in Table 1.

Table 1: STA’s gains selection.

Set kq1 kq2 kq3 ζ

1 > 0 1.5ζ
1
2 1.1ζ > 0

c) Continuous Twisting Control (CTC) [20]:

τ̄q = υ− kq1⌈eq⌋
1
3 − kq2⌈εq⌋

1
2 , (17a)

υ̇ = −kq3⌈eq⌋0 − kq4⌈εq⌋0. (17b)

One possible choice for gains is given in Table 2.

Table 2: TC’s gains selection.

Set kq1 kq2 kq3 kq4 ζ

1 25ζ
2
3 15ζ

1
2 2.3ζ 1.1ζ > 0

2 19ζ
2
3 10ζ

1
2 2.3ζ 1.1ζ > 0

3 13ζ
2
3 7.5ζ

1
2 2.3ζ 1.1ζ > 0

4 7ζ
2
3 5ζ

1
2 2.3ζ 1.1ζ > 0

d) Continuous Singular Terminal Sliding–Mode Control (STSMC) [21]:

sq = εq + kq1⌈eq⌋
2
3 , (18a)

τ̄q = υ− kq2⌈sq⌋
1
2 , (18b)

υ̇ = −kq3⌈sq⌋0. (18c)

A possible selection for gains is given in Table 3.
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Table 3: STSMC’s gains selection.

Set kq1 kq2 kq3 ζ

1 > 0 1.5ζ
1
2 1.1ζ > 0

e) Continuous Nonsingular Terminal Sliding–Mode Control (NTSMC) [22]:

sq = eq + kq1⌈εq⌋
3
2 , (19a)

τ̄q = υ− kq2⌈sq⌋
1
3 , (19b)

υ̇ = −kq3⌈sq⌋0. (19c)

A possible selection for gains is shown in Table 4.

Table 4: NTSMC’s gains selection.

Set kq1 kq2 kq3 ζ

1 20ζ−
1
2 4.4ζ

2
3 2.5ζ > 0

2 28.7ζ−
1
2 4.5ζ

2
3 2ζ > 0

3 7.7ζ−
1
2 7.5ζ

2
3 2ζ > 0

4 ζ−
1
2 16ζ

2
3 7ζ > 0

Hence, the following result is recalled.

Theorem 2 [2]. Let the control (10) and (11) be applied to system (5), and Assumptions 1, 2
and 3 be satisfied. Suppose that the virtual PID controller gains are such that the matrix (13)
is Hurwitz, and τ̄ϕ, τ̄θ and τ̄ψ are designed according to any of the controllers given in a)-e).
Then, at steady state (eξ, εξ, eη, εη) = 0, the tracking error dynamics is GUES.

The corresponding proofs of the convergence to zero of the tracking error dynamics
for the TC, STSMC and NTSMC can be checked in [2]. On the other hand, for the
convergence of the robustified PID controller and the STA one can follow exactly the
same procedure, given in [2], to show that the tracking error is also exponentially stable.

2.3.3 Experimental Results

In the following, experimental results on the QBall2 by Quanser (see Fig. 4), using
the CTC given in (17), are shown for the trajectory tracking task of a quad–rotor under
wind gusts. Such wind gusts are generated by means of an industrial fan that provides
a wind velocity between 2.1[m/s] and 4.2[m/s], over a diagonal of the X–Y–axis, that
changes depending on the distance between the fan and the vehicle (see Fig. 44). For
more details about the Qball2, the experimental platform, and the parameters of the
model (5), please see Appendix B.

The experiments presented in this Section have been implemented with the Euler’s
integration method and a sampling time equal to hs = 0.002[s]. The parameters for
the controllers were selected according to (13) and the Table 2, and are given as Kiξ =
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Figure 4: QBall2 by Quanser

diag(0.006, 0.006, 0.2), Kpξ = diag(0.08, 0.08, 0.25), Kdξ = diag(0.06, 0.06, 0.156), kq1 =

0.256, kq2 = 0.418, kq3 = 0.016 and kq4 = 0.006, with q = ϕ, θ,ψ.
Before proceeding with the experimental results, the following expressions are intro-

duced:

F̄(t) =
1

nt

nt∑
i=1

Fi(t), F̄-Mean =
1

ns

ns∑
j=to/hs

F̄(jhs), (20)

where Fi : R+ → R is a positive function given by the i–th trial test, F̄ : R+ → R

represents the average function given by nt trial tests, F̄-Mean ∈ R+ represents the
mean value of the average function, ns is the number of samples and to is the take–off
time. For these experimental results nt = 10, ns = 30000 and to = 5[s].

In order to better illustrate the performance of the CTC, 10 trial tests have been done
for each of the controllers. For the sake of clarity, only the average signals are illustrated.

The desired trajectory is given as:

xd(t) =r(arctan(φ) + arctan(t−φ)) cos(ωt),

yd(t) =r(arctan(φ) + arctan(t−φ)) sin(ωt),

zd(t) =0.26(1+ tanh(t− 7.5)) + 0.1(1+ tanh((t− 35)/3) + 0.28,

ψd(t) =0,

with r = 0.2[m], φ = 15[rad] and ω = π/6[rad/s].
The tracking results are illustrated through are depicted in Fig. 5. In this figure, one

can see the real quad–rotor (x,y, z)–position and ψ orientation compared to the corre-
sponding desired trajectory. The corresponding pitch and roll angles are illustrated in
Fig. 6 while the control signals are depicted in Fig. 7.

From these figures, one can notice the robust performance in the trajectory tracking,
even under the effects of wind gusts. The pitch and roll angles does not exceed ±4

degrees, and the control signals are bounded.
In order to better illustrate the performance, the following performance index is pro-

posed

FRMS(t) =

(
1

∆T

∫T
t−∆T

∥F(σ)∥2 dσ

)1/2
, (21)
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Figure 5: Quad–rotor position and yaw orientation
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Figure 6: Quad–rotor roll and pitch orientation
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Figure 7: Control signals
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Figure 8: Quad–rotor position and yaw orientation

where FRMS : R → R⩾0 represents the root mean square value of the function F : R →
Rn. The results of the performance indexes average for the position tracking error and
the yaw angle error, with ∆T = 2, are depicted in Fig. 8.

The take–off of the quad–rotor is a crucial part of the experiments since, due to the
quad–rotor cage, there exists a physical contact with the ground provoking some friction
effects that could affect the performance of the tests. In this sense, from Fig. 8 one can
note that the performance is affected at the beginning of the test.

Based on these results, the CTC strategy provides an acceptable performance despite
the wind gusts. To provide a more precise quantitative comparison, some numerical
properties of the performance indexes average, i.e., the minimum, the mean and the
maximum values, are illustrated in Tab. 5. In order to neglect the initial conditions
effect, such values are taken from the take–off time to = 5[s].
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Table 5: CTC performance index properties

Coordinate min(ēRMS) ēRMS-Mean max(ēRMS)

x 0.0044 0.0459 0.2846

y 0.0040 0.0596 0.2008

z 0.0028 0.0107 0.0309

ξ 0.0283 0.0843 0.3156

ψ 0.0238 0.2053 0.6044

2.3.4 Comparative analysis of continuous sliding–modes control strategies

It is worth mentioning that a comparative study of the practical performance of the
controllers given in (14)–(19) was developed in [44]. In such a study, by using different
performance indices (for instance, root mean square values, the minimum, mean and
maximum values, convergence time, etc.), and through different robustness tests (for
instance, tracking task under wind gusts and load disturbances), these controllers were
tested.

Due to the robustness of the controllers, all of them have demonstrated an acceptable
performance even under wind gusts and load disturbances. However, the study shows
that the CTC provides the best performance, according to the proposed indexes. On the
other hand, the robustified PID controller gives the worst performance. For more details
about this comparative study, please see [44].

2.4 attractive ellipsoid–based robust control

The robust tracking control designed in this Section is composed by AEM–based
controllers together with a GSTO. Such a proposal is proposed in [3].

Let us write the system (5) in the following compact way

ξ̇ = Aξ+B(gξ(η1)um −G−Λξξ2 + dξ), (22a)

η̇ = Aη+B(Jτ+ Ξwη(η2) −Ληη2 + dη), (22b)

where ξ := (ξT1 , ξT2 )
T ∈ R6, η := (ηT1 ,ηT2 )

T ∈ R6 and the matrices A and B are given as

A :=

(
03 I3

03 03

)
∈ R6×6, B :=

(
03

I3

)
∈ R6×3.

Let us define the tracking errors as eξ := ξ−(ξTd, ξ̇Td)
T ∈ R6 and eη := η−(ηTd, η̇Td)

T ∈
R6. Thus, the tracking error dynamics are given as follows

ėξ = Aeξ +B(gξ(η1)um −G−Λξξ2 + dξ − ξ̈d), (23a)

eyξ = Ceξ, (23b)

ėη = Aeη +B(Jτ+ Ξwη(η2) −Ληη2 + dη − η̈d), (23c)

eyη = Ceη, (23d)
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where eyξ ∈ R3 and eyη ∈ R3 are the output tracking errors, respectively; with C :=

(I3, 03) ∈ R3×6. As we have mentioned before, due to the under–actuated nature of the
system, it is not possible to control all the positions and angles independently. Therefore,
the references signals θ⋆ and ϕ⋆, as well as the control inputs um and τ, must be
properly designed in order to achieve a desired position ξd and a desired angle ψd.

To this aim, a virtual control ν := (νx,νy,νz)T ∈ R3 is introduced once again in the
position error dynamics, i.e.,

ėξ = Aeξ +B(ν+wξ(η1,um,ν) −Λξξ2 + dξ − ξ̈d), (24a)

eyξ = Ceξ, (24b)

ėη = Aeη +B(Jτ+ Ξwη(η2) −Ληη2 + dη − η̈d), (24c)

eyη = Ceη, (24d)

where wξ(η1,um,ν) = gξ(η1)um −G− ν. In order to calculate the main thrust um and
the references signals ϕ⋆ and θ⋆, we can use again the expression given in (10), based
on the virtual control ν, which is designed further on.

Thus, the aim now is to design the virtual control v and the control input τ such that
the tracking error dynamics (24) converges to the smallest neighborhood of the origin
using only the information of the output tracking errors.

2.4.1 Finite–Time Sliding–Mode Observer

Let us introduce the observer, for system (24), that take the following structure

˙̂eξ = Aêξ +B(ν+wξ(η1,um,ν) −Λξξ̂2 − ξ̈d) + rξ[Cεξ], (25a)
˙̂eη = Aêη +B(Jτ+ Ξŵη(η̂2) −Ληη̂2 − η̈d) + rη[Cεη], (25b)

where Cεξ = eyξ −Cêξ = (εξ1, εξ2, εξ3)T ∈ R3 and Cεη = eyη −Cêη = (εη1, εη2, εη3)T ∈
R3 are the output estimation errors with εξ := eξ − êξ = (εξ1, . . . , εξ6)T ∈ R6 and
εη := eη − êη = (εη1, . . . , εη6)T ∈ R6 being the state estimation errors; ξ̂2 = BT êξ + ξ̇d,
ŵη(η̂2) = Υ(η̂2)η̂2 with

Υ(η̂2) =

 0 hη̂2 0

hη̂2 0 0

0 h̄η̂2 0

 , η̂2 = (BT êη + η̇d),

where h := (0, 0, 1) and h̄ := (1, 0, 0); and the nonlinear correction terms rξ : R3 → R6

and rη : R3 → R6 are given as follows

rξ :=

(
K̂ξ1ϕ1(Cεξ)

K̂ξ2ϕ2(Cεξ)

)
, rη :=

(
K̂η1ϕ1(Cεη)

K̂η2ϕ2(Cεη)

)
,
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with K̂ξ1 = diag(k̂ξ11, k̂ξ12, k̂ξ13), K̂ξ2 = diag(k̂ξ21, k̂ξ22, k̂ξ23), K̂η1 = diag(k̂η11, k̂η12, k̂η13)
and K̂η2 = diag(k̂η21, k̂η22, k̂η23) as some gain matrices to be designed; and the nonlin-
ear functions ϕ1 and ϕ2 are defined as

ϕ1(s) :=

 ϕ11(s1)

ϕ12(s2)

ϕ13(s3)

 =

 ⌈s1⌋
1
2 + s1

⌈s2⌋
1
2 + s2

⌈s3⌋
1
2 + s3

 ,

ϕ2(s) :=

 ϕ21(s1)

ϕ22(s2)

ϕ23(s3)

 =


1
2⌈s1⌋

0 + 3
2⌈s1⌋

1
2 + 1

2s1
1
2⌈s2⌋

0 + 3
2⌈s2⌋

1
2 + 1

2s2
1
2⌈s3⌋

0 + 3
2⌈s3⌋

1
2 + 1

2s3

 .

Note that the observers given by (25) preserve the structure of the Generalized Super–
Twisting Algorithm (GSTA) described in [71].

Recall that the estimation errors are εξ = eξ − êξ and εη = eη − êη, respectively.
Therefore, the estimation error dynamics is given as follows

ε̇ξ = Aεξ +B(−ΛξB
Tεξ + dξ) − rξ[Cεξ], (26a)

ε̇η = Aεη +B(Ξ(wη(η2) − ŵη(η̂2)) −ΛηB
Tεη + dη) − rη[Cεη]. (26b)

2.4.2 Closed–Loop System Dynamics

The virtual control ν and the control input τ will be designed as feedback controllers
based on the state estimation given by the observers (25), i.e.,

ν = Kξêξ +Λξξ̂2 + ξ̈d, (27a)

τ = J−1(Kηêη − Ξŵη(η̂2) +Ληη̂2 + η̈d), (27b)

where Kξ ∈ R3×6 and Kη ∈ R3×6 are matrix feedback gains and they will be designed
further on. In this way, substituting the control inputs (27) into the tracking error dy-
namics (24), one obtains

ėξ = Aeξ +BKξêξ +B(wξ(η1,um,ν) −ΛξBTεξ + dξ), (28a)

ėη = Aeη +BKηêη +B(Ξ(wη(η2) − ŵη(η̂2)) −ΛηB
Tεη + dη)). (28b)

Therefore, the whole closed–loop system dynamics can be expressed as follow

Σξ :

ėξ = Aξeξ +B(wξ(η1,um,ν) − (ΛξB
T +Kξ)εξ + dξ),

ε̇ξ = Aεξ +B(dξ −ΛξB
Tεξ) − rξ[Cεξ],

(29a)

Ση :

ėη = Aηeη +B(Ξw̃η(η2, η̂2) − (ΛηB
T +Kη)εη + dη),

ε̇η = Aεη +B(Ξw̃η(η2, η̂2) −ΛηBTεη + dη) − rη[Cεη].
(29b)

where w̃η := (wη − ŵη), Aξ := A + BKξ and Aη := A + BKη. It is evident that the
dynamics of εξ and εη are decoupled from eξ and eη, respectively. Thus, one can firstly
prove that the state estimation errors εξ and εη converge to zero in a finite time; and
then, optimize the performance of (28) by choice of Kξ and Kη, respectively.

For this purpose, let us introduce the following constraints over the tracking error
dynamics (28).
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Assumption 4 There exist positive and known constants γξ, γη, d+ξ , d+η > 0 such that the
following inequalities hold

||dξ −ΛξB
Tεξ|| ⩽ γξ||εξ||+ d

+
ξ , (30a)

||Ξw̃η(η2, η̂2) −ΛηBTεη + dη|| ⩽ γη||εη||+ d+η . (30b)

Note that (30a) is trivially satisfied due to the linearity of the term ΛξB
Tεξ and the

boundedness of dξ. On the other hand, recall that w̃η = (ϕ̇ψ̇, ψ̇θ̇, θ̇ϕ̇)T − Υ(η̂2)η̂2 =

(ϕ̇ψ̇− ˙̂ϕ ˙̂ψ, ψ̇θ̇− ˙̂ψ ˙̂θ, θ̇ϕ̇− ˙̂θ ˙̂ϕ)T . In this sense, taking into account that the quad–rotor is
not going to deal with aggressive maneuvers, and due to the to the linearity of the term
ΛηB

Tεη and the boundedness of dη, (30b) is also satisfied.
Let us introduce the following matrices

T =



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1


, Ā =

(
0 1

0 0

)
, b̄ =

(
0

1

)
, c̄ = (1, 0).

2.4.3 Convergence and Stability

The following theorem describes the finite–time convergence properties of the ob-
servers (25).

Theorem 3 [3]. Let the observer (25) be applied to system (24), and Assumptions 2 and 4 be
satisfied. Assume that there exist matrices Pξ = diag{Pξi}3i=1 > 0, with Pξi = PTξi > 0 ∈
R6×6; Pη = diag{Pηi}3i=1 > 0, with Pηi = PTηi > 0 ∈ R6×6; Yξ, Yη ∈ R6×3, and fixed
positive constants αξ, αη > 0 such that the following Linear Matrix Inequalities (LMIs)

PξÃ+ ÃTPξ − YξC̄

−C̄TYTξ + γ2ξI6 +αξPξ
PξB̄ PξB̄

⋆ −I3 03

⋆ ⋆ −Qξ

 ⩽ 0, (31a)


PηÃ+ ÃTPη − YηC̄

−C̄TYTη + γ2ηI6 +αηPη
PηB̄ PηB̄

⋆ −I3 03

⋆ ⋆ −Qη

 ⩽ 0, (31b)

are feasible for Ã = diag(Ā, Ā, Ā) ∈ R6×6, B̄ = diag(b̄, b̄, b̄) ∈ R6×3, C̄ = diag(c̄, c̄, c̄) ∈
R3×6, Qξ = QTξ > 0 ∈ R3×3 such that d+ξ = λ

− 1
2

min(Qξ); Qη = QTη > 0 ∈ R3×3 such

that d+η = λ
− 1
2

min(Qη); and some constants γξ, γη > 0. Then, at the steady state εξ = 0 and
εη = 0, the state estimation error dynamics are UFTS with K̂Tξ = (K̂ξ1, K̂ξ2) = (TP̄−1ξ Yξ)

T

and K̂Tη = (K̂η1, K̂η2) = (TP̄−1η Yη)
T , respectively.
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Now, it will be shown that the ellipsoids E(P̄ξ) := {eξ ∈ R6 : eTξ P̄
−1
ξ eξ ⩽ 1+λ−1min(P̄η)}

and E(P̄η) := {eη ∈ R6 : eTηP̄
−1
η eη ⩽ 1} are exponentially attractive for the closed–loop

system (29).

Theorem 4 [3]. Let the observer (25) and the linear control (27) be applied to system (24), and
Assumptions 1, 2 and 4 be satisfied. Assume that there exist matrices P̄ξ = P̄Tξ > 0 ∈ R6×6,
P̄η = P̄Tη > 0 ∈ R6×6, Sη = STη > 0 ∈ R6×6, Ȳξ, Ȳη ∈ R3×6 and fixed positive constants ᾱξ,
ᾱη > 0 such that the following LMIs

X̄ξ B −B(ΛξB
T P̄ξ + Ȳξ) B

⋆ −I3 03×6 03

⋆ ⋆ −ᾱξP̄ξ 06×3

⋆ ⋆ ⋆ −ᾱξQξ

 ⩽ 0, (32a)

X̄ξ = P̄ξA
T +AP̄ξ +BȲξ + Ȳ

T
ξB
T + ᾱξP̄ξ,

ᾱξ > γ̄
2
ξ, (32b)

X̄η B −B(ΛηB
T P̄ξ + Ȳη) B

⋆ −I3 03×6 03

⋆ ⋆ −(ᾱη − γ
2
η)Sη 06×3

⋆ ⋆ ⋆ −ᾱηQη

 ⩽ 0, (32c)

X̄η = P̄ηA
T +AP̄η +BȲη + Ȳ

T
ηB
T + ᾱηP̄η,(

−2P̄η + Sη I6

I6 −I6

)
⩽ 0, ᾱη > γ

2
η, (32d)

are feasible for Qξ = QTξ > 0 ∈ R3×3 such that d+ξ = λ
− 1
2

min(Qξ); Qη = QTη > 0 ∈ R3×3 such

that d+η = λ
− 1
2

min(Qη); and some constants γ̄ξ, γη > 0. Then, the ellipsoids E(P̄ξ) and E(P̄η) are
exponentially attractive for the closed–loop system (29) with Kξ = ȲξP̄

−1
ξ and Kη = ȲηP̄

−1
η .

The corresponding proof of the convergence to zero of the state estimation error for
the observer (25), and the proof that the ellipsoids E(P̄ξ) and E(P̄η) are exponentially
attractive for the closed–loop system (29) can be checked in [3].

2.4.4 Experimental Results

The proposed control strategy is applied to the QBall2 by Quanser, depicted by Fig.
4. For more details about the Qball2, the experimental platform, and the parameters of
the model (5), please see Appendix B.

For this experiment, wind gusts are considered as external perturbations. Such wind
gusts are generated by means of an industrial fan that provides a wind velocity between
1.84[m/s] and 4[m/s], over a diagonal of the X–Y–axis, that changes depending on the
distance between the fan and the vehicle (see Fig. 44).
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The desired trajectory is given as

xd(t) = r(arctan(φ) + arctan(t−φ)) cos(ωt),

yd(t) = r(arctan(φ) + arctan(t−φ)) sin(ωt),

zd(t) = 0.15(1+ tanh(t− 7.5)) + 0.1(1+ tanh((t− 35)/3) + 0.3,

ψd(t) = 0,

with r = 0.2[m], φ = 15 and ω = π/6[rad/s]. Then, the observer and controller gains
can be found by solving the set of LMIs (31) and (32) in SeDuMi solver among YALMIP
with γξ = 0.1, γη = 0.1, αη = 7,αξ = 3, γ̄ξ = 0.1, ᾱξ = 0.75, ᾱη = 0.75, Qξ = 2.5I3 and
Qη = 1.4085I3. The obtained gains are

K̂ξ1 = diag(5.7372, 5.7372, 5.7372),

K̂ξ2 = diag(20.1109, 20.1108, 20.1109),

K̂η1 = diag(11.8497, 11.8497, 11.8497),

K̂η2 = diag(67.9953, 67.9938, 67.9956),

Kξ =

 −4.8011 0.0217 0.0217 −5.6533 0.0118 0.0118

0.0217 −4.8011 0.0217 0.0118 −5.6533 0.0118

0.0217 0.0217 −4.8011 0.0118 0.0118 −5.6533

 ,

Kη =

 −2.8502 0.0631 0.0631 −2.5392 0.2263 0.2263

0.0631 −2.8502 0.0631 0.2263 −2.5392 0.2263

0.0631 0.0631 −2.8502 0.2263 0.2263 −2.5392

 .

In order to better illustrate the performance of the proposed control strategy, 10 trial
tests have been done. All these experiments have been implemented with the Euler’s
integration method with a sampling time equal to hs = 0.002[s].

The following experimental results consider the expressions given in (20), with nt =
10, ns = 30000 and to = 5[s]. In order to better illustrate the performance of the control
strategies the performance index introduced in (21) is implemented, where ∆T = 2.

The tracking results are illustrated through the Figs. 9, 10 and 11, where the perfor-
mance of the proposed AEM is shown. Particularly, in Figs. 9 and 10 it is possible to see
the real quad–rotor (x,y, z)–position and ψ orientation, for 10 trial tests as well as its
average, compared to the desired (xd,yd, zd)–position and ψd orientation. On the other
hand, in Fig. 11 one can see one trial test of the tracking position errors that clearly
belong to the ellipsoid E(P̄ξ) validating the results given by Theorem 4.

It is worth highlighting that the performance indexes exRMS , eyRMS and ezRMS depict
the performance of the controllers for each position coordinate, respectively. In order to
provide a more precise quantitative comparison, some numerical properties of the per-
formance indexes, i.e., the minimum, the mean and the maximum values, are illustrated
in Tab. 6. Such values are taken from the take–off time to = 5[s] in order to neglect the
initial conditions effect.

Note that the proposed robust output–based control is completely constructive since
its synthesis (observer and control law) is in terms of LMIs and its computational com-
plexity is more simple. This point is very important when one deals with the output–
based control synthesis for quad–rotors since normally it is very difficult to tune the
controller parameters.
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Figure 9: Quad–rotor position – AEM with GSTOs. The dashed signals represent the results of each
of the 10 experimental tests, while the solid line represents the average of these functions
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Figure 10: Quad–rotor position and yaw orientation – AEM with GSTOs. The dashed signals repre-
sent the results of each of the 10 experimental tests, while the solid line represents the average
of these functions
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Figure 11: Quad–rotor tracking error – AEM with GSTOs. The green line corresponds to the ellip-
soid E(P̄ξ) while the black one to the trajectories of the tracking position errors for different
projections

Table 6: AEM performance index properties

Coordinate min(ēRMS) ēRMS-Mean max(ēRMS)

x 0.0192 0.0463 0.1119

y 0.0341 0.1134 0.2775

z 0.0110 0.0241 0.0977

ξ 0.0590 0.1342 0.2815





3
FA U LT D I A G N O S I S S T R AT E G Y

Summary. In this chapter, the problem statement about the FD is formally introduced. After-
ward, an FT–SMO is designed in order to estimate some states of the quad–rotor and provide
fault information through a set of auxiliary variables, i.e., residual signals. Based on these resid-
uals, an FD strategy is proposed, and through different algorithms, the detection, isolation and
identification of multiple faults are achieved. Experimental results show the effectiveness of this
strategy.

3.1 problem statement

Let us recall the quad–rotor dynamics:

ξ̇1 = ξ2, (33a)

ξ̇2 = gξ(η1)um −G−Λξξ2 + dξ, (33b)

η̇1 = η2, (33c)

η̇2 = Jτ+ Ξwη(η2) −Ληη2 + dη, (33d)

where ξ1 := (x,y, z)T ∈ R3, ξ2 := (ẋ, ẏ, ż)T ∈ R3, η1 := (ϕ, θ,ψ)T ∈ R3 and η2 :=

(ϕ̇, θ̇, ψ̇)T ∈ R3 represent the quad–rotor positions, linear velocities, angles and angular
velocities , respectively. The term um := uz/m, with uz ∈ R representing the main
thrust and m ∈ R+ the mass of the quad–rotor. τ := (τϕ, τθ, τψ)T ∈ R3 represents
the angular moment vector with τϕ, τθ and τψ ∈ R as the roll, pitch and yaw angular
moments, respectively. dξ := (dx,dy,dz)T ∈ R3 and dη := (dϕ,dθ,dψ)T ∈ R3 represent
disturbances given by uncertainties and external perturbations, e.g., some unmodeled
dynamics and wind gusts.

The relation between the control inputs uz, τϕ, τθ, τψ and the thrusts Ti, generated
by the i–th rotor, is given by

uz

τϕ

τθ

τψ


︸ ︷︷ ︸

u

=


1 1 1 1

0 0 L −L

L −L 0 0

Kτ Kτ −Kτ −Kτ


︸ ︷︷ ︸

M


T1

T2

T3

T4


︸ ︷︷ ︸

T

, (34)

where u is the control input vector, T is the thrust vector and M is the full rank matrix
that relates the control signals to the thrusts. The constant L represents the distance
between the motors and the center of mass of the quad–rotor, while Kτ represents the
thrust coefficient.

Therefore, in presence of faults, the current command thrust T̄ is given as

T̄ (t) = (I4 − Γ (t)) T (t) = T (t) − f(t), (35)

where Γ(t) := diag(γ1 (t) ,γ2 (t) ,γ3 (t) ,γ4 (t)) ∈ R4×4 is the LOE matrix and f(t) =

Γ(t)T (t) := (f1 (t) , f2 (t) , f3 (t) , f4 (t))T ∈ R4 is the fault vector. The term γi(t) ∈ (0, 1)

31
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represents the case of an LOE fault in the i–th rotor. The case of γi(t) = 0 represents a
healthy rotor, while γi(t) = 1 means that the i–th actuator is fully damaged. Note that
the current command thrust T̄ is not measured and therefore is unknown.

The goal in this chapter is to design an FD method to detect (discern if there are
faults or not), isolate (if there are faults, determine which rotors are faulty) and identify
the magnitude of each LOE, despite some uncertainties and external perturbations. It is
assumed that only the positions and angles of the vehicle are measurable.

Before proceeding, the following assumptions and definitions are introduced.

Assumption 5 The faults are uniformly bounded and Lipschitz, i.e., f ∈ LF1 , ḟ ∈ LF2 , with
known positive constants F1 and F2.

Definition 3 [45] The fault fi is strongly detectable if there exists a stable residual generator
r(t) such that it reaches a non–zero steady–state value for a fault signal that has a bounded final
value different from zero.

Assumptions 5 characterizes the class of faults that the proposed approach will be
able to deal with.

Let us define χ1 := (z,ϕ, θ,ψ)T ∈ R4 and χ2 := (ż, ϕ̇, θ̇, ψ̇)T ∈ R4. Note that the ac-
tuator faults directly affect the control signals. Therefore, we just analyze the dynamics
of χ1 and χ2 in order to see the effect of the actuator faults. Then, considering (34) and
(35), the dynamics of χ1 and χ2 are given as

χ̇1 = χ2, (36a)

χ̇2 = ζ(χ1)M(I4 − Γ(t))T(t) + ϑ(χ2) + d, (36b)

where ζ (χ1) := diag (cϕcθ/m, J) ∈ R4×4, ϑ(χ2) := (−azż − g, (Ξwη(η2) − Ληη2)T )T

∈ R4 and the vector of disturbances d :=
(
dz,dTη

)T ∈ R4.
Note that the faults and disturbances act in the same way on the quad–rotor dynamics,

i.e., as unknown forces that affect the acceleration of the system.

3.2 reduced finite–time sliding–mode observer

Let us introduce the following constraint.

Assumption 6 The term ϑ(χ2) is Lipschitz, i.e., ∥ϑ (χ2) − ϑ (χ̂2)∥∞ ⩽ Lϑ ∥χ2 − χ̂2∥∞, for
any χ2, χ̂2 ∈ R4.

Note that, similar to Assumption 3, the previous constraint is satisfied as long as the
quad–rotor does not perform aggressive maneuvers, i.e., any trajectory for which the
roll and pitch angles exceed ±π/2 [rad], and whose angular velocities growth faster
than a linear rate.

In this sense, Assumption 6 implies that the pitch and roll angles must hold |ϕ| < π/2

and |θ| < π/2, respectively; and this could be possible if the desired trajectories are
Lipschitz; therefore, the angular velocities do not growth faster than a linear rate.

The FT–SMO has the following structure [18]

˙̂χ1 = χ̂2 + K̂1φ1(eχ), (37a)
˙̂χ2 = ζ (χ1)MT + ϑ(χ̂2) + χ̂3 + K̂2φ2(eχ), (37b)
˙̂χ3 = K̂3φ3(eχ), (37c)
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where eχ := χ1 − χ̂1 ∈ R4 is the output error, the nonlinear output injections φ1, φ2,
φ3 : R4 → R4 are given as φ1(s) := ⌈s⌋ 23 , φ2(s) := ⌈s⌋ 13 and φ3(s) := ⌈s⌋0, for any
s ∈ R4, and K̂r = diag(k̂r1, k̂r2, k̂r3, k̂r4) ∈ R4×4, r = 1, 3, are some gain matrices to be
designed.

Define the state estimation error as êχ := (eχ, εχ,σχ) ∈ R12, where εχ := χ2− χ̂2 ∈ R4

is the estimation error of the velocities, and σχ := ∆(t) − χ̂3 ∈ R4 is the estimation
error of the total uncertainty given by ∆(t) = Φ(t) + ϑ(χ2) − ϑ(χ̂2), with Φ(t) = d−

ζ(χ1)Mf(t). Due to Assumptions 2 (Lipschitz external perturbations), 5 and 6, such an
uncertainty is bounded and Lipschitz, i.e., ∆ ∈ Lδ and ∆̇ ∈ Lδ̄, with known positive
constants δ and δ̄, respectively.

The following theorem describes the finite–time convergence properties of the FT–
SMO.

Theorem 5 [18] Let the observer (37) be applied to system (36). Suppose that Assumptions 2, 5
and 6 hold, and that the observer gains are selected as K̂1 = 2δ̄

1
3 I4, K̂2 = 1.5δ̄

1
2 I4, K̂3 = 1.1δ̄I4;

then, êχ = 0 is UFTS.

Remark 1 Consider the occurrence of a fault at time tf > T0 > 0 , where T0 is the convergence
time before a fault occurrence. In the presence of a sudden fault, an aggressive transient may take
place, and as a consequence, the observer may lose the exact estimation. However, the observer
will converge again at a time T1 > tf, satisfying the detection time requirements.

According to Theorem 5, êχ = 0 is UFTS, which implies that χ̂1(t) = χ1(t), χ̂2(t) =
χ2(t) and χ̂3(t) = ∆(t), for all t ⩾ T1 > 0. Therefore, if Assumptions 2, 5 and 6 hold,
the FT–SMO (37) provides the following residuals

χ̂3 (t) =
(
χ̂z (t) , χ̂ϕ (t) , χ̂θ (t) , χ̂ψ (t)

)T
= Φ(t), ∀t ⩾ T1 > 0. (38)

3.3 finite–time convergence of the residuals

Since the quad–rotor dynamics is relatively fast, the detection delay plays a major role
in order to avoid dangerous situations, as well as the propagation of the fault [89]. In
this sense, the convergence time of the scheme is an important requirement of the FD,
where the faults must be detected at a very early stage. Moreover, the convergence time
must comply with the presence of disturbances and sudden actuator faults.

In the proposed FD strategy, the proper tuning of the proposed FT–SMO gains is
essential in order to build the residual signals given in (38). By selecting higher gains,
a faster convergence of the residuals to their exact values is achieved [18]. However, if
there is noise in the measurement, there is a trade–off between the accuracy of the resid-
uals and the convergence time speed. In this sense, if the gains are properly designed,
according to [18], the FT–SMO (37) provides the best possible accuracy in the presence
of bounded noise with a finite–time convergence to a region proportional to the noise.

For this reason, the proposed FT–SMO is suitable to minimize detection delay, due
to its capability to converge in a finite time, which can be done arbitrarily small; its
insensitivity properties against some class of disturbances and to achieve accuracy in
the residual generation.
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3.4 fault detection

In order to detect if there is an actuator fault, the following proposition is introduced.

Proposition 1 Suppose that Assumptions 2, 5 and 6 hold, and assume that the fault f satisfies

||f||f > 2||M
−1ζ−1(χ1)D||f, (39)

with D := (D3,D4,D5,D6)T , and || · ||f = esssupt∈[tf,+∞)|| · ||, with tf as the instant of time
in which the fault occurs. Then, if

||χ̂3||∞ > ||D||, (40)

the fault f is strongly detectable.

The proof of Proposition 1 is postponed to the Appendix.
Note that the matrix ζ−1 always exists and is well–defined for all ϕ ∈ (−π/2,π/2)

and θ ∈ (−π/2,π/2). Such constraints are satisfied as long as the quad–rotor does not
perform aggressive maneuvers. The fault detection consists in verifying the inequality
(40).

3.5 fault isolation

Once faults are detected, the next step is to isolate them. Due to Assumption 2 (Lip-
schitz external perturbations), and the estimation properties of the FT–SMO, one can
establish the following constraints for the external perturbations:

dz ⩽ dz(t), dϕ ⩽ dϕ(t) ⩽ dϕ ∀t ⩾ 0, (41a)

dθ ⩽ dθ(t) ⩽ dθ, dψ ⩽ dψ(t) ⩽ dψ ∀t ⩾ 0, (41b)

where dz, dϕ, dϕ, dθ, dθ, dψ, dψ ∈ R are known constants. These constants can be esti-
mated by means of the FT–SMO through experimental tests under nominal conditions,
i.e., free of faults. Then, the following functions are introduced:

σz(t) =

0, if ||χ̂z||∞ ⩽ D3,

dz, if ||χ̂z||∞ > D3,
(42a)

σϕ(t) =


0, if ||χ̂ϕ||∞ ⩽ D4,

dϕ, if ||χ̂ϕ||∞ > D4 ∧ χ̂ϕ(t) > 0,

dϕ, if ||χ̂ϕ||∞ > D4 ∧ χ̂ϕ(t) < 0,

(42b)

σθ(t) =


0, if ||χ̂θ||∞ ⩽ D5,

dθ, if ||χ̂θ||∞ > D5 ∧ χ̂θ(t) > 0,

dθ, if ||χ̂θ||∞ > D5 ∧ χ̂θ(t) < 0,

(42c)

σψ(t) =


0, if ||χ̂ψ||∞ ⩽ D6,

dψ, if ||χ̂ψ||∞ > D6 ∧ χ̂ψ(t) > 0,

dψ, if ||χ̂ψ||∞ > D6 ∧ χ̂ψ(t) < 0.

(42d)
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Consider the following functions

ρ1(t) =
σz(t) − χ̂z(t)

4m−1cϕ(t)cθ(t)
+
σψ(t) − χ̂ψ(t)

4J−1z Kτ
+
σθ(t) − χ̂θ(t)

2J−1y L
, (43a)

ρ2(t) =
σz(t) − χ̂z(t)

4m−1cϕ(t)cθ(t)
+
σψ(t) − χ̂ψ(t)

4J−1z Kτ
−
σθ(t) − χ̂θ(t)

2J−1y L
, (43b)

ρ3(t) =
σz(t) − χ̂z(t)

4m−1cϕ(t)cθ(t)
−
σψ(t) − χ̂ψ(t)

4J−1z Kτ
+
σθ(t) − χ̂θ(t)

2J−1x L
, (43c)

ρ4(t) =
σz(t) − χ̂z(t)

4m−1cϕ(t)cθ(t)
−
σψ(t) − χ̂ψ(t)

4J−1z Kτ
−
σθ(t) − χ̂θ(t)

2J−1x L
, (43d)

λ1(t) =
σz(t) − χ̂z(t) −Dz
2m−1cϕ(t)cθ(t)

+
σψ(t) − χ̂ψ(t) −Dψ

2J−1z Kτ
, (43e)

λ2(t) =
σz(t) − χ̂z(t) −Dz
2m−1cϕ(t)cθ(t)

+
χ̂ψ(t) − σψ(t) −Dψ

2J−1z Kτ
. (43f)

Note that all the previous functions depend on known or estimated variables. More-
over, the functions σn, with n = z,ϕ, θ,ψ, given in (42) provide an approximation of
the disturbances taken into account the sign of the residuals signals. For instance, σz
is equal to 0, when ||χ̂z||∞ ⩽ D3, since dz cannot be distinguished from the faults; and
equal to dz, when ||χ̂z||∞ > D3, since the effect of the faults is distinguished from dz.
Then, the following proposition is introduced.

Proposition 2 Suppose that Assumptions 2, 5 and 6 hold, and assume that the fault fi is
strongly detectable, i.e.,

||f1||f1 > 2Q1(χ1)||IθD||, (44a)

||f2||f2 > 2Q2(χ1)||IθD||, (44b)

||f3||f3 > 2Q3(χ1)||IϕD||, (44c)

||f4||f4 > 2Q4(χ1)||IϕD||, (44d)

where || · ||fi = esssupt∈[tfi ,+∞)|| · ||, with tfi as the instant at which the fault of the i–th rotor
has occurred, and

Q1(χ1) = ||IθM
−1ζ−1(χ1)||f1 ,

Q2(χ1) = ||IθM
−1ζ−1(χ1)||f2 ,

Q3(χ1) = ||IϕM
−1ζ−1(χ1)||f3 ,

Q4(χ1) = ||IϕM
−1ζ−1(χ1)||f4 ,

with Iθ := diag(1, 0, 1, 1) ∈ R4×4 and Iϕ := diag(1, 1, 0, 1) ∈ R4×4. Then, the Algorithms
1 and 2 provide the isolation of the i–th fault with the warning signals Ai, indicating the
occurrence of a fault in the i–th rotor when Ai = 1, or indicating that the rotor is healthy when
Ai = 0.
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Algorithm 1: Rotors 1 and 2

Input: χ̂θ, D5, ρ1, ρ2, λ1;

Output: A1, A2;

1: if ||χ̂θ||∞ > D5 ∧ χ̂θ < 0

→ A1 = 1;

2: if ρ2 > 0→ A2 = 1;

3: else→ A2 = 0;

4: end

5: elseif ||χ̂θ||∞ > D5 ∧ χ̂θ > 0

→ A2 = 1;

6: if ρ1 > 0→ A1 = 1;

7: else→ A1 = 0;

8: end

9: elseif ||χ̂θ||∞ < D5 ∧ λ1 > 0

→ A1 = A2 = 1;

10: else→ A1 = A2 = 0;

11: end

Algorithm 2: Rotors 3 and 4

Input: χ̂ϕ, D4, ρ3, ρ4, λ2;

Output: A3, A4;

1: if ||χ̂ϕ||∞ > D4 ∧ χ̂ϕ < 0

→ A3 = 1;

2: if ρ4 > 0→ A4 = 1;

3: else→ A4 = 0;

4: end

5: elseif ||χ̂ϕ||∞ > D4 ∧ χ̂ϕ > 0

→ A4 = 1;

6: if ρ3 > 0→ A3 = 1;

7: else→ A3 = 0;

8: end

9: elseif ||χ̂ϕ||∞ < D4 ∧ λ2 > 0

→ A3 = A4 = 1;

10: else→ A3 = A4 = 0;

11: end

The proof of Proposition 2 is postponed to the Appendix.
Note that each Qi depends on the system parameters, and the pitch and roll angles.

Therefore, each Qi depends on the maneuvers of the vehicle. However, taking into
account that the quad–rotor does not perform aggressive maneuvers, such variables are
clearly bounded. The warning signal Ai indicates a fault in the i–th rotor, and prevents
from providing a wrong fault identification.

3.6 fault identification

The detection and isolation schemes do not determine the magnitude of the fault. For
active FTCs, the fault identification is necessary to compensate the effect of the faults.

For this purpose consider the fault isolation matrix A(t) := diag(A1(t),A2(t), A3(t),
A4(t)) ∈ R4×4 and the vector σ(t) := (σz(t),σϕ(t),σθ(t),σψ(t))T ∈ R4. Then, the
following proposition establishes the fault identification scheme.

Proposition 3 Suppose that Assumptions 2, 5 and 6 hold, and assume that the fault fi is
strongly detectable and it has been isolated. Then, the identification of the fault vector f is given
by

f̂(t) = A(t)M−1ζ−1(χ1) (σ(t) − χ̂3(t)) . (45)
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Figure 12: Flowchart of the proposed FD strategy

Moreover, the identification errors satisfy

Q1(χ1)

∥IθD∥−

∥∥∥∥∥∥∥∥
dzdθ
dψ


∥∥∥∥∥∥∥∥
 ⩽||f1 − f̂1||f1 ⩽ Q1(χ1) ∥IθD∥ , (46a)

Q2(χ1)

∥IθD∥−

∥∥∥∥∥∥∥∥
dzdθ
dψ


∥∥∥∥∥∥∥∥
 ⩽||f2 − f̂2||f2 ⩽ Q2(χ1) ∥IθD∥ , (46b)

Q3(χ1)

∥∥IϕD∥∥−
∥∥∥∥∥∥∥∥
dzdϕ
dψ


∥∥∥∥∥∥∥∥
 ⩽||f3 − f̂3||f3 ⩽ Q3(χ1)

∥∥IϕD∥∥ , (46c)

Q4(χ1)

∥∥IϕD∥∥−
∥∥∥∥∥∥∥∥
dzdϕ
dψ


∥∥∥∥∥∥∥∥
 ⩽||f4 − f̂4||f4 ⩽ Q4(χ1)

∥∥IϕD∥∥ . (46d)

The proof of Proposition 3 is postponed to the Appendix.
In order to better illustrate the proposed FD strategy, the flowchart, depicted in Fig.

12, provides a clear idea of the workflow that the proposed strategy carries out to detect,
isolate, and identify faults in multiple actuators.

3.7 comments on the fault diagnosis strategy

• According to Definition 3, faults that do not satisfy (39) are not detectable. This
implies that the effect of such faults cannot be distinguished from the effect of
disturbances. However, it is always possible to design robust controllers to com-
pensate such non–detectable faults (for more details, see, e.g., [2] and [3]).
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• The parameters of the proposed strategy are composed by the observer gains,
which are selected according to [18], as it is mentioned in Theorem 5, and the pa-
rameters of the proposed FD, i.e., the upper and lower bounds of the disturbances
given in (41), which are obtained by means of the FT–SMO through multiple ex-
perimental tests under nominal conditions, i.e., free of faults.

• The quad–rotor dynamics do not posses analytical redundancy that is indepen-
dent of the disturbances, i.e., the faults and the disturbances are matched.

• To obtain the identification of the i–th LOE, the relation γ̂i(t) = f̂i(t)/Ti(t) can be
used. Note that, due to the effect of disturbances, it is not possible to provide an
exact identification of the LOE.

• The proposed FD approach is able to detect, isolate and identify any type of
strongly detectable, bounded and Lipschitz faults, i.e., faults satisfying Assump-
tion 5. For instance, a compound fault given by bias, or freezing control signals,
and LOE faults. Nevertheless, the proposed FD will not be capable of distinguish-
ing the effect of each of them.

• The proposed method can also be applied to other nonlinear systems with the
same FD problem, i.e., with disturbances and faults acting on the same input
channel. However, it is required that the disturbances, faults and control inputs
could be taken to a linear form as in (76).

• The proposed FD is not limited by the number of faults but by the type of faults.
Evidently, if there does not exist a controller ensuring a certain level of perfor-
mance, and the quad–rotor crashes, the proposed FD is senseless. But not only the
proposed FD, any FD approach is meaningless in such a situation. In this sense, a
certain performance level should be a priori guaranteed by a robust controller.

• To the best of our knowledge, there are very few works related to the development
of fault diagnosis methodologies for the quad–rotor system, addressing the prob-
lem of distinguishing between faults and disturbances. The most similar work is
given in [25]. However, a linearized model of the quad–rotor is considered, ne-
glecting the nonlinearities and coupled dynamics that characterize this system.
Moreover, disturbances are only considered in the attitude subsystem, and only
simulation results are provided. In this sense, there is not a fair comparison frame-
work.

3.8 experimental results

The proposed FD strategy is applied to the QBall2 by Quanser depicted by Fig. 4. For
more details about the Qball2, the experimental platform, and the parameters of the
model (33), please see Appendix B.

Multiple experimental tests have been implemented under nominal conditions in or-
der to obtain the upper and lower bounds of the disturbances given in (41). Once the
FD parameters are obtained, many experimental tests have been carried out to validate
the performance of the proposed FD strategy. The results from 5 experiments are shown
in the following.
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Two LOE are considered, one in rotor 1 with an LOE of 20% starting at tf1 = 15 [s]
and finishing at t⋆f1 = 60 [s], and another one in rotor 2 with an LOE of 30% starting
at tf2 = 45 [s]. The faults are injected by software through the command thrusts before
sending them to the vehicle.

The continuous STSMC, given by (10), (11) and (18) (where a possible selection for
the gains is in Table 3), is designed for its robust properties, as is shown in [2]. For these
experiments, wind gusts are considered as external perturbations. Such wind gusts are
generated by means of an industrial fan that provides a wind velocity approximately of
4[m/s], over a diagonal of the X–Y–axis (see Fig. 44).

The desired trajectory is given as

xd(t) = 0.2(arctan(15) + arctan(t− 15)) cos(πt/6), (47a)

yd(t) = 0.2(arctan(15) + arctan(t− 15)) sin(πt/6), (47b)

zd(t) = 0.63+ 0.25 tanh(t− 7.5) + 0.1 tanh(t/3− 12), (47c)

ψd(t) = 0, (47d)

and, the gains of the FT–SMO (37) are designed according to Theorem 5, i.e., K1 =

6.463I4, K2 = 4.743I4 and K3 = 11I4, with δ̄ = 10.
The following experimental results consider the expressions given in (20), with nt =

10 and ns = 50000. All the experiments have been implemented with the Euler’s in-
tegration method with a sampling–time equal to hs = 0.002[s]. The following figures
show the results corresponding to 5 tests, where the average data are depicted by a
solid line and are represented as the variable with a bar. In order to obtain the upper
and lower bounds of the disturbances, 10 tests in nominal conditions were performed.

In order to diminish the noise effect in the residual signals χ̂n, with n = z,ϕ, θ,ψ,
provided by the FT–SMO, these are evaluated through the following test function [45]

µ(χ̂n(t)) =
1

∆T

∫t
t−∆T

χ̂n(τ)dτ,

which provides a filtered version of each residual signal. The behavior of these signals,
with ∆T = 1, is shown in Fig. 13. In order to improve the performance of the proposed
FD, a threshold of 100 samples, i.e., 0.2 seconds, gives an estimated mean time between
false alarms and potential faults (for more details see Chpt. 6 in [45]).

After the occurrence of the fault f1 at tf1 = 15 [s], the residual signals χ̂z and χ̂θ are
notably affected. When f2 occurs, at tf2 = 45 [s], the effect on χ̂z is even greater, χ̂ψ is
notably affected, while the effect of both faults is compensated in the residual χ̂θ. Once
rotor 1 is recovered at t⋆f1 = 60 [s], the residuals χ̂z and χ̂ψ decrease, approaching their
lower thresholds, while the effect on χ̂θ is greater. The residual χ̂ϕ remains within its
thresholds throughout all tests, where the roll angle ϕ is not affected by faults on rotors
1 and 2.

The detection scheme described in (40) is shown in Fig. 14, where || ¯̂χ3||∞ exceeds the
value of ||D|| in an average time t̄d = 15.42[s], indicating the existence of an actuator
fault.

The alert signals of the isolation scheme are shown in Fig. 15 where the alert signals
A3 and A4 remain deactivated during all tests, A1 is activated in an average time t̄1 =

15.42 [s] and deactivated at t̄⋆1 = 60.52 [s], while A2 is activated in an average time
t̄2 = 45.53 [s].
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Figure 13: Residual signals generated by the FT–SMO. The dashed signals represent the results of
each of the 5 experimental tests, while the solid line represents the average of these functions.
The shaded light gray area depicts the time when fault f1 is active, the gray area when fault
f2 is active, and the dark gray when both of them are active
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Figure 14: Fault detection. The dashed signals represent the results of each of the 5 experimental tests,
while the solid line represents the average of these functions
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Figure 15: Fault isolation

Table 7: Properties of the performance
indexes ē1RMS(t) and ē2RMS(t)

LOE Mean–eRMS Mean–e% min–eRMS
γ̂1 0.018 9% 0.011

γ̂2 0.021 7% 0.010

The fault identification scheme is implemented through (45), and its performance is
shown in Fig. 16, for the LOE on rotor 1, and in Fig. 17, for the LOE on rotor 2.

In order to better illustrate the performance, the following performance index is pro-
posed

FRMS(t) =

(
1

∆T

∫T
t−∆T

∥F(σ)∥2 dσ

)1/2
, (48)

where FRMS : R → R⩾0 represents the root mean square value of the function F :

R → Rn. The results of the performance indexes for the identification errors e1(t) =

γ1(t) − γ̂1(t) and e2(t) = γ2(t) − γ̂2(t), with ∆T = 1, are depicted in Fig. 18. Also, the
minimum, the mean value and the mean percentage error, are computed and illustrated
in Tab. 7.

These results show that, moments after the existence of a fault, the proposed FD
scheme successfully detects, isolates and identifies the faults, which allows us to apply
corrective actions for an active FTC.

For illustrative purposes, the control objective is shown in Fig. 19, i.e., the trajectory
tracking of x, y, z and ψ, where the quad–rotor fulfills the trajectory task being a passive
fault–tolerant control given by the robustness of the controller, however, it is notorious
that the tracking error is greater due to the faults present in the actuators.
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Figure 16: Fault identification on rotor 1. The dashed signals represent the results of each of the 5
experimental tests, while the solid line represents the average of these functions
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Figure 17: Fault identification on rotor 2. The dashed signals represent the results of each of the 5
experimental tests, while the solid line represents the average of these functions
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Figure 18: LOE error indexes
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Figure 19: Position and attitude of the QBall2. The dashed signals represent the results of each of the
5 experimental tests, while the solid line represents the average of these functions. The shaded
light gray area depicts the time when fault f1 is active, the gray area when fault f2 is active,
and the dark gray when both of them are active
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A C T I V E FA U LT A C C O M M O D AT I O N C O N T R O L D E S I G N

Summary. In this chapter, the problem statement about the design of a controller to counteract
the effect of multiple faults is formally introduced. Then, an active FTC, that makes use of the
FD designed in Chapter 3, is designed based on the actuator fault accommodation methodology
to partially compensate the effect of possible multiple LOEs despite the presence of disturbances.
The proposed FAC is independent of the control–loop, allowing the usage of a baseline robust–
nominal controller. Such a baseline controller is designed as the HOSMCs given in Chapter 2.
Experimental results show the effectiveness of this strategy.

4.1 problem statement

Let us recall the quad–rotor dynamics:

ξ̇1 = ξ2, (49a)

ξ̇2 = gξ(η1)um −G−Λξξ2 + dξ, (49b)

η̇1 = η2, (49c)

η̇2 = Jτ+ Ξwη(η2) −Ληη2 + dη, (49d)

where ξ1 := (x,y, z)T ∈ R3, ξ2 := (ẋ, ẏ, ż)T ∈ R3, η1 := (ϕ, θ,ψ)T ∈ R3 and η2 :=

(ϕ̇, θ̇, ψ̇)T ∈ R3 represents the quad–rotor positions, linear velocities, angles and angular
velocities , respectively. The term um := uz/m, with uz ∈ R representing the main
thrust and m ∈ R+ the mass of the quad–rotor. τ := (τϕ, τθ, τψ)T ∈ R3 represent
the angular moment vector with τϕ, τθ and τψ ∈ R as the roll, pitch and yaw angular
moments, respectively. dξ := (dx,dy,dz)T ∈ R3 and dη := (dϕ,dθ,dψ)T ∈ R3 represent
disturbances given by uncertainties and external perturbations, e.g., some unmodeled
dynamics and wind gusts.

The relation between the control inputs uz, τϕ, τθ, τψ and the thrusts Ti, generated
by the i–th rotor, is given by

uz

τϕ

τθ

τψ


︸ ︷︷ ︸

u

=


1 1 1 1

0 0 L −L

L −L 0 0

Kτ Kτ −Kτ −Kτ


︸ ︷︷ ︸

M


T1

T2

T3

T4


︸ ︷︷ ︸

T

, (50)

where u is the control input vector, T is the thrust vector and M is the full rank matrix
that relates the control signals to the thrusts. The constant L represents the distance
between the motors and the center of mass of the quad–rotor, while Kτ represents the
thrust coefficient.

Therefore, in presence of faults, the current command thrust T̄ is given as

T̄ (t) = (I4 − Γ (t)) T (t) = T (t) − f(t), (51)

45
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where Γ(t) := diag(γ1 (t) ,γ2 (t) ,γ3 (t) ,γ4 (t)) ∈ R4×4 is the LOE matrix and f(t) =

Γ(t)T (t) := (f1 (t) , f2 (t) , f3 (t) , f4 (t))T ∈ R4 is the fault vector. The term γi(t) ∈ (0, 1)
represents the case of an LOE fault in the i–th rotor. The case of γi(t) = 0 represents a
healthy rotor, while γi(t) = 1 means that the i–th actuator is fully damaged. Note that
the current command thrust T̄ is not measured and therefore is unknown.

The goal in this chapter is to design an FAC to achieve the tracking of a desired
trajectory under the influence of possible multiple LOEs, uncertainties and external
perturbations. It is assumed that only the positions and angles of the vehicle are mea-
surable.

In this sense, the proposed FAC uses the FD information in a baseline robust–nominal
controller to increase its fault tolerance through the fault identification, i.e.,

T(t) =M−1u(t) + f̂(t), (52)

where u is the nominal control input vector. Hence, the current command thrust, given
in (51), can be written as T̄(t) =M−1u(t) − f̃(t), with f̃ = f− f̂.

In order to apply the proposed fault accommodation strategy, a baseline robust–
nominal control is designed based on the HOSMCs given in Chapter 2.

4.2 baseline robust–nominal control design

In order to highlight the fault accommodation properties, baseline robust–nominal
controllers are proposed based on a combination between PID controllers (for the posi-
tion subsystem) and CTCs (for the attitude subsystem) (for more details, please refer to
[2]).

However, it is possible to apply different HOSMCs for the design of the attitude
controllers, as it was described in Section 2, such as the STSMC, the NTSNC, or some
HOSMC based on discontinuous integral action (see, e.g., [90], and [91]).

Recall that the tracking error vectors are given as

eξ = (ex, ey, ez)
T = ξ1 − ξd, eη =

(
eϕ, eθ, eψ

)T
= η1 − ηd,

εξ = (εx, εy, εz)
T = ξ2 − ξ̇d, εη =

(
εϕ, εθ, εψ

)T
:= η2 − η̇d,

where ξd = (xd,yd, zd)T ∈ R3 and ηd = (ϕ⋆, θ⋆,ψd)T ∈ R3 are the desired position
and attitude vectors, respectively.

The references signals ϕ⋆ and θ⋆ must be properly designed in order to achieve
the tracking trajectory task. Such as in Chapter 2, Section 2.3.2, a virtual control ν =

(νx,νy,νz)T ∈ R3 is introduced in the position error dynamics, i.e.,

ėξ = εξ, (53a)

ε̇ξ = ν+wξ(η1,uz,ν) −Λξξ2 + dξ − ξ̈d, (53b)

ėη = εη, (53c)

ε̇η = Jτ+ Ξwη(η2) −Ληη2 + dη − η̈d, (53d)

where the disturbance term wξ(η1,uz,ν) = umgξ(η1) −G− ν. Thus, selecting appro-
priately the virtual control ν, the command signals uz, ϕ⋆ and θ⋆ can be computed as
in (10).
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Figure 20: Flowchart of the proposed FAC strategy

Then, the virtual controllers ν = (νx,νy,νz)T , and the angular moment vector τ are
designed as

ν = ν⋆ +
gξ(η1)

m

4∑
i=1

f̂i(t), (54a)

τ = τ⋆ + IηMf̂(t), (54b)

where Iη := (03×1, I3) ∈ R3×4, and the fault estimation f̂ is computed through the FD
described in Section 3. Such a term f̂ represents the fault accommodation. The baseline
robust–nominal controllers are given as

ν⋆ = ν̄+Λξξ2 + ξ̈d, (55a)

τ⋆ = J−1(τ̄− Ξwη(η2) +Ληη2 + η̈d). (55b)

The term ν̄ is designed as the PID controller given in (12), while each term of τ̄ :=

(τ̄ϕ, τ̄θ, τ̄ψ) ∈ R3 is designed as the CTC given in (17). Such baseline robust–nominal
controllers have an intrinsic passive fault tolerance due to its robustness properties [2].

Then, the following result can be established.

Theorem 6 Let the FAC (54) and the baseline robust–nominal controllers (55) be applied to
system (49). Suppose that Assumptions 1, 2, 3 and 5 hold. Then, the position tracking error
dynamics is ISS with respect to dξ and f̃; while the attitude tracking error (eη, εη) = 0 is
UFTS.

The proof of Theorem 6 is postponed to the Appendix.
To summarize, the proposed strategy allows us to achieve the trajectory tracking for

a quad–rotor under the presence of LOE on the rotors and disturbances. A flowchart of
the proposed actuator FAC is depicted by Fig. 20.
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Figure 21: Trajectories of the quad–rotor. Position. The shaded light gray area depicts the time when
fault f1 is active, and the dark gray when both faults are active

4.3 experimental results

In order to show the performance of the proposed FAC, experimental tests are pre-
sented on the QBall2 by Quanser depicted by Fig. 4. For more details about the Qball2,
the experimental platform, and the parameters of the model (49), please see Appendix
B. For this purpose, a comparison is presented between the baseline robust–nominal
controller, given by the combination of the PID controllers and the CTCs, and the pro-
posed FAC. Both controllers are subject to the same faults and they are designed using
the same gains.

The desired tracking task is given by the helical trajectory given in (47). The rotor
LOE faults are considered as

γ1(t) =

0, ∀t < 15,

0.2, ∀t ⩾ 15,
γ3(t) =

0, ∀t < 45,

0.2, ∀t ⩾ 45,

while the rotors 2 and 4 are fault–free. The experiment has been implemented with the
Euler’s integration method with a sampling–time equal to hs = 0.002[s].

The tracking task, in the translational coordinates and in the yaw angle, is illustrated
in Figs. 21 and 22, respectively. Despite the LOE faults, both controllers make the quad–
rotor track the desired trajectory. However, adding the fault allocation scheme in the
baseline robust–nominal controller, the position and yaw tracking performance and the
yaw angle is evidently improved.

To obtain the identification of the i–th LOE, the relation γ̂i(t) = f̂i(t)/Ti(t) can be
used. The fault identification of each fault is depicted in Figs. 23 and 24. Once a fault
occurs, the fault identification module approximates the magnitude of each fault. On
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Figure 22: Quad–rotor yaw angle. The shaded light gray area depicts the time when fault f1 is active,
and the dark gray when both faults are active

Table 8: Properties of the tracking performance indexes
exRMS, eyRMS, ezRMS and ēψRMS.

Controller x y z ψ

FAC 0.0683 0.0750 0.0754 0.7092

CTC 0.1158 0.1323 0.1695 1.3391

the other hand, the thrust generated by each rotor is shown in Fig. 25, where the control
effort in the FAC is more aggressive.

In order to better illustrate the performance, the following performance index is pro-
posed

FRMS(t) =

(
1

∆T

∫T
t−∆T

∥F(σ)∥2 dσ

)1/2
, (56)

where FRMS : R → R⩾0 represents the root mean square value of the function F :

R → Rn. In this sense, the average value of the root mean square of each position error
signal and the yaw angle error are computed and they are illustrated in Tab. 8. The first
5 seconds of each experimental test are not taken into account in order to avoid the
initial condition effect. Note that using the same controller gains, and under the effect
of the same faults, the FAC improves the performance in each coordinate.
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Figure 24: Fault identification on rotor 3
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Summary. In this chapter, the problem statement about the design of a controller to coun-
teract the effect of a rotor failure is formally introduced. Afterward, an active FTC is designed
to deal with the trajectory tracking problem in a quad–rotor under a rotor failure and in the
presence of disturbances. The rotor failure is isolated using the FD designed in Chapter 3, and
then, a combination of an FT–SMO, PID controllers, and HOSMCs is proposed. Such a strategy
allows the position tracking without breaking physical restrictions, such as the sign of pitch and
roll moments. Numerical simulations show the feasibility of the proposed strategy.

5.1 problem statement

Let us recall the quad–rotor dynamics:

ξ̇1 = ξ2, (57a)

ξ̇2 = gξ(η1)um −G−Λξξ2 + dξ, (57b)

η̇1 = η2, (57c)

η̇2 = Jτ+ Ξwη(η2) −Ληη2 + dη, (57d)

where ξ1 := (x,y, z)T ∈ R3, ξ2 := (ẋ, ẏ, ż)T ∈ R3, η1 := (ϕ, θ,ψ)T ∈ R3 and η2 :=

(ϕ̇, θ̇, ψ̇)T ∈ R3 represent the quad–rotor positions, linear velocities, angles and angular
velocities , respectively. The term um := uz/m, with uz ∈ R representing the main
thrust and m ∈ R+ the mass of the quad–rotor. τ := (τϕ, τθ, τψ)T ∈ R3 represents
the angular moment vector with τϕ, τθ and τψ ∈ R as the roll, pitch and yaw angular
moments, respectively. dξ := (dx,dy,dz)T ∈ R3 and dη := (dϕ,dθ,dψ)T ∈ R3 represent
disturbances given by uncertainties and external perturbations, e.g., some unmodeled
dynamics and wind gusts.

The relation between the control inputs uz, τϕ, τθ, τψ and the thrusts Ti, generated
by the i–th rotor, is given by

uz

τϕ

τθ

τψ


︸ ︷︷ ︸

u

=


1 1 1 1

0 0 L −L

L −L 0 0

Kτ Kτ −Kτ −Kτ


︸ ︷︷ ︸

M


T1

T2

T3

T4


︸ ︷︷ ︸

T

, (58)

where u is the control input vector, T is the thrust vector and M is the full rank matrix
that relates the control signals to the thrusts. The constant L represents the distance
between the motors and the center of mass of the quad–rotor, while Kτ represents the
thrust coefficient.

Therefore, in presence of failures, the current command thrust T̄ is given as

T̄ (t) = (I4 − Γ (t)) T (t) = T (t) − f(t), (59)

53
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where Γ(t) := diag(γ1 (t) ,γ2 (t) ,γ3 (t) ,γ4 (t)) ∈ R4×4 is the failure matrix and f(t) =
Γ(t)T (t) := (f1 (t) , f2 (t) , f3 (t) , f4 (t))T ∈ R4 is the fault vector. The binary term γi(t)

represents the presence or absence of a failure in the i–th rotor. The case of γi(t) = 0

represents a healthy rotor, while γi(t) = 1means that the i–th actuator is fully damaged.
Note that the current command thrust T̄ is not measured and therefore is unknown.

Note that in a rotor failure scenario, relation (58) ceases to be bijective. For instance,
in case of a failure on T1, the relation between the control inputs and the remaining
thrusts is given by 

uz

τϕ

τθ

τψ

 =


1 1 1

0 L −L

−L 0 0

Kτ −Kτ −Kτ


 T2

T3

T4

 . (60)

Then, a rotor failure implies the loss of a degree of freedom. Among these, the roll
and pitch angles are vital since they are essential for the x–y translational trajectory
tracking. Moreover, in order to avoid a possible ground collision, the altitude must
be controllable. On the other hand, the impossibility to control the yaw angle implies
loosing the heading of the vehicle, which is not essential in accomplishing a tracking
task.

Therefore, from (60), it is easy to see that the control input τψ is now linearly depen-
dent on uz and τθ, i.e.,

τψ(t) = Kτ

(
−uz(t) − 2

τθ(t)

L

)
, ∀t ⩾ tf1, (61)

where tf1 represents the instant at which the rotor 1 failure has occurred. Similar ex-
pressions can be obtained by considering a failure on the rotors 2, 3 or 4, respectively,
as

τψ(t) = Kτ

(
−uz(t) + 2

τθ(t)

L

)
, ∀t ⩾ tf2, (62a)

τψ(t) = Kτ

(
uz(t) + 2

τϕ(t)

L

)
, ∀t ⩾ tf3, (62b)

τψ(t) = Kτ

(
uz(t) − 2

τϕ(t)

L

)
, ∀t ⩾ tf4, (62c)

where tfi represents the instant at which the failure of the i–th rotor has occurred.
Therefore, the FTC design is carried out taking into account such a linear dependence
caused by a single rotor failure.

In this sense, the goal in this chapter is to design an active FTC to achieve the tracking
of a desired trajectory under the influence of a rotor failure, uncertainties and external
perturbations. It is assumed that only the positions and angles of the vehicle are mea-
surable.

The proposed strategy is composed of a full FT–SMO, that provides a full state es-
timation from the measurable output and identifies some type of disturbances, and a
combination of PID controllers (in order to generate the main thrust and the desired
pitch an roll angles) and Continuous HOSMCs (for the angular moments). Firstly, the
design of the FT–SMO is presented.

It is important to mention that the following FT–SMO makes use of the FD designed
in Chapter 3 in order to isolate and identify the current failure.
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5.2 full finite–time sliding–mode observer

An additionally full state FT–SMO, based on the FD scheme, is proposed [18]

˙̂ξ1 = ξ̂2 + K̂1φ1(êξ), (63a)

˙̂ξ2 =
1

m

4∑
i=1

(
Ti(t) − f̂i

)
gξ(η1) −G−Λξξ̂2 + ξ̂3 + K̂2φ2(êξ), (63b)

˙̂ξ3 = K̂3φ3(êξ), (63c)
˙̂η1 = η̂2 + K̂4φ1(êη), (63d)
˙̂η2 = JIηM(T(t) − f̂) + Ξwη(η̂2) −Ληη̂2 + η̂3 + K̂5φ2(êη), (63e)
˙̂η3 = K̂6φ3(êη), (63f)

where Iη := (03×1, I3) ∈ R3×4; êξ = ξ1− ξ̂1 ∈ R3 and êη = η1− η̂1 ∈ R3 are the output
errors, respectively; the nonlinear output injections φ1, φ2, φ3 : R3 → R3 are given
as φ1(s) := ⌈s⌋ 23 , φ2(s) := ⌈s⌋ 13 and φ3(s) := ⌈s⌋0, for any s ∈ R3, with some design
diagonal gain matrices K̂j = diag(k̂j1, k̂j2, k̂j3) ∈ R3×3 with j = 1, 6.

Define the state estimation error as êf := (êξ, ε̂ξ, êη, ε̂η, ϵ̂ξ, ϵ̂η)T ∈ R18, where ε̂ξ :=

ξ2 − ξ̂2 ∈ R3 and ε̂η := η2 − η̂2 ∈ R3 are the linear and angular velocity estimation
errors, respectively, while ϵ̂ξ := dξ − ξ̂3 and ϵ̂η := dη − η̂3 are the estimation errors
of the disturbances. In this sense, the total uncertainty affecting the estimation error
between system (57) and the FT–SMO (63) is given by

∆ =

(
∆ξ

∆η

)
:=

(
dξ −Λξε̂ξ

dη −Ληε̂η + Ξ(wη(η2) −wη(η̂2))

)
.

Due to Assumptions 2 and 3, such uncertainties are bounded and Lipschitz, i.e., ∆ ∈
Lδ and ∆̇ ∈ Lδ̄, with known positive constants δ and δ̄.

The following theorem describes the finite–time convergence properties of the FT–
SMO (63).

Theorem 7 [18] Let the observer (63) be applied to system (57). Suppose that Assumptions 2,
3 and 5 hold, assume that the failure has been isolated, and that the observer gains are selected
as K̂1 = K̂4 = 2δ̄

1
3 I3, K̂2 = K̂5 = 1.5δ̄

1
2 I3 and K̂3 = K̂6 = 1.1δ̄I3; then, at steady state êf = 0,

the state estimation error dynamics is UFTS.

Remark 2 The observer (63) is insensitive to the effect of both, disturbances and faults. However,
the control inputs uz and τ, used in the observer, are the real ones, i.e., taking into account the
fault identification given in Chapter 3, Section 3.6, depending on the rotor failure. Therefore, the
proposed FT–SMO provides an estimation only of the disturbances.

Taking into account the Remark 1 (convergence time of the observer before the failure
occurrence), and according to Theorem 7, êf = 0 is UFTS, which implies that ξ̂1(t) =

ξ1(t), ξ̂2(t) = ξ2(t), ξ̂3(t) = dξ(t), η̂1(t) = η1(t), η̂2(t) = η2(t) and η̂3(t) = dη(t), for
all t ⩾ T2, where T2 is the observer convergence time. Therefore, if Assumptions 2, 3

and 5 hold, the FT–SMO (63) provides the following disturbance identifications for all
t ⩾ T2

ξ̂3(t) = (ξ̂x(t), ξ̂y(t), ξ̂z(t))T = dξ(t), (64a)

η̂3(t) = (η̂ϕ(t), η̂θ(t), η̂ψ(t))T = dη(t). (64b)
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5.3 control strategy

Due to the under–actuated nature of the quad–rotor and the failure of one of the
rotors, it is not possible to control all the positions and angles, independently. Moreover,
based on (61) and (62), it is not possible to stabilize the yaw angle due to the effect of
the failure. Hence, the proposed control strategy is designed in order to allow the yaw
angular velocity to remain bounded and the position tracking to be achieved even in
the presence of some disturbances.

The proposed strategy is based on two cascading loops. The internal loop controls
the attitude of the vehicle, while the external loop contains the controllers of the trans-
lational coordinates. In this way, the external loop generates a desired roll and pitch
angles, that the internal loop will use in the attitude control.

Define the tracking error vectors as

eξ = (ex, ey, ez)T = ξ1 − ξd,

εξ = (εx, εy, εz)T = ξ2 − ξ̇d,

ēη := (eϕ, eθ)T = Hη1 − η̄d,

ε̄η := (εϕ, εθ)T = Hη2 − ˙̄ηd,

with

H :=

(
1 0 0

0 1 0

)
,

and where ξd = (xd,yd, zd)T ∈ R3 and η̄d = (ϕ⋆, θ⋆)T ∈ R2 are the desired position
and attitude vectors, respectively.

The references signals ϕ⋆ and θ⋆, as well as the control input uz, must be properly
designed in order to achieve a desired position ξd. To do this, a virtual control ν :=

(νx,νy,νz)T ∈ R3 is introduced in the position error dynamics, i.e.,

ėξ = εξ, (65a)

ε̇ξ = ν+wξ(η1,uz,ν) −Λξξ2 + dξ − ξ̈d, (65b)
˙̄eη = ε̄η, (65c)
˙̄εη = H(Jτ+ Ξwη(η2) −Ληη2 + dη) − ¨̄ηd, (65d)

where the disturbance term wξ(η1,uz,ν) = (wx,wy,wz) = umgξ(η1) −G− ν. Thus,
the virtual control ν may be chosen as follows

νx = um(cϕ⋆sθ⋆cψ+ sϕ⋆sψ), (66a)

νy = um(cϕ⋆sθ⋆sψ− sϕ⋆cψ), (66b)

νz = umcϕ⋆cθ⋆ − g. (66c)

Note that, different from (10), the measured yaw angle ψ is considered in the previous
set of expressions.

The main thrust uz, as well as the references signals ϕ⋆ and θ⋆, are calculated from
(66), i.e.,

uz = m
√
ν2x + ν

2
y + (νz + g)2, (67a)

ϕ⋆ = arcsin
[
u−1m (νxsψ− νycψ)

]
, (67b)

θ⋆ = arctan[(νz + g)−1(νxcψ+ νysψ)]. (67c)
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Therefore, the objective now is to design the virtual controller ν and the angular
moments τϕ and τθ such that the tracking error vector e := (eξ, εξ, ēη, ε̄η) ∈ R10

converges to zero despite the complete loss of a rotor and disturbances. In order to
fulfill such an objective, it will be demonstrated that system (65a)–(65b) is ISS with
respect to wξ and that system (65c)–(65d) is UFTS. Then the behavior of wξ will be
discussed, and finally, the yaw dynamics will be analyzed.

5.3.1 Position Control Design

Let us propose the following PID virtual controller for as

ν = Kiξēξ +Kpξeξ +Kdξεξ +Λξξ2 − ξ̂3 + ξ̈d, (68)

where Kiξ = diag(kx1,ky1,kz1) ∈ R3×3, Kpξ = diag(kx2,ky2,kz2) ∈ R3×3, Kdξ =

diag(kx3,ky3,kz3) ∈ R3×3 and ēξ := (ēx, ēy, ēz)T ∈ R3 with ēx :=
∫t
0 ex(τ)dτ, ēy :=∫t

0 ey(τ)dτ and ēz :=
∫t
0 ez(τ)dτ. Then, the following result can be established.

Lemma 1 [2] Let the control (68) be applied to system (57), and assume that Assumptions 1, 2
and 3 hold. Then, system (65a)–(65b) is ISS with respect to wξ.

5.3.2 Pitch and Roll Control Design

The attitude tracking error dynamics (65c)–(65d) can be viewed as a decoupled dy-
namics with two independent control inputs. Since the rotor thrust Ti is proportional
to the square of the rotation speed Ωi, i.e., Ti = kiΩ

2
i , with ki as a positive constant,

then Ti ⩾ 0. Therefore, after the complete loss of a single rotor, the angular moments
τθ = L(T1 − T2) and τϕ = L(T3 − T4) are severely affected.

In the occurrence of a failure in the first rotor, it follows that τθ(t) = −LT2 ⩽ 0, for
all t ⩾ tf1. Consequently, such a control must be negative. A failure in the second rotor
requires a positive control since τθ(t) = LT1 ⩾ 0, for all t ⩾ tf2. In the same way, a
failure in the third rotor requires a negative control since τϕ(t) = −LT4 ⩽ 0, for all
t ⩾ tf3, while a failure in the fourth rotor requires a positive control since τϕ(t) =

LT3 ⩾ 0, for all t ⩾ tf4. Therefore, such sign constraints must be taken into account for
the attitude control design.

Consider the functions

fϕ(η2, η̂ϕ, ϕ̈⋆) := −bϕθ̇ψ̇+
aϕ

Jx
ϕ̇− η̂ϕ + ϕ̈⋆,

fθ(η2, η̂θ, θ̈⋆) := −bθϕ̇ψ̇+
aθ
Jy
θ̇− η̂θ + θ̈⋆.

Then, in order to satisfy the sign conditions, τϕ and τθ are designed according to
Algorithm 1.



58 fault–tolerant control for a rotor failure

Algorithm 3: Pitch and Roll Control Design

Input: τ̄ϕ, τ̄θ, fϕ, fθ
Output: τϕ, τθ
1: if γ1 = 0

2: τϕ = Jx(τ̄ϕ + fϕ(η2, η̂3, ϕ̈⋆))

3: τθ =
Jy
2 (τ̄θ + fθ(η2, η̂3, θ̈⋆) − |τ̄θ + fθ(η2, η̂3, θ̈⋆)|)

4: elseif γ2 = 0

5: τϕ = Jx(τ̄ϕ + fϕ(η2, η̂3, ϕ̈⋆))

6: τθ =
Jy
2 (τ̄θ + fθ(η2, η̂3, θ̈⋆) + |τ̄θ + fθ(η2, η̂3, θ̈⋆)|)

7: elseif γ3 = 0

8: τϕ = Jx
2 (τ̄ϕ + fϕ(η2, η̂3, ϕ̈⋆) − |τ̄θ + fϕ(η2, η̂3, ϕ̈⋆)|)

9: τθ = Jy(τ̄θ + fθ(η2, η̂3, θ̈⋆))

10: elseif γ4 = 0

11: τϕ = Jx
2 (τ̄ϕ + fϕ(η2, η̂3, ϕ̈⋆) + |τ̄θ + fϕ(η2, η̂3, ϕ̈⋆)|)

12: τθ = Jy(τ̄θ + fθ(η2, η̂3, θ̈⋆))

13: end

Note that the isolation of the failure required in Algorithm 3 is provided by the FD
strategy described in Section 3.

The terms τ̄ϕ and τ̄θ are designed by the CTC [20] given in (17), and a possible
selection for the gains is in Table 2. Then, the following result can be established.

Lemma 2 Let the attitude control signals, given in Algorithm 3, be applied to system (57), and
assume that Assumptions 1, 2 and 3 hold. Suppose that the disturbances dθ and dϕ satisfy the
following constraints

dθ(t) ⩾
aθ
Jy
θ̇(t) − bθϕ̇(t)ψ̇(t) + θ̈⋆, ∀t ⩾ tf1, (69a)

dθ(t) ⩽
aθ
Jy
θ̇(t) − bθϕ̇(t)ψ̇(t) + θ̈⋆, ∀t ⩾ tf2, (69b)

dϕ(t) ⩾
aϕ

Jx
ϕ̇(t) − bθϕ̇(t)ψ̇(t) + ϕ̈⋆, ∀t ⩾ tf3, (69c)

dϕ(t) ⩽
aϕ

Jx
ϕ̇(t) − bϕθ̇(t)ψ̇(t) + ϕ̈⋆, ∀t ⩾ tf4, (69d)

for a particular rotor failure. Then, at steady state (ēη, ε̄η) = 0, the system (65c)-(65d) is UFTS.

The proof of Lemma 2 is postponed to the Appendix.
The constraints (69) characterize the set of admissible disturbances and desired tra-

jectories that the quad–rotor can tolerate, under the effect of a rotor failure, in order to
ensure that the thrusts on the rotors are always positive. In order to verify such con-
straints, the information of the finite–time disturbance estimation, given by η̂3 in (64b),
is used. For the fault–free case, τϕ and τθ are designed according to lines 2 and 9 of
Algorithm 3, i.e., as in [2].

As mentioned in Lemma 2, the attitude tracking error dynamics strictly depends on
the constraints given in (69). Such constraints depend on both, the desired trajectory
and the magnitude of the disturbance. Disturbances are intrinsically unknown and it is
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not possible to manipulate them for convenience. However, the theoretically established
bounds, given in (69), can be manipulated by changing the desired trajectory. For illus-
tration purpose, consider the following example.

Example 1. Consider that the first rotor has failed; a tracking task given by xd = yd = 0 and
zd = 1; and assume the disturbances are such that dξ = 0, dϕ ∈ LD4 , dθ ⩾ 0 and dψ ∈ LD6 .

Then, since the position tracking error is UES, based on (68), it follows that

lim
t→∞ vx(t) = lim

t→∞ vy(t) = lim
t→∞ vz(t) = 0,

and based on (67), one obtains

lim
t→∞ϕ⋆(t) = lim

t→∞ θ⋆(t) = lim
t→∞ ϕ̇⋆(t) = lim

t→∞ θ̇⋆(t) = 0.
Thus, due to the fact that the attitude error dynamics is UFTS, the constraint (69a) is equivalent
to

dθ(t) ⩾
aθ
Jy
θ̇⋆(t) − bθϕ̇⋆(t)ψ̇+ θ̈⋆(t) = 0.

Therefore, (69a) holds if and only if dθ(t) ⩾ 0. This example perfectly illustrates the fact that
constraints (69) could be manipulated by means of the desired trajectory in order to ensure its
fulfillment.

It is possible to apply different HOSMCs for the design of the angular moments τ̄ϕ
and τ̄θ, as it was described in Section 2, such as the STSMC, the NTSNC, or some
HOSMC based on discontinuous integral action (see, e.g., [90], and [91]).

5.3.3 Virtual Control Disturbance Term

According to Lemma 1, it is given that the dynamics for eξ and εξ is ISS with respect
to wξ. Now, let us recall that such a disturbance term can be written as

wξ(η1,u,ν) =
uz

m


 cϕsθcψ+ sϕsψ

cϕsθsψ− sϕcψ

cϕcθ

−

 cϕ⋆sθ⋆cψ+ sϕ⋆sψ

cϕ⋆sθ⋆sψ− sϕ⋆cψ

cϕ⋆cθ⋆


 .

Such a function is Lipschitz in η1 and continuous in uz, then it follows that ||wξ|| ⩽
Lw||ēη||, for all η1,ν ∈ R3 and uz ∈ R, for some positive Lw > 0. Then, as a result of
Lemma 2, it follows that ēη(t) = 0, for all t ⩾ Tη > 0. Therefore, the disturbance term
wξ vanishes when ēη = 0. Moreover, the previous statement implies that (eξ, εξ) = 0

will be UES.

5.3.4 Yaw Dynamics

The yaw dynamics, which cannot be controlled in the occurrence of a rotor failure
due to the linear dependence of τψ with respect to uz, τϕ and τθ, as shown in (61) and
(62); is given by

ψ̈ =
τψ

Jz
+ bψϕ̇θ̇−

aψ

Jz
ψ̇+ dψ. (70)
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Based on the results given by Theorem 7 and Lemmas 1 and 2, the angular ve-
locities ϕ̇ and θ̇, the desired angular accelerations ϕ̈⋆ and θ̈⋆, as well as the distur-
bance identification η̂3, are bounded, i.e., ||ϕ̇||∞ ⩽ δϕ, ||θ̇||∞ ⩽ δθ, ||ϕ̈⋆||∞ ⩽ δϕ⋆,
||θ̈⋆||∞ ⩽ δθ⋆, ||η̂ϕ||∞ ⩽ D4 and ||η̂θ||∞ ⩽ D5, with positive constants δϕ, δθ, δϕ⋆, δθ⋆,
D4 and D5. Furthermore, at steady state (eξ, εξ) = 0, the virtual control inputs satisfy
νx = axẋ− ξ̂x + ẍd, νy = ayẏ− ξ̂y + ÿd and νz = azż− ξ̂z + z̈d, which are bounded,
and therefore

lim
t→∞

√
ν2x(t) + ν

2
y(t) + (νz(t) + g)2 ⩽ Lν,

with a positive constant Lν. Consider the following expressions

Lψ1 = bψδϕδθ +D6 +
mKτ

Jz
Lν +

2Kτ

LJz
(aθδθ + Jy(D5 + δθ⋆)),

Lψ2 = bψδϕδθ +D6 +
mKτ

Jz
Lν +

2Kτ

LJz
(aϕδϕ + Jx(D4 + δϕ⋆)).

Then, let us introduce the following result.

Lemma 3 Let the position control (68) and the attitude control signals given in Algorithm 3
be applied to system (57), and assume that Assumptions 1, 2 and 3 hold. If the angular velocity
bounds δϕ and δθ satisfy

||δϕ||∞ ⩽
Laψ

2KτJybθ
, ||δθ||∞ ⩽<

Laψ

2KτJxbϕ
, (71)

then, after a single rotor failure, the yaw angular velocity satisfies

lim
t→∞ ||ψ̇||fl ⩽ Lψ1, or lim

t→∞ ||ψ̇||fk ⩽ Lψ2, (72)

in the occurrence of a failure in rotors l = 1, 2; or in the occurrence of a failure in rotors k = 3, 4,
respectively.

The proof of Lemma 3 is postponed to the Appendix.
The constraint (71) limits the admissible angular velocities in pitch and roll under the

corresponding rotor failure. However, since these bounds for the angular velocities, i.e.,
δϕ and δθ, depend on the desired trajectory, it is possible to ensure the fulfillment of
(71). Moreover, since the vehicle does not deal with aggressive maneuvers, the angular
velocities in pitch and roll are always bounded.

In this way, based on all the previous statements, the main result is established by the
following theorem.

Theorem 8 Let the expression (67), the position control (68) and the attitude control given in
Algorithm 3 be applied to system (57). If Assumptions 1, 2, 3 and constraints (69) and (71) are
satisfied; then, after the complete loss of a single rotor, at steady state (eξ, εξ, ēη, ε̄η) = 0, the
system (65) is UES and the yaw angular velocity is bounded.

In the following Section some numerical simulations are depicted. It is worth men-
tioning that comparisons are not provided due to the fact that the literature does not
offer FTC schemes that take into account the same rotor failure issues considered in this
work.

For instance, in [64] the FTC approach does not consider the presence of disturbances
and the gravity center must be shifted. In [67], the proposed FTC only deals with regula-
tions tasks and does not care about disturbances. The proposed FTC given in [69] cannot
guarantee the generation of positive thrusts. In this sense, a comparison would be unfair
and does not illustrate the advantages of the proposed fault–tolerant controller.
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5.4 simulation results

In order to show the performance and effectiveness of the proposed FTC strategy, nu-
merical simulations using MATLAB/SIMULINK are presented. For more details about
the parameters of the model (57), please see Appendix B.

All the simulations consider the failure of the first rotor at tf1 = 50[s]. Once the
failure has occurred, a fault diagnosis approach helps us to know that the rotor fails,
and then, the proposed approach is applied. Initial conditions are given as ξ1(0) =

ξ2(0) = η1(0) = η2(0) = 0, and have been implemented with the Euler’s integration
method with a sampling method equal to 0.001[s].

5.4.1 Case 1

The desired trajectory and disturbances are such that the constraints given on Lemma
1 are satisfied.

The desired trajectory is given as

xd(t) = r[arctan(φ) + arctan(t−φ)] cos(ωt), (73a)

yd(t) = r[arctan(φ) + arctan(t−φ)] sin(ωt), (73b)

zd(t) = 1.5[1+ tanh(t−φ/2)], (73c)

with r = 0.4[m], φ = 15[rad] and ω = π/10[rad/s], while the disturbances are given as

dx(t) = 0.2+ 0.1[sin(ω1t) + cos(ω6t)], (74a)

dy(t) = −0.2+ 0.1[sin(ω5t) − cos(ω2t)], (74b)

dz(t) = −2− sin(ω3t) + cos(ω4t), (74c)

dϕ(t) = −2− 0.5[cos(ω3t) + sin(ω6t)], (74d)

dθ(t) = 3− 0.5[sin(ω1t) − cos(ω5t)], (74e)

dψ(t) = 1.5+ 0.5[sin(ω2t) + cos(ω4t)], (74f)

where ω1 = 0.2 [rad/s], ω2 = 0.3 [rad/s], ω3 = 0.4 [rad/s], ω4 = 2 [rad/s], ω5 =

3 [rad/s] and ω6 = 4 [rad/s].
The position tracking task is illustrated in Fig. 26 where, despite the failure of the first

rotor at tf1 = 50[s], and the presence of disturbances, the quad–rotor tracks the desired
trajectory. The pitch, roll and yaw angles, as well as the yaw velocity, are depicted in
Fig. 30. The yaw angle ψ, after the occurrence of the failure, begins to increase, while
the angular velocity ψ̇ is bounded. The disturbance identification for the translational
and rotational disturbances are shown in Figs. 27 and 28, respectively. Then, using the
information of given by η̂3, the disturbance constraint (69a), as well as the angular
velocity constraint (71), are shown in Fig. 29. It is easy to see that these constraints
hold since there does not exist a crossing between the curves throughout the whole
simulation. Finally, the thrusts for each rotor are shown in Fig. 31, where, after the
failure of the first rotor, the proposed FTC makes the thrust of rotor 2 near to zero in
order to maintain a pitch angle balance due to the loss of the first rotor at tf1 = 50[s],
while the thrust on rotors 3 and 4 are increased slightly to achieve the required main
thrust.
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Figure 26: Trajectories of the quad–rotor. Position. Case 1
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Figure 27: Disturbance identification. Position. Case 1
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Figure 28: Disturbance identification. Orientation. Case 1
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Figure 29: Disturbance and angular velocity constraints. Case 1
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Figure 30: Trajectories of the quad–rotor. Orientation. Case 1
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Figure 31: Rotor thrusts. Case 1
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Figure 32: Trajectories of the quad–rotor. Position. Case 2

5.4.2 Case 2

The desired trajectory and disturbances are such that the constraints given on Lemma
2 are no longer satisfied.

The desired trajectory is the same than (73), while the disturbances are taken as in
(74) but (74e) is given as

dθ(t) = 2− 0.5[sin(ω1t) − cos(ω5t)]. (75)

The position tracking task is illustrated in Fig. 32 where the vehicle stops fulfilling
the task around 66.3 [s], losing control a few moments later. The pitch, roll and yaw
angles, as well as the yaw velocity, are depicted in Fig. 36. The pitch and roll angles are
severely affected, and the angular velocity ψ̇ is unbounded in this scenario. The distur-
bance identification for the translational and rotational disturbances are shown in Figs.
33 and 34, respectively. It is clear that the observer keeps identifying the disturbances
throughout the whole simulation. The disturbance constraint (69a) and the angular ve-
locity constraint (71) are shown in Fig. 35. One can see that the disturbance constraint is
no longer satisfied after 66.3 [s], while the angular velocity constraint holds throughout
the whole simulation. Finally, the thrusts for each rotor are shown in Fig. 37 where,
after the failure of the first rotor, the proposed FTC makes the thrust of rotor 2 begins
to turn off by time intervals due to the requirement of negative thrusts, while the thrust
on rotors 3 and 4 are increased abruptly after loss of control.

5.4.3 Case 3

In this case, the same scenario given in Case 2 is performed. Nevertheless, when
the failure occurs, the desired trajectory is changed in order to perform an emergency
landing, and therefore, rescue the vehicle from a collision.
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Figure 33: Disturbance identification. Position. Case 2
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Figure 34: Disturbance identification. Orientation. Case 2
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Figure 35: Disturbance and angular velocity constraints. Case 2
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Figure 36: Trajectories of the quad–rotor. Orientation. Case 2
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Figure 37: Rotor thrusts. Case 2

The desired trajectory is given as

xd(t) = r[arctan(φ) + arctan(t−φ)] cos(ωt)ϑ(t),

yd(t) = r[arctan(φ) + arctan(t−φ)] sin(ωt)ϑ(t),

zd(t) = 1.5[tanh(t−φ/2) − tanh((t− tf − 40)/3)],

with

ϑ(t) =

1, if t ⩽ tf1 ,

e−0.1(t−tf), otherwise.

The position tracking task is illustrated in Fig. 38 where, despite the failure of the
first rotor at tf1 = 50[s], and disturbances, the quad–rotor tracks the desired trajectory
and performs an emergency landing. On the other hand, the pitch, roll and yaw angles,
as well as the yaw velocity, are depicted in Fig. 42. Similar to Case 1, the yaw angle
ψ, after the occurrence of the failure, begins to increase, while the angular velocity ψ̇
is bounded. The disturbance identification for the translational and rotational distur-
bances are shown in Figs. 39 and 40, respectively. Then, using the information given by
η̂3, the disturbance constraint (69a), as well as the angular velocity constraint (71), are
shown in Fig. 41. Compared to Case 2, the disturbance constraint is satisfied throughout
the whole simulation. Finally, the thrusts for each rotor are shown in Fig. 43, where, af-
ter the failure of the first rotor, the proposed FTC makes the thrust of rotor 2 near to zero
in order to maintain a pitch angle balance due to the loss of the first rotor at tf1 = 50[s],
while the thrust on rotors 3 and 4 are increased slightly to achieve the required main
thrust.



5.4 simulation results 69

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

0 10 20 30 40 50 60 70 80 90 100
0

3

6

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

Figure 38: Trajectories of the quad–rotor. Position. Case 3
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Figure 39: Disturbance identification. Position. Case 3
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Figure 40: Disturbance identification. Orientation. Case 3
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Figure 41: Disturbance and angular velocity constraints. Case 3
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Figure 42: Trajectories of the quad–rotor. Orientation. Case 3
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Figure 43: Rotor thrusts. Case 3





6
C O N C L U S I O N S

This thesis solve the following important problems:

1. Design robust control strategies to robustly track a desired trajectory despite some
disturbances.
Proposed Solution: Robust trajectory tracking control strategies, which are based
on different HOSMCs and PID controllers, together with an FT–SMO, as well
as an AEM–based controller, together with GSTOs, are proposed. Such strategies
allow the tracking error to converge to zero exponentially. Experimental results
are presented.

2. Design an FD method to detect, isolate and identify the magnitude of multiple
LOEs, despite some disturbances.
Proposed Solution: An FT–SMO is designed to estimate some state variables and
provide fault information through a set of residuals. Based on these residuals, an
FD strategy is proposed to achieve the detection, isolation and identification of
multiple faults. Experimental results are presented.

3. Design an FTC to achieve the tracking of a desired trajectory under the influence
of possible multiple LOEs and disturbances.
Proposed Solution: An active FTC, that makes use of the proposed FD, is designed
based on the actuator fault accommodation methodology. Such a strategy partially
compensate the effect of possible multiple LOEs, ensuring the exponential conver-
gence of the position tracking error dynamics to a region of the origin, and the
finite–time convergence of the attitude tracking error dynamics to zero. Experi-
mental results are presented.

4. Design an FTC to achieve the tracking of a desired trajectory under the influence
of a rotor failure and disturbances.
Proposed Solution: The rotor failure is isolated using the proposed FD. Then, a
combination of an FT–SMO, PID controllers, and HOSMCs is proposed. Such a
strategy allows the position tracking error tracking to converge to zero exponen-
tially without breaking physical restrictions. Numerical simulations are presented.

It is worth mentioning that multimedia content regarding the strategies depicted in
this thesis can be found in the following link:

https://www.youtube.com/channel/UCp2D3LSvBAkh4tCt_fOE2og
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A
A P P E N D I X – P R O O F S O F T H E M A I N R E S U LT S

a .1 proof of proposition 1

Due to the observer convergence properties, given in Theorem 5, from (38) it is clear
that in the absence of faults, i.e., f ≡ 0, the residual vector can be rewritten as χ̂3(t) =
d(t), and it follows that ∥χ̂3∥∞ ⩽ ∥D∥; thus, based on (40), no faults are detected.

During the occurrence of a fault, (38) satisfies ∥χ̂3∥f = ∥d− ζ(χ1)Mf∥f. Therefore, if
(39) holds, (40) is satisfied. This concludes the proof.

a .2 proof of proposition 2

From (36) and (38) it follows that

χ̂z(t) = dz(t) −
cϕcθ

m
(f1(t) + f2(t) + f3(t) + f4(t)), (76a)

χ̂θ(t) = dθ(t) + J
−1
y L(f2(t) − f1(t)), (76b)

χ̂ϕ(t) = dϕ(t) + J
−1
x L(f4(t) − f3(t)), (76c)

χ̂ψ(t) = dψ(t) + J
−1
z Kτ(f3(t) + f4(t) − f1(t) − f2(t)). (76d)

for all t ⩾ T1. Note that the fault in the i–th rotor satisfies fi(t) = Ti(t)γi(t) ⩾ 0, for
all t ⩾ tfi , since the thrust Ti is proportional to the square of the rotation speed Ωi, i.e.,
Ti = kiΩ

2
i , with ki a positive constant; and the LOE γi ∈ [0, 1).

In order to proof that Algorithm 1 isolates faults in rotors 1 and 2, let us suppose
the occurrence of a single fault in the rotor 1. Then, (76b) can be rewritten as χ̂θ(t) =

dθ(t) − J
−1
y Lf1(t), for all t ⩾ tf1 . Thus, since f1 is strongly detectable, (44a) holds;

and then, ||χ̂θ||∞ > D5, χ̂θ(t) < 0 is satisfied, and hence, a fault in rotor 1 is isolated
(Algorithm 1 – line 1).

In the occurrence of a single fault in the rotor 2, (76b) can be rewritten as χ̂θ(t) =

dθ(t) + J
−1
y Lf2(t), for all t ⩾ tf2 . Hence, due to the fact that f2 is strongly detectable,

(44b) is satisfied; and then, ||χ̂θ||∞ > D5, χ̂θ(t) > 0 holds, and hence, a fault in rotor 2 is
isolated (Algorithm 1 – line 5).

In the case of simultaneous faults in rotors 1 and 2, consider that ||f1|| > ||f2||; then, it
follows that ||χ̂θ||∞ > D5 and χ̂θ(t) < 0, for all t ⩾ tf1 , and hence, a fault in rotor 1 is
isolated (Algorithm 1 – line 1). Moreover, solving for f2 from (76), it is given that

f2(t) =
dz(t) − χ̂z(t)

4m−1cϕ(t)cθ(t)
+
dψ(t) − χ̂ψ(t)

4J−1z Kτ
−
dθ(t) − χ̂θ(t)

2J−1y L
.

Since the external perturbations dz, dϕ, dθ and dψ are unknown, it is not possible to
provide an exact estimation for f2. Nevertheless, due to the estimation properties of the
FT–SMO, it is possible to give some upper and lower bounds for such external pertur-
bations as in (41). In this sense, the functions given in (42) are proposed to compensate
some knowledge of the external perturbations depending on the residuals behavior. In
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this way, using (42) to provide an estimation of the external disturbance, one can give
an estimation of the magnitude of f2 by means of ρ2 in (43b). Therefore, since the fault
in the i–th rotor satisfies fi(t) ⩾ 0, if ρ2(t) > 0, for some t ⩾ tf1 , a fault in rotor 2 is
isolated (Algorithm 1 – line 2).

On the other hand, when ||f2|| > ||f1||; then ||χ̂θ||∞ > D5 and χ̂θ(t) > 0 are satisfied for
all t ⩾ tf2 , and hence, a fault in rotor 2 is isolated (Algorithm 1 – line 5). Additionally,
solving for f1 from (76), and using (42) to provide an estimation of the disturbances, an
estimation of the magnitude of f1 can be given by means of ρ1 in (43a). Hence, since
the fault in the i–th rotor satisfies fi(t) ⩾ 0, if ρ1(t) > 0 for all t ⩾ tf2 , a fault in rotor 1

is isolated (Algorithm 1 – line 6).
Finally, when ||f1|| = ||f2||; then ||χ̂θ||∞ ⩽ D5 is satisfied for all t ⩾ max{tf1 , tf2}. On

the other hand, solving for f1 + f2 from (76a) and (76d), it is given that

f1(t) + f2(t) =
dz(t) − χ̂z(t)

2m−1cϕ(t)cθ(t)
+
dψ(t) − χ̂ψ(t)

2J−1z Kτ
. (77)

Using (42), we can obtain the estimation of f1 + f2. However, note that in (76a) and
(76d) the 4 faults are involved. Then, in order to determine if there is a fault in rotors 1

and 2, the upper bounds of the disturbances, which affects rotors 1 and 2, are subtracted
from (77); such a calculation is given by means of λ1 in (43e). Hence, if ||χ̂θ||∞ ⩽ D5 and
λ1(t) > 0 for all t ⩾ 0, a fault in rotor 1 and 2 are isolated (Algorithm 1 – line 9).
Otherwise, the alarms corresponding to rotors 1 and 2 remain deactivated (Algorithm 1

– line 10).
The workability of the Algorithm 2, where faults in rotors 3 and 4 are addressed, can

be proved following the same strategy. This concludes the proof.

a .3 proof of proposition 3

From the identification of the total uncertainty in the system given in (38), i.e., χ̂3(t) =
d(t) − ζ(χ1)Mf(t), for all t ⩾ T1, one obtains that

f(t) =M−1ζ−1(χ1)(d(t) −Φ(t)). (78)

Then, using (42) to estimate the disturbance d, one can provide a fault identification
f̂(t) as in (45). Note that the isolation matrix A(t) prevents from providing a wrong fault
identification. The fault estimation error, obtained from (45) and (78), is given as

f̃(t) = f(t) − f̂(t) =M−1ζ−1(χ1) (d(t) − σ(t)) . (79)

The minimum identification error of the fault in rotor 1 is given by the lower bound:

||IθM
−1ζ−1(χ1)||f1

∥IθD∥−

∥∥∥∥∥∥∥∥
dzdθ
dψ


∥∥∥∥∥∥∥∥
 ⩽ ||f1 − f̂1||f1 ,

while the maximum identification error is determined by the upper bound as ||f1 −

f̂1||f1 ⩽ ||IθM
−1ζ−1(χ1)||f1 ∥IθD∥, which is obtained when it is not possible to compen-

sate some knowledge of the perturbations. The same procedure is followed to obtain
the fault estimation error bounds (46b), (46c) and (46d). This concludes the proof.
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a .4 proof of theorem 6

The attitude tracking error dynamics is given as

ėη = εη,

ε̇η = J (τ− IηMf(t)) + Ξwη(η2) −Ληη2 + dη(t) − η̈d.

Let us prove that the tracking error dynamics for the roll angle ϕ is UFTS when the
controller (54b) is applied. Then, the closed–loop tracking error dynamics for ϕ is given
as

ėϕ = εϕ, (80a)

ε̇ϕ = ν̄ϕ − kϕ1⌈eϕ⌋
1
3 − kϕ2⌈εϕ⌋

1
2 , (80b)

˙̄νϕ = −kϕ3⌈eϕ⌋0 − kϕ4⌈εϕ⌋0 + ∆̄ϕ(t), (80c)

where ν̄ϕ = νϕ − J−1x L(f̃3(t) − f̃4(t)) + dϕ(t) and ∆̄ϕ(t) = −J−1x L( ˙̃f3(t) − ˙̃f4(t)) + ḋϕ(t).
From (79), it is given that ˙̃f(t) =M−1ζ−1(η1)ḋ(t) +M

−1ζ̇−1(η1)d(t), and thus

˙̃f1(t) =
m

4cϕcθ
ḋz(t) +

Jz

4Kτ
ḋψ(t) +

Jy

2L
ḋθ(t) + ρ(t),

˙̃f2(t) =
m

4cϕcθ
ḋz(t) +

Jz

4Kτ
ḋψ(t) −

Jy

2L
ḋθ(t) + ρ(t),

˙̃f3(t) =
m

4cϕcθ
ḋz(t) −

Jz

4Kτ
ḋψ(t) +

Jx

2L
ḋϕ(t) + ρ(t),

˙̃f4(t) =
m

4cϕcθ
ḋz(t) −

Jz

4Kτ
ḋψ(t) −

Jx

2L
ḋϕ(t) + ρ(t),

where ρ(t) = m(θ̇cϕsθ + ϕ̇sϕcθ)dz(t)/4c
2ϕc2θ. Then, based on the previous equal-

ities, it follows that ˙̃f3(t) − ˙̃f4(t) = JxL
−1ḋϕ(t), and hence, (80c) can be rewritten

as ˙̄νϕ = −kϕ3⌈eϕ⌋0 − kϕ4⌈εϕ⌋0. Hence, if the gains are selected as kϕ1 = 25ϖ
2
3 ,

kϕ2 = 15ϖ
1
2 , kϕ3 = 2.3ϖ and kϕ4 = 1.1ϖ with any ϖ > 0; then, according to [20],

the finite–time convergence to zero is ensured for the tracking error dynamics (80). The
same procedure can be follow to prove the finite–time convergence to zero for the track-
ing error dynamics of pitch and yaw angles, i.e., (eη; εη) = 0 is UFTS.

Then, the position tracking error dynamics, taking into account the virtual control
(54a), is given as

ϵ̇ξ = Akϵξ +B

[
dξ(t) −

gξ(η1)

m

4∑
i=1

f̃i(t) +wξ(η1,uz,ν)

]
, (81)

A =

(
06×3 I6

03 03×6

)
, B =

(
06×3

I3

)
,

where Ak := A+ BKξ ∈ R9×9, ϵξ := (ēTξ , eTξ , εTξ) ∈ R9 and Kξ = (1Kiξ, 1Kpξ, 1Kdξ) ∈
R1×9, with 1 := (1, 1, 1) ∈ R1×3. The nonlinear decoupling term wξ = umgξ(η1) −G−

ν is Lipschitz in η1 and continuous in um, then it follows that ||wξ||∞ ⩽ Lη||eη||∞, for all
η1, ν ∈ R3 and um ∈ R, for some positive Lη > 0. This implies that wξ vanishes when
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eη = 0. Hence, the closed–loop tracking error dynamics (81), considering wξ ≡ 0, can
be rewritten as

ϵ̇ξ = Akϵξ +B

[
dξ(t) −

gξ(η1)

m

4∑
i=1

f̃i(t)

]
. (82)

Let us propose a candidate Lyapunov function V ∈ R9 → R as V(ϵξ) = ϵTξPϵξ, with
P = PT > 0 ∈ R9×9. The time derivative of V , along the trajectories of the system (82),
satisfies

V̇(ϵξ) = ϵ
T
ξ(PAk +A

T
kP)ϵξ + 2ϵ

T
ξPB

[
dξ(t) −

gξ(η1)

m

4∑
i=1

f̃i(t)

]
.

Since the pair (A,B) is controllable, there always exists Kξ such that Ak is Hurwitz;
and thus, it holds that PAk +ATkP = −Q, with Q = QT > 0 ∈ R9×9. Then, the time
derivative of V is upper bounded as

V̇(ϵξ) ⩽ −(1− µ)λmin{Q}||ϵξ||
2,

∀||ϵξ|| ⩾
2λmax{P}

µλmin{Q}

(
||dξ||∞ +

1

m

4∑
i=1

||f̃i||∞
)

,

for any µ ∈ (0, 1). Then, the position tracking error dynamics is ISS with respect to dξ
and f̃.

a .5 proof of lemma 2

The convergence to zero of the attitude tracking error dynamics, when the CTC is active
(Algorithm 3 – lines 2, 5, 9 and 12), is given in [2]. Then, only the convergence to zero of
the attitude tracking error dynamics, when the positive (Algorithm 3 – lines 6 and 11)
and negative controllers (Algorithm 3 – lines 3 and 8) are active, will be proven.

Let us assume that the rotor 1 has failed. Then, according to Algorithm 3 – line 3, the
angular moment τθ must be negative, and thus, it is designed as

τθ =
Jy

2
(τ̄θ + fθ(η2, η̂θ, θ̈⋆) − |τ̄θ + fθ(η2, η̂θ, θ̈⋆)|), (83)

where fθ(η2, η̂θ, θ̈⋆) = −bθϕ̇ψ̇+ aθ
Jy
θ̇− η̂θ + θ̈⋆. Note that if τ̄θ + fθ(η2, η̂θ, θ̈⋆) ⩽ 0, the

angular moment τθ given in (83) is rewritten as τθ = Jy(τ̄θ + fθ(η2, η̂θ, θ̈⋆)), where
the CTC is active, just as in Algorithm 3 – lines 9 and 12. On the other hand, if τ̄θ +
fθ(η2, η̂θ, θ̈⋆) > 0, the control signal (83) is given by τθ = 0, where the control effort is
null, in order to avoid negative thrusts.

The closed–loop tracking error dynamics for θ, taking into account (83), is written as

ėθ = εθ,

ε̇θ =
τ̄θ + fθ(η2, η̂θ, θ̈⋆) − |τ̄θ + fθ(η2, η̂θ, θ̈⋆)|

2
− fθ(η2, η̂θ, θ̈⋆).
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Such a dynamics can be viewed as a state–dependent switched system where the
switching surface is given by S := {(τ̄θ,η2, η̂θ, θ̈⋆) ∈ R×R2×R×R2 : τ̄θ+ fθ(η2, η̂θ, θ̈⋆) =
0}, i.e.,

ėθ = εθ, (84a)

ε̇θ = gσ(t)(τ̄θ,η2, η̂θ, θ̈⋆), (84b)

σ(t) =

1, if fθ(η2, η̂θ, θ̈⋆) ⩽ −τ̄θ,

2, if fθ(η2, η̂θ, θ̈⋆) > −τ̄θ,
(84c)

where g1(τ̄θ,η2, η̂θ, θ̈⋆) = τ̄θ and g2(τ̄θ,η2, η̂θ, θ̈⋆) = bθϕ̇ψ̇− aθ
Jy
θ̇+ η̂θ − θ̈⋆. In order to

provide the convergence properties of the tracking error dynamics (84), the analysis is
carried out for each operating mode, i.e., for σ = 1, 2.

1) Case σ= 1: In this case it holds that fθ(η2, η̂θ, θ̈⋆) ⩽ −τ̄θ, implying that g1(τ̄θ,η2, η̂θ, θ̈⋆) =
τ̄θ, and the tracking error dynamics (84) is rewritten as

ėθ = εθ, (85a)

ε̇θ = vθ − kθ0 ⌈eθ⌋
1
3 − kθ1 ⌈εθ⌋

1
2 , (85b)

v̇θ = −kθ2 ⌈eθ⌋0 − kθ3 ⌈εθ⌋0 . (85c)

Then, at steady state (eθ, εθ, vθ) = 0, according to [20], the system (85) is UFTS. Thus,
it follows that τ̄θ(t) = vθ − kθ0 ⌈eθ⌋

1
3 − kθ1 ⌈εθ⌋

1
2 = 0, for all t ⩾ Tθ; and hence, the

switching condition turns into fθ(η2, η̂θ, θ̈⋆) ⩽ 0, implying that (83) is rewritten as

τθ = Jyfθ(η2, η̂θ, θ̈⋆) = Jy(−bθϕ̇ψ̇+
aθ
Jy
θ̇− η̂θ + θ̈⋆). (86)

Since fθ(η2, η̂θ, θ̈⋆) ⩽ 0, then the control law (86) is negative. Recalling that η̂θ(t) =
dθ(t), for all t ⩾ T with T < tf1, if η̂θ(t) = dθ(t) ⩾

aθ
Jy
θ̇(t) − bθϕ̇(t)ψ̇(t) + θ̈⋆(t) holds

for all t ⩾ tf1, i.e., the constraint (69a), then fθ(η2(t), η̂θ(t), θ̈⋆(t)) ⩽ 0, for all t ⩾ tf1;
and hence, system (85) never switches to the case σ = 2, and hence, (eθ, εθ, vθ) = 0 is
UFTS.

2) Case σ= 2: In this case it holds that fθ(η2, η̂θ, θ̈⋆) > −τ̄θ, implying that g2(τ̄θ,η2, η̂θ,
θ̈⋆) = bθϕ̇ψ̇− aθ

Jy
θ̇+ η̂θ − θ̈⋆, and the tracking error dynamics (84) is rewritten as

ėθ = εθ, (87a)

ε̇θ = bθϕ̇ψ̇−
aθ
Jy
θ̇+ dθ − θ̈⋆. (87b)

If constraint (69a), i.e., η̂θ(t) = dθ(t) ⩾ aθ
Jy
θ̇(t) − bθϕ̇(t)ψ̇(t) + θ̈⋆(t), holds for all

t ⩾ tf1, then it follows that fθ(η2(t), η̂θ(t), θ̈⋆(t)) ⩽ 0, for all t ⩾ tf1. Taking into
account that εθ = θ̇− θ̇⋆, (87b) can be written as follows

ε̇θ = bθϕ̇ψ̇−
aθ
Jy
θ̇⋆ −

aθ
Jy
εθ + dθ.
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The solution of the previous differential equation is given by

εθ(t) = εθ(tf1)e
−
aθ
Jy

(t−tf1)

+

∫t
tf1

e
−
aθ
Jy

(t−τ)
(bθϕ̇(τ)ψ̇(τ) −

aθ
Jy
θ̇⋆(τ) + dθ(τ) − θ̈⋆(τ))dτ.

Then, due to the convergence properties of the CTC, the roll angular velocity ϕ̇

converges to a bounded reference ϕ̇⋆; the yaw angular velocity ψ̇ is bounded, as it
will be shown by Lemma 3, and due to Assumption 2, the disturbance dθ is also
bounded. Thus, εθ is bounded, and it follows that θ̇ and θ̈⋆ are bounded, consequently
fθ(η2, η̂θ, θ̈⋆) = −bθϕ̇ψ̇+ aθ

Jy
θ̇− dθ(t) + θ̈⋆ is bounded and fθ(η2(t), η̂θ(t), θ̈⋆(t)) ⩽ 0,

for all t ⩾ tf1.
Taking into account the previous analysis, and considering the solution of the differ-

ential equation given in (87a), i.e.,

eθ = eθ(tf1) +

∫t
tf1

εθ(τ)dτ,

it is clear that
lim
t→∞ εθ(t) ⩾ 0⇒ lim

t→∞ eθ(t) = ∞.

Therefore, the previous statements imply that

lim
t→∞ vθ(t) < 0,

and thus
lim
t→∞ τ̄θ(t) = lim

t→∞(vθ − kθ0 ⌈eθ⌋
1
3 − kθ1 ⌈εθ⌋

1
2 ) = −∞.

Therefore, since fθ(η2(t), η̂θ(t), θ̈⋆(t)) ⩽ 0 is bounded, and τ̄θ → −∞, for all t ⩾ tf1,
there always exists a finite time tσ1 such that fθ(η2(t), η̂θ(t), θ̈⋆(t)) ⩽ −τ̄θ(t), and hence,
system (85) always switches to the case σ = 1, for which, (eθ, εθ, vθ) = 0 is UFTS.

The previous analysis, together with the fact that (eϕ, εϕ) = 0 is UFTS, implies that,
at steady state (ēη, ε̄η) = 0, the attitude tracking error dynamics is UFTS. The same
procedure can be followed to analyze the convergence properties of the Algorithm 3

when other rotors have failed. This concludes the proof.

a .6 proof of lemma 3

In this proof, the yaw dynamics is analyzed in the occurrence of a rotor failure. With
this aim, the results given by Theorem 7 and Lemmas 1 and 2 are considered; then, it is
demonstrated that the yaw angular acceleration can be bounded at steady state. Next,
the conditions to ensure the boundedness of the yaw angular velocity are obtained by
means of the acceleration upper bound.

Consider the loss of the rotor 1. Then, using (61), the yaw dynamics (70) can be
rewritten as

ψ̈ = −
Kτ

Jz
(uz + 2

τθ
L
) + bψϕ̇θ̇−

aψ

Jz
ψ̇+ dψ, (88)

and by substituting uz, given in (67a), one obtains

ψ̈ = −
Kτ

Jz
(m
√
ν2x + ν

2
y + (νz + g)2 + 2

τθ
L
) + bψϕ̇θ̇−

aψ

Jz
ψ̇+ dψ. (89)
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As it was shown by Lemma 2, at steady state, τθ = Jy(−bθϕ̇ψ̇+ aθ
Jy
θ̇− η̂θ + θ̈⋆) as in

(86). Then, at steady state, (89) satisfies

ψ̈ = −
mKτ

Jz

√
ν2x + ν

2
y + (νz + g)2 + bψϕ̇θ̇

−
aψ

Jz
ψ̇+ dψ −

2KτJy

LJz
(
aθ
Jy
θ̇− bθϕ̇ψ̇− η̂θ + θ̈⋆). (90)

Taking into account that the angular velocities and the disturbances are bounded the
previous solution satisfies

||ψ̈||f1 ⩽ Lψ1 +

(
2KτJybθδϕ

LJz
−
aψ

Jz

)
||ψ̇||, (91)

with Lψ1 = bψδϕδθ +Dψ +
mKτ

Jz
Lν +

2Kτ

LJz
(aθδθ + Jy(Dθ + δθ⋆)). Subsequently, the

solution satisfies

||ψ̇||f1 ⩽ ||ψ̇(tf1)||f1e

(
2KτJy
LJz

bθδϕ−
aψ
Jz

)
(t−tf1) + Lψ1

(
1− e

(
2KτJy
LJz

bθδϕ−
aψ
Jz

)
(t−tf1)

)
,

for all t ⩾ tf1 . Therefore, if (71) holds, i.e., ||δϕ||∞ ⩽ LJzaψ
2KτJyJzbθ

, for all t ⩾ tf1 , then it is
clear that

lim
t→∞ ||ψ̇||f1 ⩽ Lψ1.

The same result is obtained if the rotor 2 fails and similar conclusions can be obtained
considering a failure in the other rotors. This concludes the proof.
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The QBall2 is a quad–rotor propelled by four brushless motors fitted with 10–inch
propellers, it is enclosed within a protective carbon fiber cage. In order to measure
on–board sensors and to drive the motors, the QBall2 utilizes an on–board avionics
data acquisition card (DAQ) and a wireless Gumstix DuoVero embedded computer,
both given by Quanser. This research experimental platform uses a ground control sta-
tion with the real–time control software QUARC, that generates real–time code directly
from MATLAB/Simulink to the on-board computer via WiFi, allowing to configure the
system parameters and to observe sensor measurements in real–time (for more details,
please see [92]). The QBall2 position and attitude are tracked and accurately measured
using an OptiTrack camera system with six synchronized infrared cameras connected
to the ground control station. Additionally, the experimental platform is composed of
an industrial fan allowing to generate wind gusts (see Fig. 44).

The parameters of the model (1), given by Quanser, are: m = 1.79[kg], Jx = Jy =

0.03[Ns2/rad], Jz = 0.04[Ns2/rad], ax = ay = az = 0.021[Ns/kgm], aϕ = aθ =

0.009[Ns/rad], aψ = 0.012[Ns/rad], L = 0.2 [m] and Kτ = 0.0057 [Ns/rad2].

Figure 44: Experimental platform
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