

INSTITUTO TECNOLÓGICO DE CIUDAD MADERO

DIVISIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN

MAESTRÍA EN CIENCIAS DE LA COMPUTACIÓN

TESIS

MÉTODO DE REPARACIÓN Y MEJORA BASADO EN CONJUNTOS RUGOSOS Para optimización evolutiva por algoritmos de descomposición moea/d en presencia de muchos objetivos

Que para obtener el Grado de Maestro en Ciencias de la Computación

Presenta Ing. José Emmanuel Mijes de León G13071018 1085964

Director de Tesis Dra. Laura Cruz Reyes 122925

Co-director de Tesis Dr. Nelson Rangel Valdez

Ciudad Madero, Tamaulipas

Octubre 2022

Instituto Tecnológico de Ciudad Madero Subdirección Académica División de Estudios de Posgrado e Investigación

Ciudad Madero, Tamaulipas, 02/junio/202.

OFICIO No.: U.084/22 ASUNTO: AUTORIZACIÓN DE **IMPRESIÓN DE TESIS**

C. JOSÉ EMMANUEL MIJES DE LEÓN No. DE CONTROL G13071018 PRESENTE

Me es grato comunicarle que después de la revisión realizada por el Jurado designado para su Examen de Grado de Maestría en Ciencias de la Computación, se acordó autorizar la impresión de su tesis titulada:

*MÉTODO DE REPARACIÓN Y MEJORA BASADO EN CONJUNTOS RUGOSOS PARA OPTIMIZACIÓN EVOLUTIVA POR ALGORITMOS DE DESCOMPOSICIÓN MOEA/D EN PRESENCIA DE MUCHOS OBJETIVOS"

El Jurado está integrado por los siguientes catedráticos:

PRESIDENTA:	DRA.	CLAUDIA GUADALUPE GÓMEZ SANTILLÁN
SECRETARIA:	DRA.	MARÍA LUCILA MORALES RODRÍGUEZ
VOCAL:	DRA.	LAURA CRUZ REYES
SUPLENTE:	DR.	NELSON RANGEL VALDEZ
Directora de tesis:	DRA.	LAURA CRUZ REYES
Co-director:	DR.	NELSON RANGEL VALDEZ

Es muy satisfactorio para la División de Estudios de Posgrado e Investigación compartir con usted el logro de esta meta. Espero que continúe con éxito su desarrollo profesional y dedique su experiencia e inteligencia en beneficio de México.

MACG

Av. 1º de Mayo y Sor Juana I. de la Cruz S/N Col. Los Mangos C.P. 89440 Cd. Madero, Tam. Tel. 01 (833) 357 48 20, ext. 3110, e-mail: depi_cdmadero@tecnm.mx tecnm.mx | cdmadero.tecnm.mx

Ssame

Resumen

Los problemas de optimización son en la actualidad uno de los campos más estudiados en la resolución de problemas. De manera natural, los problemas de optimización de un solo objetivo presentan una dificultad para ser resueltos de forma óptima, incrementado dicha dificultad al enfrentarse a la tarea de optimizar varios objetivos a la vez. Los problemas de optimización multiobjetivo para tres, cuatro o más objetivos llevan al límite a las estrategias desarrolladas recientemente.

El concepto de dominancia es uno de los enfoques que se han usado para la resolución de este tipo de problemas. Las técnicas actuales relacionadas a los algoritmos evolutivos de optimización multiobjetivo se enfocan en ampliar las capacidades de los mismos, limitándose debido a complicaciones como la falta de dispersión y calidad de las soluciones encontradas. El enfoque por descomposición resulta en una herramienta para lidiar con lo anterior, siendo uno de los más representativos en el estado del arte el algoritmo evolutivo multiobjetivo basado en descomposición (MOEA/D). Sin embargo, en este algoritmo hace falta reforzar la intensificación por medio de métodos de mejora de las soluciones, ya que los trabajos actuales se centran en el manejo de preferencias. Una alternativa para diseñar métodos de mejora es la teoría de conjuntos aproximados, la cual parte de la idea de que todo conjunto posee información elemental sobre el universo de datos, por lo que no requiere información previa para el análisis en la búsqueda de conjuntos áproximados como estrategia de mejora del algoritmo MOEA/D.

En el presente trabajo se aborda la incorporación de la teoría de conjuntos aproximados (rugosos) como una estrategia heurística de mejora de soluciones en la resolución de problemas con muchos objetivos. Se propone un método que incorpora los conceptos de esta teoría para mejorar las soluciones generadas por el operador de mutación, que conduzcan a soluciones convergentes al frente óptimo de Pareto, y por lo tanto incrementen la eficiencia y eficacia del algoritmo. La importancia del método propuesto radica en su incorporación dentro de la estructura del algoritmo evolutivo multiobjetivo MOEA/D, con lo que se pretende alcanzar la intensificación requerida por este, utilizando las ventajas de la teoría de conjuntos aproximados. La incorporación del método propuesto dio lugar a los algoritmos MOEA/D/RSIM, MOEA/D/RSIM⁺ y MOEA/D/RSIM/KLP.

Los resultados de la experimentación realizada mostraron que el uso de conjuntos rugosos genera indirectamente mayor exploración dentro de una región factible, ya que los algoritmos propuestos generaron en todos los casos nuevas soluciones, la mayoría siendo superiores a las alcanzadas por MOEA/D sin un método de mejora aplicado. Los resultados de este trabajo demuestran la utilidad de la teoría de conjuntos aproximados como método heurístico para la mejora de soluciones en un algoritmo evolutivo multiobjetivo. Se espera que el método propuesto sea útil para el estudio de nuevas estrategias para mejorar el desempeño de las técnicas actuales para la optimización de problemas.

ÍNDICE GENERAL

ÍNDICE DE FIGURAS	v
ÍNDICE DE GRÁFICAS	v
ÍNDICE DE TABLAS	vi
1 INTRODUCCIÓN	1
1.1 Antecedentes	1
1.2 Planteamiento del problema	1
1.3 Justificación	2
1.4 Objetivos de la tesis	2
1.4.1 Objetivo general	2
1.4.2 Objetivos específicos	2
1.5 Alcances y limitaciones	3
1.5.1 Alcances	3
1.5.2 Limitaciones	3
1.6 Organización del documento	3
2 MARCO TEÓRICO	4
2.1 Teoría de conjuntos aproximados	4
2.1.1 Indiscernibilidad y aproximación	4
2.1.2 Tablas de decisión	5
2.2 Problemas de optimización multiobjetivo (MOP)	6
2.2.1 Definición de variables de decisión, restricciones y funciones objetivo	6
2.2.2 Formalización	6
2.2.3 Dominancia	7
2.3 Búsqueda local	7
2.4 Algoritmo Evolutivo Multiobjetivo basado en Descomposición (MOEA/D)	8
2.5 Problemas DTLZ	9
3 ESTADO DEL ARTE	10
3.1 Trabajos previos de MOEA/D	10
3.2 Trabajos previos de conjuntos aproximados en algoritmos	10
3.3 Análisis del Estado del Arte	11
4 PROPUESTA DE SOLUCIÓN MOEA/D/RSIM	12
4.1 Análisis de métodos de búsqueda local basados en conjuntos aproximados	12
4.1.1 Comparación de métodos	12
4.1.2 Identificación de estrategias para el uso de conjuntos aproximados como método de búsqueda loca	113

4.2 Método de Mejora de Conjuntos Aproximados Rough Sets Improvement Method (RSIM)	15
4.2.1 Modelo, método y metodología	15
4.2.2 Diseño de arquitectura	16
4.3 Evaluación experimental de MOEA/D/RSIM	19
4.3.1 Configuración experimental	19
4.3.2 Análisis de resultados	19
4.4 MOEA/D/RSIM vs. MOEA/D	20
5 PROPUESTA DE SOLUCIÓN MOEA/D/RSIM ⁺	22
5.1 Método de Mejora de Conjuntos Aproximados Modificado <i>Modified Rough Sets Improvement</i> <i>Method</i> (RSIM ⁺)	22
5.1.1 Modelo, método y metodología	22
5.1.2 Diseño de arquitectura	23
5.2 Evaluación experimental de MOEA/D/RSIM ⁺	25
5.2.1 Configuración experimental	25
5.2.2 Análisis de resultados	25
5.3 MOEA/D/RSIM ⁺ vs. MOEA/D	26
5 PROPUESTA DE SOLUCIÓN MOEA/D/RSIM/KLP	
6.1 Método de Mejora de Conjuntos Aproximados KLP Rough Sets Improvement Method (RSIM/KLP)	
6.1.1 Ordenamiento KLP: Búsqueda del máximo de un conjunto de vectores	
6.1.2 Modelo, método y metodología	
6.1.3 Diseño de arquitectura	31
6.2 Evaluación experimental de MOEA/D/RSIM/KLP	33
6.2.1 Configuración experimental	33
6.2.2 Análisis de resultados	34
6.3 MOEA/D/RSIM/KLP vs. MOEA/D	34
7 EVALUACIÓN EXPERIMENTAL DE ALGORITMOS PROPUESTOS	37
7.1 Configuración experimental	37
7.2 Indicadores de desempeño de algoritmos	
7.2.1 Inverted Generational Distance (IGD)	
7.2.2 Modified Inverted Generational Distance (IGD ⁺)	
7.2.3 Hipervolumen	
7.2.4 Generalized Spread (Δ^*)	
7.2.5 Overall Spread (OS)	
7.2.6 <i>Epsilon</i> Aditivo (ε +)	
7.3 Análisis de resultados	40
7.3.1 Análisis gráfico de resultados globales	44

7.3.2 Análisis gráfico de resultados particulares por problema	46
7.3.3 Análisis estadístico de resultados	53
7.3.4 Discusión	56
8 CONCLUSIONES Y TRABAJO FUTURO	58
8.1 Conclusiones	58
8.2 Trabajo futuro	59
REFERENCIAS BIBLIOGRÁFICAS	60
ANEXO A. RESULTADOS DE PRUEBAS ESTADÍSTICAS	63
A.1. Prueba estadística de Friedman de Rangos Alineados y prueba post-hoc para 3 objetivos	64
A.2. Prueba estadística de Friedman de Rangos Alineados y prueba post-hoc para 5 objetivos	67
A.3. Prueba estadística de Friedman de Rangos Alineados y pruebas post-hoc para 10 objetivos	70
A.4. Prueba estadística de Friedman de Rangos Alineados y prueba post-hoc global	73
A.5. Análisis de Borda para resultados de 3 objetivos*	76
A.6. Análisis de Borda para resultados de 5 objetivos*	77
A.7. Análisis de Borda para resultados de 10 objetivos*	78
A.6. Análisis de Borda para resultados globales*	79
ANEXO B. EJEMPLO DE FUNCIONAMIENTO DE ALGORITMO 5 (rsim_intervals)	80

ÍNDICE DE FIGURAS

Figura 4.1. Arquitectura del algoritmo MOEA/D/RSIM	16
Figura 6.1. Ejemplo de funcionamiento de ordenarKLP a través de árbol <i>divide-y-vencerás</i>	. 29
Figura 6.2. Aproximación de conjunto no dominado mediante búsqueda por máximo en conjunto de	
vectores	. 30
Figura 6.3. Diagrama de flujo de MOEAD/RSIM/KLP	. 32

ÍNDICE DE GRÁFICAS

Gráfica 4.1. No conservación de la dominancia para MOEA/D/RSIM y MOEA/D 21
Gráfica 4.2. Aportación a frente común por MOEA/D/RSIM y MOEA/D 21
Gráfica 5.1. No conservación de la dominancia para MOEA/D/RSIM ⁺ y MOEA/D
Gráfica 5.2. Aportación a frente común por MOEA/D/RSIM ⁺ y MOEA/D27
Gráfica 6.1. No conservación de la dominancia para MOEA/D/RSIM/KLP y MOEA/D35
Gráfica 6.2. Aportación a frente común por MOEA/D/RSIM/KLP y MOEA/D35
Gráfica 7.1 (a). Comparación global de resultados de indicador IGD para algoritmos propuestos
Gráfica 7.1 (b). Comparación global de resultados de indicador IGD ⁺ para algoritmos propuestos
Gráfica 7.1 (c). Comparación global de resultados de indicador Δ^* para algoritmos propuestos45
Gráfica 7.1 (d). Comparación global de resultados de indicador OS para algoritmos propuestos45
Gráfica 7.1 (e). Comparación global de resultados de indicador de hipervolumen para algoritmos propuestos 46
Gráfica 7.1 (f). Comparación global de resultados de indicador ε (+) para algoritmos propuestos
Gráfica 7.2. Comparación de resultados de IGD con 3, 5 y 10 objetivos en problemas DTLZ 1-7 47
Gráfica 7.3. Comparación de resultados de IGD ⁺ con 3, 5 y 10 objetivos en problemas DTLZ 1-748
Gráfica 7.4. Comparación de resultados de Δ^* con 3, 5 y 10 objetivos en problemas DTLZ 1-7
Gráfica 7.5. Comparación de resultados de OS con 3, 5 y 10 objetivos en problemas DTLZ 1-750
Gráfica 7.6. Comparación de resultados de hipervolumen con 3, 5 y 10 objetivos en problemas DTLZ 1-7 51
Gráfica 7.7. Comparación de resultados de ε (+) con 3, 5 y 10 objetivos en problemas DTLZ 1-7

ÍNDICE DE TABLAS

Tabla 2.1. Ejemplo de sistema de información	5
Tabla 3.1. Estado del arte sobre uso de la teoría de conjuntos aproximados y MOEA/D	11
Tabla 4.1. Comparación de métodos utilizados en propuestas seleccionadas	12
Tabla 4.2. Parámetros usados para instancias de los problemas DTLZ 1-7 de 3 objetivos	19
Tabla 4.3. Parámetros usados en MOEA/D/RSIM	19
Tabla 4.4. Cantidad de reemplazos realizados por RSIM	20
Tabla 4.5. Comparación de frentes generados por MOEA/D/RSIM y MOEA/D	20
Tabla 5.1. Parámetros usados en MOEA/D/RSIM ⁺	25
Tabla 5.2. Cantidad de reemplazos realizados por RSIM ⁺	25
Tabla 5.3. Comparación de frentes generados por MOEA/D/RSIM ⁺ y MOEA/D.	26
Tabla 6.1. Parámetros usados en MOEA/D/RSIM/KLP	33
Tabla 6.2. Cantidad de reemplazos realizados por RSIM/KLP	34
Tabla 6.3. Comparación de frentes generados por MOEA/D/RSIM/KLP y MOEA/D	35
Tabla 6.4. Comparación entre MOEA/D/RSIM, MOEA/D/RSIM ⁺ , MOEA/D/RSIM/KLP y MOEA/D	36
Tabla 7.1. Parámetros de configuración usados para instancias de problemas DTLZ 1-7 de 3, 5 y 10 objetivos	38
Tabla 7.2. Parámetros de configuración usados en evaluación experimental	38
Tabla 7.3. Parámetros de configuración del operador de mejora para MOEA/D/RSIM, MOEA/D/RSIM ⁺ ,	
MOEA/D/RSIM/KLP y MOEA/D	39
Tabla 7.4. Comparación de valores de mediana e IQR del indicador IGD para algoritmos propuestos en	
problemas DTLZ	40
Tabla 7.5. Comparación de valores de mediana e IQR del indicador IGD ⁺ para algoritmos propuestos en	
problemas DTLZ	41
Tabla 7.6. Comparación de valores de mediana e IQR del indicador Δ^* para algoritmos propuestos en	
problemas DTLZ	41
Tabla 7.7. Comparación de valores de mediana e IQR del indicador OS para algoritmos propuestos en	
problemas DTLZ	42
Tabla 7.8. Comparación de valores de mediana e IQR del indicador de hipervolumen para algoritmos	
propuestos en problemas DTLZ	43
Tabla 7.9. Comparación de valores de mediana e IQR del indicador ε (+) para algoritmos propuestos en	
problemas DTLZ	43
Tabla 7.10. Resultados de prueba de Friedman de Rangos Alineados con significancia de 5% para 3 objetivos	53
Tabla 7.11. Mejor algoritmo en Ranking Borda de prueba de Friedman de Rangos Alineados para 3 objetivos	53
Tabla 7.12. Resultados de prueba de Friedman de Rangos Alineados con significancia de 5% para 5 objetivos	53

Tabla 7.13. Mejor algoritmo en Ranking Borda de prueba de Friedman de Rangos Alineados para 5 objetivos	53
Tabla 7.14. Resultados de prueba <i>post-hoc</i> de Holm para 5 objetivos con algoritmo de control	54
Tabla 7.15 . Resultados de prueba <i>post-hoc</i> de Holm para 5 objetivos sin algoritmo de control	54
Tabla 7.16. Resultados de prueba de Friedman de Rangos Alineados con significancia de 5% para 10 objetivos	54
Tabla 7.17. Mejor algoritmo en Ranking Borda de prueba de Friedman de Rangos Alineados para 10 objetivos	55
Tabla 7.18. Resultados de prueba de Friedman de Rangos Alineados global con significancia de 5%	55
Tabla 7.19. Mejor algoritmo en Ranking Borda de prueba de Friedman de Rangos Alineados global	55
Tabla 7.20. Resultados globales de prueba post-hoc de Holm con algoritmo de control	55
Tabla 7.21. Resultados globales de prueba <i>post-hoc</i> de Holm sin algoritmo de control	56

CAPÍTULO 1

INTRODUCCIÓN

Las técnicas para la resolución de problemas de optimización multiobjetivo (*Multiobjective Optimization Problems*, MOP) es un campo con gran capacidad para la investigación y desarrollo. Los problemas de tres, cuatro o más objetivos llevan al límite de sus capacidades a las estrategias desarrolladas en los últimos años conocidas como estrategias de optimización multiobjetivo. La dominancia o conjunto de soluciones con calidad igual o menor en todos los objetivos y menor en al menos uno conocido como conjunto de Pareto (Sörensen y Glover, 2010), es uno de los enfoques utilizados para lograr la resolución y optimalidad en este tipo de problemas a través de la obtención del llamado frente de Pareto.

Para lo anterior se han desarrollado diversas estrategias, proliferando el uso metaheurísticas, entre ellas los algoritmos evolutivos multiobjetivo, con el empleo de métodos de mejora heurísticos, pero enfrentando dificultades de convergencia al frente de Pareto. Dichos algoritmos basados en un enfoque de descomposición han resultado en una alternativa de solución.

Los actuales trabajos en relación a los algoritmos evolutivos de optimización multiobjetivo se han enfocado en la ampliación de capacidades de los mismos, pero se han enfrentado a diversas complicaciones como la falta de dispersión y calidad de las soluciones encontradas. El enfoque por descomposición ha resultado una herramienta para lidiar con ello, pero aun así es necesario reforzar la intensificación a través de métodos de mejora de las soluciones, ya que los actuales trabajos se limitan a mejorar los algoritmos por medio del manejo de preferencias o puntos de referencia.

El presente trabajo tiene como fin desarrollar una estrategia que utilice la teoría de conjuntos aproximados como método heurístico de mejora de soluciones en un algoritmo evolutivo multiobjetivo por descomposición. Dicha estrategia pretende lograr, combinando las cualidades del manejo de información aproximada de dicha teoría con el marco de trabajo de los mencionados algoritmos, mejorar su eficiencia y eficacia a la hora de brindar soluciones que converjan en el frente óptimo de Pareto. Con ello, se contribuiría a ampliar el estudio y uso de metaheurísticas como técnicas confiables para la resolución de diversos problemas de optimización multiobjetivo.

1.1 Antecedentes

El trabajo de investigación que se propone en esta tesis se encuentra dentro del marco de actividades del Proyecto de Cátedras CONACyT 3058 - "Optimización de Problemas Complejos", y las actividades propuestas están orientadas a enriquecer tanto a dicho proyecto como a la investigación de los miembros del Cuerpo Académico Optimización Inteligente. La propuesta fortalece el *Framework* de Optimización MS-DOSS desarrollado por el grupo al integrar heurísticas para mejora de soluciones en un proceso algorítmico evolutivo, como es el caso de MOEA/D. El interés en ese enfoque metaheurístico nace de su potencial para afrontar algunas dificultades que se presentan cuando incrementan los objetivos involucrados en el problema de optimización a más de cuatro. El trabajo que se propone busca extender las capacidades del algoritmo MOEA/D desarrollado en el *framework*.

1.2 Planteamiento del problema

Dado un problema de optimización P, un algoritmo de descomposición A, una solución S (factible o infactible) para P construida por A, y una métrica de desempeño I para A sobre P, se plantean las siguientes preguntas de investigación:

1. ¿Es posible diseñar una heurística H que tome como entrada S y devuelva como salida una solución S' tal que se garantice que S' sea siempre factible y al menos tan buena como S?

2. ¿Es posible mejorar significativamente el desempeño general de *A* bajo el indicador *I* (*A*, *P*) al integrar *H* como estrategia de mejora y reparación de las soluciones *S* generadas por *A* en su proceso constructivo? Es decir, $I(A^H, P)$ es mejor que I(A, P).

 H_0 : Es posible mejorar significativamente el desempeño de *A* por medio de una estrategia de mejora y reparación *H* basada en conjuntos aproximados en comparación con el desempeño de *A* sin estrategia de mejora y reparación.

1.3 Justificación

Los MOEA resultan útiles para la resolución de problemas multiobjetivo, pero presentan el reto de contar con una estrategia para el adecuado manejo de la dispersión y calidad del frente dominado creado, sobre todo con muchos objetivos (más de tres). Ya que entre más sean los objetivos a tratar, menor es su capacidad de aproximar el frente de Pareto (Bechikh et al., 2017). Los algoritmos como MOEA/D poseen la ventaja de escalarización en subproblemas junto con el uso de heurísticas durante su ejecución.

Se puede diversificar e intensificar en una metaheurística. Normalmente en MOEA/D la diversificación es alcanzada naturalmente a través de la descomposición. Sin embargo, la intensificación es rara vez utilizada en este algoritmo. La intensificación es clave para la consecución de una mejor calidad de solución, sobre todo considerando que cada vector de peso en MOEA/D trata de identificar la solución del frente óptimo asociada a él. Por eso, en MOEA/D la intensificación necesita un refuerzo a partir de la integración de un método de mejora. Por esa razón se justifica el proponer un nuevo método de mejora que contribuya a la intensificación, que en este trabajo tendrá como característica novedosa el tratamiento de información por medio de conjuntos aproximados.

1.4 Objetivos de la tesis

En esta sección se presentan el objetivo general y objetivos específicos de la presente tesis.

1.4.1 Objetivo general

Desarrollar un método de mejora y reparación basado en conjuntos aproximados (conjuntos rugosos) que se integre al algoritmo de descomposición MOEA/D para la solución de problemas multiobjetivo.

1.4.2 Objetivos específicos

- 1) Analizar el uso de conjuntos aproximados (conjuntos rugosos) en la construcción de heurísticas de búsqueda local.
- 2) Seleccionar los problemas multiobjetivo objeto de estudio de la investigación.
- 3) Diseñar un método de mejora y reparación de soluciones basado en conjuntos aproximados (conjuntos rugosos) para los problemas multiobjetivo seleccionados.
- 4) Implementar en MOEA/D el método propuesto de mejora y reparación de soluciones.
- 5) Seleccionar indicadores de desempeño.
- 6) Validar propuesta de investigación.

1.5 Alcances y limitaciones

1.5.1 Alcances

- Se trabajará en el desarrollo de un método de mejora y reparación para al menos un problema de optimización multiobjetivo.
- El método de mejora y reparación de soluciones estará basado principalmente en conjuntos aproximados.
- La validación del desempeño del método de mejora se hará al menos contra el MOEA/D sin su integración.

1.5.2 Limitaciones

• La validación del método propuesto para mejora y reparación de soluciones solo se realizará en su integración con el algoritmo MOEA/D.

1.6 Organización del documento

En el capítulo 2 se presentan los conceptos teóricos sobre los que se fundamenta este trabajo de tesis: teoría de conjuntos aproximados, problemas de optimización multiobjetivo, búsqueda local, MOEA/D y problemas DTLZ.

El capítulo 3 presenta el estado del arte con un estudio de los trabajos relacionados más relevantes, recopilando las características más representativas de cada algoritmo; de manera más concreta aborda tanto el uso de MOEA/D como de la teoría de conjuntos aproximados como estrategias de solución.

Los capítulos 4, 5 y 6 presentan la propuesta de solución en sus diferentes fases de desarrollo: un prototipo inicial y dos versiones con uso de un archivo de soluciones previas, la segunda con un método más eficiente para recorrer la última población. De igual manera se presentan las evaluaciones de las propuestas con instancias de los problemas DTLZ.

En el capítulo 7 se realiza la evaluación experimental con parámetros idénticos en cada propuesta de solución, con la finalidad de evaluar su desempeño frente al algoritmo MOEA/D en su forma base. Lo anterior tiene propósito probar la calidad de las soluciones brindadas por medio de métricas o indicadores de desempeño.

Con base en los resultados obtenidos se presentan las conclusiones finales alcanzadas en este trabajo en el capítulo 8, poniendo énfasis en el cumplimiento de los objetivos planteados, así como también proporcionar áreas de oportunidad para trabajos futuros a desarrollar.

CAPÍTULO 2

MARCO TEÓRICO

En esta sección se definen los conceptos de teoría de conjuntos aproximados (*rough sets theory*), problemas de optimización multiobjetivo (*multiobjective optimization problems* o MOP), algoritmo MOEA/D (*Multiobjective Evolutionary Algorithm based on Decomposition*) y heurísticas de búsqueda local, los cuales son utilizados para el desarrollo de este trabajo.

2.1 Teoría de conjuntos aproximados

La teoría de Zdzisław I. Pawlak de 1991 sobre conjuntos aproximados, también conocidos como rugosos, resulta una excelente herramienta matemática para el análisis de una descripción vaga de objetos, llamadas acciones en los problemas de decisión. De acuerdo a Greco et al. (2001) "vago" se refiere a la calidad de la información con el significado de inconsistencia o ambigüedad atribuido la granularidad de la información.

Dicho de manera simple, es una aproximación formal de un conjunto nítido en relación a dos pares de conjuntos que dan una aproximación inferior y superior del conjunto original. El concepto de conjuntos aproximados se basa en la idea de aceptar que cada objeto del universo tiene asociada cierta cantidad de información (datos, conocimiento), expresada por medio de algunos atributos usados para describirlo (Greco et al., 2001).

Los objetos con la misma descripción son indiscernibles entre sí, es decir, no pueden distinguirse ya que poseen la misma descripción o información en todos sus atributos, dando pie a que por ello compartan una relación binaria. Esta relación, llamada relación de indiscernibilidad, dio origen a una base matemática para la teoría de conjuntos, en la cual se parte el universo en subconjuntos de objetos indiscernibles (conjuntos elementales), los cuales se puede usar para construir conocimiento del mundo real o abstracciones y conduce a la granularidad de la información (Greco et al., 2001).

2.1.1 Indiscernibilidad y aproximación

La relación de indiscernibilidad establece el hecho de que debido a la falta de información (o conocimiento) no se pueden discernir algunos objetos de una colección empleando la información disponible. Esta colección se conoce como sistema o tabla de información.

Un sistema de información es definido como una tabla de datos formada por columnas etiquetadas por los objetos de interés, llamadas atributos, y las entradas de la tabla, las cuales son los valores de dichos atributos. Según Pawlak y Skowron (2007), formalmente se establece un sistema de información I = (U, A), donde U es el universo de objetos no vacío, y A es un conjunto finito no vacío de atributos tal que $I: U \rightarrow V_a$ para cada $a \in A$. V_a es el conjunto de valores a tomar del atributo a, llamado dominio de a. El sistema de información asigna a(x) a cada atributo a y objeto x en el universo U. Cualquier subconjunto B de A establece una relación binaria o de equivalencia I(B) en U (indiscernibilidad), definida por xI(B)y si y solo si a(x) = a(y) para cada $a \in B$. Si $(x, y) \in I(B)$ se dice que x y y son indiscernibles por B.

La partición del universo U es una familia de todas las clases de equivalencia I(B) y se denotado con U/I(B). Las clases de equivalencia de la relación I(B) son referidas como B-conjuntos elementales o B-gránulos elementales y representadas como [x]p (Pawlak y Skowron, 2007). En la teoría de los conjuntos aproximados, los conjuntos B-elementales son los bloques de construcción básicos del conocimiento. Las uniones de estos son llamadas conjuntos B-definibles.

Como ejemplo se puede definir un sistema de información con un conjunto $x = \{x_1, x_2, x_3, x_4\}$ y un conjunto de atributos $a = \{a_1, a_2\}$.

Tabla 2.1. Ejemplo de sistema de información.

	a_1	a_2	a_3
x_1	0	1	0
x_2	1	0	0
<i>x</i> ₃	0	1	0
<i>x</i> ₄	2	0	0

Cuando se considera como un conjunto a todos los atributos, se observa que existen las clases de equivalencia $\{x_1, x_3\}, \{x_2\} y\{x_4\}$. En la primera, ambos objetos no pueden distinguirse entre sí con los atributos usados. El uso de diversos conjuntos de atributos llevará a diferentes clases de equivalencia.

Las Ecuaciones 2.1 y 2.2 (Pawlak y Skowron, 2007) asignan a cada subconjunto X del universo U dos subconjuntos $B_*(X)$ y $B^*(X)$ llamados aproximación B-inferior y aproximación B-superior respectivamente. La Ecuación 2.3 es el conjunto $BN_B(X)$ llamado B-Frontera de X.

$$B_*(X) = \{ x \in U : B(X) \subseteq X \}.$$
(2.1)

$$B^*(X) = \{ x \in U \colon B(X) \cap X \neq \emptyset \}.$$

$$(2.2)$$

$$BN_B(X) = B^*(X) - B_*(X).$$
(2.3)

Según Pawlak y Skowron (2007), debido a la granularidad del conocimiento los conjuntos aproximados no se pueden clasificar con el conocimiento actual, motivo por el cual con cada conjunto aproximado se asocian dos conjuntos nítidos, llamados aproximación inferior y superior. El primero está formado de todos los elementos que con certeza pertenecen al conjunto *X*, mientras que el segundo contiene los que posiblemente pertenezcan al conjunto *X*. Por último, la región frontera contiene todos los elementos que no pueden ser clasificados ni en el conjunto ni en el complemento.

Si la frontera está vacía se dice que el conjunto es exacto, de lo contrario se le denomina rugoso (aproximado) o inexacto. Un conjunto aproximado puede ser también categorizado numéricamente por el coeficiente mostrado en la Ecuación 2.4, llamado calidad de aproximación, donde card(*X*) denota la cardinalidad de $X \neq 0$ (Pawlak y Skowron, 2007).

$$\alpha_B(X) = \frac{\operatorname{card}(B^*(X))}{\operatorname{card}(B^*(X))}.$$
(2.4)

2.1.2 Tablas de decisión

En una tabla de información los atributos del conjunto *X* son divididos en atributos de condición (conjunto $C \neq \emptyset$) y los atributos de decisión (conjunto $D \neq \emptyset$) donde $C \cup D = X$ y $C \cap D = \emptyset$. Entonces es llamada tabla de decisión. Los atributos de decisión generan una partición de *U* deducida de la relación de indiscernibilidad *I*(*B*) de una manera que es independiente de los atributos de condición (Greco et al., 2001).

Una tabla de decisión puede ser vista de igual modo como un conjunto de reglas de decisión con implicaciones del tipo "*if* …, *then* …" donde la parte condicional especifica valores asumidos por uno o más atributos de condición y la consecuencia (parte de decisión) específica una asignación de una o más clases de decisión.

2.2 Problemas de optimización multiobjetivo (MOP)

El también llamado problema de optimización multicriterio, multidesarrollo, o problema de optimización vectorial (Coello et al., 2007) puede definirse como el problema de hallar un vector de variables de decisión que satisfagan las restricciones y optimicen un vector función que representa las funciones objetivo, las cuales son una descripción matemática de criterios de desarrollo en conflicto con otros; "optimizar" significa encontrar una solución que dé los valores de todas las funciones objetivo aceptables.

2.2.1 Definición de variables de decisión, restricciones y funciones objetivo

Las variables de decisión son valores numéricos elegidos en un problema de optimización denotados como x_j donde $j = \{1, 2, ..., n\}$. El vector x de n variables se representa como un vector columna o su traspuesta.

Las restricciones son condiciones impuestas en la mayoría de los problemas de optimización por características del entorno o recursos disponibles (Coello et al., 2007). Deben ser satisfechas con miras a considerar aceptable una solución. Formalmente son dependencias entre variables de decisión y constantes (parámetros) en el problema. Matemáticamente se expresan como desigualdades o igualdades.

Las funciones objetivo son funciones computables de las variables de decisión las cuales sirven como criterio para evaluar que tan buena es una determinada solución. Son designadas como $f_1(x)$, $f_2(x)$, ..., $f_k(x)$, donde k es el número de funciones objetivo en el problema MOP actual (Coello et al., 2007). Así, las funciones objetivo forman un vector función f(x) representado como un vector columna o su traspuesta.

2.2.2 Formalización

La formulación de problemas de un solo objetivo se extiende para reflejar la naturaleza de los problemas multiobjetivo donde no hay una sola función a optimizar, sino varias (Coello et al., 2007). Por lo mismo no hay solo una solución sino un conjunto, el cual es encontrado mediante la teoría de la optimalidad de Pareto.

En palabras simples, los MOP "son problemas donde la meta es optimizar k funciones objetivo de manera simultánea" (Coello et al., 2007). Puede involucrar la maximización, minimización o combinación (maximizar y minimizar) de todas las k funciones. La definición formal de un problema multiobjetivo se establece en la Ecuación 2.5.

Minimizar/maximiz	ar $F(x) = (f_1(x),, f_k(x))$	
sujeto a		(25)
$g_i(x) \leq 0,$	$i = \{1,, m\}$ y	(2.3)
$h_i(x) = 0,$	$j = \{1,, p\} x \in \Omega.$	

Una solución de un problema MOP minimiza (o maximiza) los componentes de un vector F(x) donde x es un vector de variables de decisión de n dimensiones $x = (x_1, ..., x_n)$ de algún universo Ω . Las funciones $g_i(x) \le 0$ y $h_j(x) = 0$ representan las restricciones, en forma de desigualdades e igualdades respectivamente, que deben ser satisfechas mientras se realiza la función objetivo F(x) y Ω contiene toda posible x que puede ser usada para satisfacer una evaluación de F(x).

2.2.3 Dominancia

Concepto propuesto por F.Y. Edgeworth en 1881 y extendido por W. Pareto (Talbi, 2009), la "dominancia de Pareto" hace referencia a que un vector objeto $u = (u_1, ..., u_n)$ domina a $v = (v_1, ..., v_n)$ denotado como (u < v) si y solo si ningún elemento de v es menor que su contraparte de u y al menos un elemento de u es estrictamente más pequeño. La Ecuación 2.6 formaliza lo anterior.

$$\forall i \in \{1, ..., n\} \mid u_i \le v_i \land \exists i \in \{1, ..., n\} \mid u_i \le v_i.$$
(2.6)

La optimalidad de Pareto establece que una solución $x^* \in S$ es óptimo de Pareto o solución eficiente si para todo x que pertenece a *S*, F(x) no domina $F(x^*)$, denotado como $F(x) \prec F(x^*)$. En los problemas multiobjetivo, a diferencia de los de un solo objetivo, existe un conjunto de soluciones óptimas conocidas como el óptimo de Pareto. Una solución óptima de Pareto muestra que no se puede encontrar una solución que no mejore un criterio sin "decrementar la igualdad de al menos otro criterio" (Talbi, 2009).

Formalmente un conjunto óptimo de Pareto es definido por un problema MOP (*F*, *S*) dado como $P^* = \{x \in S \mid \nexists x' \in S, F(x') \prec F(x)\}$. El área de este conjunto en el espacio objetivo es conocido como el frente de Pareto (Talbi, 2009), el cual dado un problema MOP (*F*, *S*) es definido como $PF^* = \{F(x), x \in P^*\}$. El fin último de un MOP es la obtención del frente de Pareto.

2.3 Búsqueda local

La búsqueda local es un método heurístico que en cada iteración va reemplazando la solución actual por un vecino que mejore la función objetivo. Este método comienza con una solución inicial generalmente aleatoria, y termina cuando todos los vecinos candidatos tienen peores valores que la solución actual, alcanzándose un óptimo local (Talbi, 2009).

Las principales estrategias para Talbi (2009) de la selección del mejor vecino son:

- Best improvement: el mejor vecino se selecciona luego de una exploración exhaustiva de la vecindad.
- *First improvement*: la estrategia escoge el primer vecino que mejore la solución actual.
- Random selection: una selección aleatoria es aplicada para los vecinos que mejoren la solución.

Cuando se ha llegado a un óptimo local, las metaheurísticas utilizan estrategias para "escapar" de esos óptimos. De acuerdo a Sörensen y Glover (2010) las estrategias más comunes son:

- Búsqueda Local Iterada. Se aplica un cambio aleatorio a la solución actual, llamado perturbación.
- Búsqueda Local de Inicio múltiple: Reinicia la búsqueda con una nueva solución completa.
- *Búsqueda de Vecindad Variable* (VNS). Esta estrategia explota el hecho de que un óptimo local relativo a un tipo de movimiento específico es mejorado usando otro movimiento, cambiándolo luego de alcanzar un óptimo local por otro de varios tipos de movimiento definidos.

Existen otros tipos de metaheurísticas que emplean la búsqueda local, tales como búsqueda tabú, recocido simulado, búsqueda local guiada, etc. De acuerdo con Blot (2018) existen algunos componentes básicos para estrategias de búsqueda local multiobjetivo:

- *Archivo*. Esta estructura contiene el conjunto de soluciones optimas de Pareto potenciales siendo este el conjunto que el procedimiento devolverá. El tamaño es determinado por algún criterio de diversidad o filtrado básico.
- *Memoria.* Es el conjunto actual de soluciones, mantiene todas aquellas cuya vecindad puede ser explorada. Esas soluciones provienen a menudo del archivo o de iteraciones previas y pudieran ser dominadas por algunas

soluciones del archivo. Hay tres estrategias para el uso de memoria: la primera implica algoritmos de búsqueda local de un solo objetivo; la segunda involucra algoritmos que mantienen un conjunto actual de soluciones y las exploran secuencialmente, con la consecuencia directa de mejorar la diversidad donde cada trayectoria separada puede ser ubicada en un subconjunto del frente de Pareto; finalmente la tercera incluye algoritmos que no realizan un seguimiento de la trayectoria seleccionada y explorando directamente las soluciones del archivo.

- *Estrategias de exploración*. Al igual que en la búsqueda de un solo objetivo, existen las estrategias de *best improvement* y *first improvement*. Una alternativa a usar el criterio de dominancia de Pareto es agregar los objetivos, obteniendo un valor escalar para su uso en clasificar a los vecinos o calcular probabilidades. El archivo puede actualizarse durante la exploración de una solución actual o luego de haber explorado todas. Lo anterior puede ocurrir de igual manera con la memoria.
- *Estrategias de selección.* Completada la exploración, las soluciones en la memoria han sido exploradas y el archivo es actualizado con vecinos aceptados. La memoria se actualizará en la siguiente iteración, generalmente tomando las soluciones del archivo (aleatoriamente, ya sea con una propiedad *crowding* o de intercambio, una contribución individual o en el orden de inserción en el archivo). En las búsquedas basadas en trayectorias la memoria ya fue actualizada durante la exploración.
- *Criterio de parada*. El criterio de paro natural de la búsqueda local es cuando la memoria está vacía, lo que se entiende como la no exploración de más soluciones. Lo anterior quiere decir que cada solución del archivo es un óptimo local de Pareto. Otros criterios son el tiempo de ejecución, el total de iteraciones, evaluaciones o exploraciones y una cantidad de iteraciones sucesivas sin mejora.
- *Escape del óptimo local*. Algunas técnicas para escapar de óptimos locales en búsqueda aleatoria multiobjetivo son el uso de una temperatura para calcular la probabilidad de aceptar vecinos de menor calidad. El paradigma tabú también es otra estrategia, la cual mantiene una lista de movimientos a evitar. Y finalmente, otra estrategia es una búsqueda local iterada que se detenga cuando se llega al verdadero conjunto óptimo local de Pareto.

2.4 Algoritmo Evolutivo Multiobjetivo basado en

Descomposición (MOEA/D)

El MOEA/D (*Multiobjective Evolutionary Algorithm based on Decomposition*) propuesto por Zhang y Li (2007) es un algoritmo evolutivo multiobjetivo (MOEA) que hace uso del enfoque de Tchebycheff para la descomposición del problema de aproximación al frente de Pareto en un número de problemas de optimización escalar. El uso de este enfoque consiste en que $\lambda^1, ..., \lambda^N$ es un conjunto de vectores de peso uniforme y z^* es el punto de referencia, con los cuales la descomposición usando este enfoque y la función objetivo del *j*-ésimo subproblema se definen como la Ecuación 2.7

$$g^{te}(x|\lambda^{i}, z^{*}) = \max_{1 \le i \le m} \{\lambda^{j}_{i}f_{i}(x) - z^{*}_{i}\}$$
(2.7)

donde $\lambda^j = (\lambda_1^j, ..., \lambda_m^j)^T$. El MOEA/D minimiza todas las *N* funciones objetivo simultáneamente en una ejecución.

Al destacar que g^{te} es continuo de λ , Zhang y Li (2007) afirman que "la solución óptima $g^{te}(x \mid \lambda^i, z^*)$ debe ser cercana a la de $g^{te}(x \mid \lambda^j, z^*)$ si λ^i y λ^j son cercanos entre sí". Por ello, cualquier información que cumple lo anterior debería ser útil para optimizar $g^{te}(x \mid \lambda^j, z^*)$.

En el MOEA/D una vecindad de vector de pesos λ^i se define como un conjunto de varios de sus vectores de peso más cercanos en { $\lambda_1, ..., \lambda_N$ }. La vecindad del *i*-ésimo subproblema la forman todos los subproblemas con los vectores de peso de la vecindad λ^i . La población son las mejores soluciones encontradas para cada subproblema. Solo las soluciones actuales a sus subproblemas vecinos son explotadas para optimizar un subproblema MOEA/D (Zhang y Li, 2007). En cada generación *t*, el MOEA/D con enfoque de Tchebycheff mantiene:

- una población de *N* puntos $x^1, \ldots x^N \in \Omega$, donde x^i es la solución actual al *i*-ésimo subproblema;
- { FV^1 , ..., FV^N }, donde FV^i es el F-valor de x^i , es decir, $FV^i = F(x^i)$ para cada $i = \{1, ..., N\}$;
- $z = (z_1, ..., z_m)^T$, donde z_i es el mejor valor encontrado para cada objetivo f_i ;
- una población externa (EP) donde se guardan las soluciones no dominadas durante la búsqueda.

El algoritmo descrito por Zhang y Li (2007) tiene como parámetros de entrada:

- un problema multiobjetivo (MOP);
- un criterio de paro (*Stopping Criterion*, SC);
- *N* subproblemas considerados en MOEA/D;
- distribución uniforme de los *N* vectores de peso: $\lambda^1, ..., \lambda^N$;
- *T* vectores de peso en la vecindad de cada vector de peso.

Con los parámetros anteriores la salida producida es un conjunto EP resultante de soluciones.

Algoritmo 1. MOEA/D.					
MOEA_D	MOEA_D (MOP, SC, N, U (0,1) λ^1 ,, λ^N , T)				
1: Inicio					
2:	$EP = \emptyset$				
3:	Calcular distancias euclidianas de cualquier par de vectores de peso.				
4:	for $i = 1$ to N , do				
5:	$B(i) = \{i^1, \ldots, i^T\} //\lambda^{i_1}, \ldots, \lambda^{i_T} \text{ son } T \text{ vectores de peso más cercanos a } \lambda.$				
6:	Generar población inicial $\{x^1,, x^N\}$.				
7:	$FV^i = F(x^i)$ // $i = \{1,, N\}.$				
8:	$z = (z_1,, z_m)^T$ // donde <i>m</i> son los objetivos del problema.				
9:	while $SC = no_satisfecho do$				
10:	for $i = 1$ to N do				
11:	Seleccionar $\{k, l\}$ de $B(i)$ aleatoriamente.				
12:	y = reproducción de k y l con operadores genéticos.				
13:	y' = mejoramiento con heurística a y.				
14:	for $j = 1$ to m do				
15:	if $z_j < f_i(y')$ then $z_j = f_i(y')$				
16:	for $j \in B(i)$ do				
17:	if $g^{te}(y' \lambda, z) \leq g^{te}(x' \lambda, z)$ then				
18:	x' = y'				
19:	$FV^{j} = f(y^{\prime})$				
20:	EP = EP - vectores dominados por F(y')				
21:	if EP no domina a $F(y')$ then EP = EP \cup $F(y')$				
22:	print EP.				
23: Fin					

2.5 Problemas DTLZ

Los problemas Deb-Thiele-Laumanns-Zitzler o DTLZ (Deb et al., 2005) son un conjunto de nueve problemas escalables a cualquier número de objetivos y variables de decisión para la comparación de optimizadores. Los primeros siete son problemas sin restricciones donde el número de variables de decisión es dado por n = m + (k - 1), donde *m* es la cantidad de objetivos y *k* el número de parámetros de distancia. Los dos restantes son problemas donde las variables de decisión son menores a un número de restricciones dado.

ESTADO DEL ARTE

Esta sección describe brevemente los trabajos relacionados con el uso de conjuntos aproximados, y el uso de MOEA/D en la solución de otros problemas, destacándose las características más relevantes de ellos. Al final se presenta un análisis del estado actual de estas obras con respecto a la propuesta de investigación.

3.1 Trabajos previos de MOEA/D

Pilat y Neruda (2015) emplearon MOEA/D con enfoque coevolutivo en los pesos. Ma. et al. (2016) utilizaron una articulación de preferencias *a priori* en el MOEA/D usando los vectores de peso de cada subproblema, mientras que De Souza et al. (2017) propusieron la modificación de los puntos de referencia en las funciones para escalar en MOEA/D.

Li et al. (2018) usaron una variación T-MOEA/D (*Target region* MOEA/D) en un *framework* interactivo, en el cual los tomadores de decisiones articulan su preferencia por medio de una región objetivo dada por el rango preferido de funciones objetivo. A su vez Yutao et al. (2019) en la variación R-MOEA/D (*Reference Point Guided* MOEA/D) hacen un manejo interactivo de preferencias a través de escalarización de funciones con puntos de referencia derivados de un punto de referencia específico por el tomador de decisión.

Li (2019) propuso una versión interactiva del MOEA/D en donde al pasar varias generaciones, el tomador de decisión proveerá puntajes de un subconjunto de soluciones; de su respuesta, un valor aproximado de función se deriva y es usado para guiar la búsqueda. Y más recientemente Tomczyk y Kadzinski (2020) en el IEMO/D (*Interactive Evolutionary Multiple Objective Optimization Based on Decomposition*) usan interactivamente la información de comparación por pares de soluciones en la búsqueda a través de la región de interés.

3.2 Trabajos previos de conjuntos aproximados en algoritmos

Santana-Quintero et al. (2006) utilizaron un MOEA basado en la optimización de partículas y una búsqueda local basada en conjuntos aproximados. Posteriormente, en (Santana-Quintero et al., 2008b) se llevó a cabo un estudio comparativo de tres métodos: *artificial neural network* (ANN), *radial basis function* (RBF) y *support vector machine* (SVM), en el cual con el mejor de ellos hicieron uso de un motor de búsqueda local basado en conjuntos aproximados. Finalmente, en (Santana-Quintero et al., 2008c) se utilizó la variante DEMORS (*Differential Evolution for Multi-objective Optimization with Rough Sets*) donde se hizo una hibridación entre una versión multiobjetivo de evolución diferencial y la teoría de conjuntos aproximados aplicada como motor de búsqueda local para mejorar los resultados provenientes de la fase anterior.

Elsawy et al. (2014) propusieron una estrategia de conjuntos aproximados para la mejora de la solución de un algoritmo genético multiobjetivo coevolutivo. En esta mejora se realiza una segunda fase donde se aplica la búsqueda local basada en conjuntos aproximados al resultado del algoritmo genético ejecutado como fase uno.

Hassanien et al. (2018) utilizan un algoritmo *crow search* combinando con un esquema de conjuntos aproximados para intensificar la búsqueda en la región objetivo.

3.3 Análisis del Estado del Arte

La Tabla 3.1 muestra una comparación entre los trabajos del estado de arte mencionados previamente, haciendo énfasis en la función que cumple el uso de conjuntos aproximados o el algoritmo MOEA/D dependiendo el caso. Adicionalmente se comparan esas características con las de la propuesta.

Autor(es) (Año)	Uso de Conjuntos Aproximados	Uso de MOEA/D
Santana-Quintero et al. (2006)	•	
Santana-Quintero, et al (2008a)	•	
Santana-Quintero, et al (2008b)	•	
Santana-Quintero, et al (2008c)	•	
Elsawy et al. (2014)	•	
Pilat y Neruda (2015)		•
Ma. et. al (2016)		•
De Souza et al. (2017)		•
Hassanien et al. (2018)	•	
Li et al. (2018)		•
Yutao et al. (2019)		•
Li et. al (2019)		•
Tomczyk y Kadzinski (2020)		•
Fernandez et al. (2021)		•
Propuesta	•	•

Tabla 3.1. Estado del arte sobre uso de la teoría de conjuntos aproximados y MOEA/D.

De acuerdo a la información presentada en la Tabla 3.1, que resume el estado del arte revisado, se puede observar que tanto los conjuntos aproximados como estrategia de búsqueda local como MOEA/D tienen aplicación amplia en problemas de optimización, sin embargo, no se observa en la literatura un trabajo integrado de los mismos. Adicionalmente, se puede observar que hay muy poco trabajo asociado a la integración de una búsqueda local en MOEA/D. Por lo anterior, se considera que el uso de conjuntos aproximados, quienes han tenido éxito en otros enfoques de búsqueda, como estrategia de búsqueda local para MOEA/D puede dar lugar a un esquema de optimización adecuado.

PROPUESTA DE SOLUCIÓN MOEA/D/RSIM

Este capítulo presenta el primer algoritmo propuesto para MOEA/D que incorpora un método de mejora de soluciones heurístico basado en la teoría de conjuntos aproximados. Inicialmente se seleccionan trabajos representativos del estado del arte, tipos de problemas y algoritmos empleados en su solución, con la finalidad de identificar los mejores mecanismos que han permitido usar conjuntos aproximados como estrategia de búsqueda local. Posteriormente se describen los componentes de la propuesta de estrategia de mejora, así como el diseño de su arquitectura. Por último, se realiza una evaluación experimental para validar su implementación con instancias de los problemas estándar DTLZ.

4.1 Análisis de métodos de búsqueda local basados en conjuntos aproximados

4.1.1 Comparación de métodos

Basado en el análisis del estado del arte, se observa que existen pocos trabajos que emplean la teoría de conjuntos aproximados como una estrategia de mejora de soluciones de optimización multiobjetivo. Por ello se optó por analizar los trabajos de la Tabla 4.1 para identificar las aplicaciones previas de los conjuntos aproximados en este ámbito. En ella se muestra que las propuestas analizadas se componen de dos fases: en la primera se proporciona una aproximación del frente de Pareto mediante un algoritmo optimizador, mientras que en la segunda fase se utiliza un motor de búsqueda local basado en los conceptos de la teoría de conjuntos aproximados.

Tabla 4.1 Comparación de métodos utilizados en propuestas selec	cionadas.
---	-----------

Autor(es)/año	Fase I	Fase II
Santana-Quintero et al. (2008a)	Evolución diferencial	
Elsawy et al., (2014)	Algoritmo genético multiobjetivo	Motor de búsqueda local basado en la teoría de conjuntos aproximados.
Hassanien et al., (2018)	Algoritmo de crow search	

Las dos primeras propuestas dividen a las poblaciones con las que trabajan. En una primera población se almacenan soluciones generadas de manera aleatoria, en la segunda se hace una separación de las soluciones no dominadas (las cuales se consideran una aproximación inicial al frente de Pareto), y en una tercera población se conservan las soluciones dominadas que incluyen las que se descartan de la segunda durante la exploración del espacio de búsqueda. La tercera propuesta emplea un algoritmo de *crow search* (CSA) que se enfoca en la búsqueda de un solo objetivo, por lo que no hace uso de la dominancia.

Santana-Quintero et al. (2008a) emplean una variación de la evolución diferencial utilizando el concepto de la edominancia como criterio de evaluación de las soluciones pertenecientes al frente de Pareto. Para probar el método utilizan problemas estándar con y sin restricciones comparándolos con los algoritmos NSGA-II (*Nondominated Sorting Genetic Algorithm*) y SPEA2 (*Strength Pareto Evolutionary Algorithm*). Los problemas estándar sin restricciones pertenecen a los conjuntos ZDT y DTLZ. Elsawy et al. (2014) resuelven exclusivamente los problemas estándar con restricciones BNH (Binh & Korn), SRN (Srinvas & K. Deb), TNK (Tanaka-Watanabe-Furukawa-Tanino) y OSY (Osyczka & S. Kundu). Utilizan el mismo motor de búsqueda que Santana-Quintero et al. (2008a) mediante un algoritmo genético multiobjetivo como proveedor de la aproximación inicial del frente.

Por último, Hassanien et al. (2018) emplean un algoritmo de *crow search* como proveedor de la aproximación del frente, utilizando un motor propio donde obtienen un intervalo aproximado de cada variable con las aproximaciones de cada una de las dimensiones de la solución (variables). La diferencia principal con Santana-Quintero et al. (2008a) es que mientras una propuesta está enfocada en un problema mono-objetivo, la segunda utiliza la dominancia de Pareto para tratar con problemas multiobjetivo.

4.1.2 Identificación de estrategias para el uso de conjuntos aproximados como método de búsqueda local

El análisis inicial de las propuestas de la literatura, presentadas previamente en la Tabla 4.1, llevó al estudio de los distintos motores de búsqueda local empleados en ellas. Dicho estudio permitió identificar dos tipos de estrategias de búsqueda local en las cuales se emplean los conjuntos aproximados. La primera estrategia (Santana-Quintero et al., 2008a) emplea el concepto de "malla" para denotar porciones rectangulares del espacio de la variable de decisión a los que llama "átomos", los cuales son elementos del universo dentro de dicha malla. El Algoritmo 2 muestra los pasos de la Fase II. Para conformar la malla, en los problemas no restringidos se utiliza como entrada los puntos factibles no dominados *ES* (Línea 1) y dominados *DS* (Línea 2).

Algoritmo 2. Pseudocódigo de la Fase II de Santana-Quintero et al. (2008a)
Input: Conjunto no dominado generado por Fase I, conjunto dominado generado por Fase I.
Output: ES conjunto de soluciones no dominadas
1: $ES \leftarrow$ conjunto no dominado generado por Fase I
2: $DS \leftarrow$ conjunto dominado por Fase I.
3: eval $\leftarrow 0$
4: repeat
5: Items $\leftarrow ES \cup DS$; NumEff = $ ES $; NumDom = $ DS $
6: $Ranges_i \leftarrow Inicialización_de_Rango(Items) \forall i \in \{1, 2, 3,, NumVar\}$
7: $Atomos_j \leftarrow Cálculo_de_átomos(Ranges) \forall j \in \{1, 2, 3, \dots, NumEff\}$
8: for $i \leftarrow 0$, Offspring do
9: $eval \leftarrow eval + 1$
10: $Offspring_i \leftarrow Generar_Offspring(Atomos_i) \forall j \in \{1, 2, 3, \dots, NumEff\}$
11: Actualizar_ES_con_ nodominadosOffspring(ES, Offspring)
12: Actualizar_DS_con_ dominadosES(ES)
13: until eval > 1000

Para la creación de los átomos, se deben elegir *NumEff* puntos no seleccionados con anterioridad, así como *NumDom* puntos no dominados de la misma manera. En ambos casos, de no contar con suficientes puntos disponibles, se toma uno del conjunto correspondiente de manera aleatoria. Luego se agregan los *NumEff* puntos eficientes y los *NumDom* puntos dominados en un solo conjunto llamado *Items* (Línea 5). Posteriormente, se realizan los siguientes pasos:

- i. *Inicialización de Rango* (Línea 6). Para cada variable de decisión *i*, se ordenan (de menor a mayor) los diferentes valores que toma dentro del conjunto *Items*. Dicho ordenamiento se denomina *Range_i*.
- ii. *Cálculo de átomos* (Línea 7). Se calculan *NumEff* átomos rectangulares centrados en los *NumEff* puntos eficientes seleccionados. Para ello se calculan los límites inferiores y superiores por cada variable *i*:
 - Límite inferior *i*: Punto medio entre el punto y el valor previo en el Range_i.
 - Límite superior *i*: Punto medio entre el punto y el valor posterior en el *Range_i*.
- iii. Generar soluciones offsprings y actualizar conjuntos (Líneas 8-11). En total, para cada átomo se generan

aleatoriamente *OffSpring* nuevos puntos. Para cada punto generado (Línea 10), se verifica si debe ser incluido como nuevo punto no dominado en *ES* (Línea 11). En caso de que algún punto en *ES* sea dominado por el nuevo, dicho punto dominado pasará al conjunto *DS* (Línea 12).

La segunda estrategia propuesta por Hassanien et al. (2018) resuelve un problema de un solo objetivo, utilizando de manera más explícita conceptos de la teoría de conjuntos aproximados. El Algoritmo 3 muestra los pasos de la Fase II, llamada RSS por sus autores. El procedimiento de optimización de la Fase I produce un conjunto de soluciones aproximadas utilizadas como entrada para la Fase II, que es una búsqueda local basada en un esquema de búsqueda rugoso. Primero, cada solución se convierte en un número rugoso. Posteriormente se obtiene el intervalo rugoso a través de las aproximaciones superior e inferior para cada variable. Finalmente, se genera una nueva solución descendiente dentro del intervalo rugoso obtenido. La descripción detallada de esta fase se describe a continuación.

Algoritmo 3	. Pseudocódigo	de la Fase	II de	Hassanien et al.	(2018)
8	0				· · · ·

Input: U conjunto de N buenas soluciones, A conjunto de n variables de decisión, la mejor solución obtenida x^* . **Output:** U' conjunto N con soluciones mejoradas.

- 1: Formular el sistema de información: (U, A).
- 2: Jerarquización de gránulos: cada granulo es una partición de U en N clases ordenadas para una variable de decisión.
- 3: Determinar la aproximación superior e inferior de cada clase y variable de decisión usando los gránulos en Ecs. 4.1 y 4.2.
- 4: Calcular intervalos unificados rugosos para cada variable de decisión de acuerdo a las Ecuaciones 4.5 y 4.6.

5: repeat

- 6: Generar *N* nuevas soluciones aleatoriamente como sigue:
- 7: for $i \leftarrow 1$ to N
- 8: Generar $x'_i \in U'$ dentro del nuevo intervalo y considerando x^* .
- 9: Evaluar las soluciones obtenidas.
- 10: Actualizar la mejor solución en x*.
- 11: **until** *Iter* < *Iter*_{max}
- i. Formulación del sistema de información. Para formular el sistema de información, la Línea 1 utiliza un conjunto de soluciones (que se asumen son buenas) provenientes de la Fase I. Dicho sistema se va a componer de un conjunto (U, A) donde U son todos los objetos (las soluciones) y A son las dimensiones del problema (las variables de decisión).
- ii. Aproximación rugosa. La Línea 2, para cada variable de decisión, particiona el universo de soluciones U en N clases utilizando la relación reflexiva C que representa cada solución como una clase, es decir, $U/C = \{\{x_1\}, \{x_2\}, ..., \{x_i\}, ..., \{x_N\}\}$, donde $\{x_i\}$ es la *i*-ésima clase y todas las clases se expresan en orden creciente tal que: para una variable de decisión dada $\{x_1\} \le \{x_2\} \le ..., \{x_N\}$. Para fines prácticos, lo anterior se traduce en ordenar todos los valores que toma cada variable de decisión (jerarquización de gránulos). La Línea 3 determina las aproximaciones "rugosas" individuales, es decir las aproximaciones inferiores y superiores de cada clase (solución) por cada variable de decisión, por medio de U particionado por C (U/C). Las Ecuaciones 4.1 y 4.2 permiten obtener las aproximaciones inferior y superior de la clase x_i , respectivamente, para una determinada variable de decisión, cuyo índice se omite por simplicidad:

$$Apr(x_i) = \bigcup \{ y \in U/C(y) \le x_i \}, \forall i \in \{1, 2, 3, \dots, N\},$$
(4.1)

$$\overline{Apr}(x_i) = \bigcup \{ y \in U/C(y) \ge x_i \}, \forall i \in \{1, 2, 3, \dots, N \}.$$
(4.2)

iii. Intervalos rugosos. La Línea 4 utiliza las Ecuaciones 4.5 y 4.6 para calcular los intervalos unificados rugosos; estas ecuaciones crean intervalos de valores de manera global a las aproximaciones inferiores y superiores de todos los objetos, con los cuales se puedan generar, en un paso posterior, nuevas soluciones de manera aleatoria dentro de la región factible. Las ecuaciones del cálculo de "intervalos unificados" requiere de las Ecuaciones 4.3 y 4.4. Primero se calculan los intervalos individuales de cada una de las clases definidas anteriormente. Se

obtiene el intervalo de una clase x_i utilizando las Ecuaciones 4.3 y 4.4 para las aproximaciones inferior y superior, respectivamente, para una determinada variable de decisión:

$$x_i^{\text{LB}} = \frac{1}{N_{\text{LB}}} \sum y \mid y \in \underline{Apr}(x_i), \forall i \in \{1, 2, 3, \dots, N\},$$
(4.3)

$$x_i^{\text{UB}} = \frac{1}{N_{\text{UB}}} \sum y \mid y \in \overline{Apr}(x_i) , \forall i \in \{1, 2, 3, \dots, N\}.$$

$$(4.4)$$

donde N_{LB} y N_{UB} son el total de objetos contenidos en cada aproximación (inferior y superior respectivamente) de x_i . Luego de obtener los intervalos de todas la N clases para cada variable de decisión j, se calcula el promedio de estos con las Ecuaciones 4.5 y 4.6, los cuales son llamados "intervalos unificados de la j-ésima variable de decisión".

$$x_{j}^{\text{LB}} = \frac{\left(x_{1,j}^{\text{LB}} + x_{2,j}^{\text{LB}} + \dots + x_{N,j}^{\text{LB}}\right)}{N}, \forall j \in \{1, 2, 3, \dots, n\},$$
(4.5)

$$x_{j}^{\text{UB}} = \frac{\left(x_{1,j}^{\text{UB}} + x_{2,j}^{\text{UB}} + \dots + x_{N,j}^{\text{UB}}\right)}{N}, \forall j \in \{1, 2, 3, \dots, n\}.$$
(4.6)

iv. *Generación*. Las Líneas 6 a 8 utilizan los intervalos unificados para la generación de N nuevas soluciones x'_i , así como la mejor solución x^* .

$$x'_{i} = \begin{cases} x^{LB} + rand(x^{*} - x^{LB}) & rand \ge 0.5\\ x^{*} + rand(x^{UB} - x^{*}) & rand < 0.5 \end{cases}$$
(4.7)

- v. *Evaluación*. La Línea 9 evalúa cada solución en base a la función objetivo.
- vi. Actualización. Finalmente, la Línea 10 actualiza la mejor solución global obtenida.

4.2 Método de Mejora de Conjuntos Aproximados *Rough Sets Improvement Method* (RSIM)

4.2.1 Modelo, método y metodología

La *metodología de solución* propuesta en esta tesis se basa principalmente en el enfoque de Hassanien et al. (2018) y se complementa con el trabajo de Santana-Quintero et al. (2008a). Las principales características de la propuesta y sus similitudes y diferencias con los trabajos predecesores se enuncian a continuación.

- I. La propuesta y los trabajos de la literatura están soportados por el *modelo de conjuntos aproximados* de Pawlak (1991).
- II. En el primer trabajo, en la fase final del algoritmo, se obtienen intervalos por medio de la teoría de conjuntos

aproximados para problemas mono-objetivo. En el segundo trabajo, los intervalos usados para generar mejores soluciones finales se obtienen para problemas multiobjetivo. En la propuesta, se adapta a multiobjetivo el trabajo de Hassanien et al. (2018), para mantener la no dominancia de las soluciones aleatorias generadas, con lo cual se busca que la solución generada durante la reparación en el algoritmo MOEA/D resulte en un mejor desempeño de este.

III. Los algoritmos de la literatura solo invocan una vez al método de búsqueda local en la Fase II, después de la optimización (Fase I). El método propuesto incorpora la búsqueda local como parte del proceso de optimización.

El análisis de las características detectadas previamente dio como resultado el diseño de una propuesta, la cual será referida como *Rough Sets Improvement Method* (RSIM). De manera general, los componentes del *método propuesto para la mejora de soluciones* son los siguientes:

- Entradas: Cantidad de variables de decisión (η), máximo de iteraciones para la búsqueda de vecinos (*L*), conjunto de soluciones seleccionadas por el operador de selección (SS) y la(s) solución(es) hija(s) sometida(s) al operador de mutación (CS).
- Proceso: Obtención de intervalos rugosos a través del sistema de información generado con las entradas y realización de la búsqueda local, por medio de L iteraciones, comparando si una solución x_i aleatoria dentro de dichos intervalos resulta mejor que las soluciones producto del operador de mutación.
- Salida: Reemplazo de las mutaciones (CS) por solución(es) mejorada(s) y/o reparada(s).

4.2.2 Diseño de arquitectura

El diseño del método propuesto para la mejora de soluciones se describe en los Algoritmo 4 y 5. El Algoritmo 4 (RSIM) corresponde al método propuesto para la mejora de soluciones, el cual invoca al Algoritmo 5 (rsim_intervals) para la generación de los intervalos rugosos por medio de la teoría de conjuntos aproximados. El Algoritmo 6 (MOEA/D/RSIM) incorpora la propuesta RSIM a la estructura algorítmica del MOEA/D.

Figura 4.1. Arquitectura de algoritmo MOEA/D/RSIM.

Algoritmo 4 (RSIM)

El método recibe dos conjuntos de soluciones que proporcionarán información para generar el sistema de información a trabajar con conjuntos rugosos. Estos conjuntos son las soluciones tomadas por el operador de selección de padres elegido (SS) y los hijos sometidos al operador de mutación (CS). Primero, se invoca al Algoritmo 5 para obtener los intervalos rugosos tomando como sistema de información la unión de SS y CS (Línea 1). El número de iteraciones máximas *L* será el parámetro para controlar la búsqueda local dentro de los intervalos obtenidos (Líneas 3 a 12). Posteriormente se genera una solución x_i aleatoria dentro de dichos intervalos (Línea 5). Cada solución aleatoria generada se compara por dominancia con las soluciones de *CS*. En caso de que resulte mejor que alguna, se procede a reemplazarla. En ambos escenarios, si es o no mejor, la iteración cuenta.

Algoritmo 4. Rough Sets Improvement Method (RSIM)
Input: η número de variables de decisión, L cantidad de vecinos, conjunto de soluciones padres
seleccionados (SS), conjunto de soluciones hijas con mutación aplicada (CS) = $\{y_1, y_2\}$.
Output: $\{y_1, y_2\}$ soluciones mejoradas y/o reparadas.
1: <i>intervals</i> \leftarrow rsim_intervals (η , SS, CS)
2: Iter $\leftarrow 0$
3: repeat
4: for all $i \in \{1,, \eta\}$ //Genera una nueva solución.
5: $x_i = \text{rand}(intervals_i)$ //Variable generada con una distribución uniforme.
6: Evaluar <i>x</i> .
7: if $y_1 \neq x$ then $//x$ no es dominada
8: $y_1 \leftarrow x$
9: if $y_2 \neq x$ then //x no es dominada
10: $y_2 \leftarrow x$
11: $Iter + 1$
12: until $Iter < L$

Algoritmo 5 (rsim_intervals)

Se hace un *ranking* o jerarquización de las soluciones en cada una de las variables de decisión (gránulos), y se obtienen los intervalos rugosos de acuerdo al sistema de información generado. Se empieza inicializando las estructuras a utilizar para después formular el sistema con la unión de las entradas proporcionadas (Líneas 2 y 3). Enseguida se realiza la jerarquización de los gránulos obtenidos al formar el sistema, ordenando cada elemento de las clases de forma ascendente (Líneas 4-8). Posteriormente se obtienen los elementos rugosos inferiores de cada variable de decisión para cada clase: primero las aproximaciones inferiores individuales (Línea 11) y posteriormente su correspondiente límite inferior (Línea 12). De igual manera, se repite el proceso para las aproximaciones superiores individuales (Línea 15) y límites superiores individuales (Línea 16). Finalmente se obtienen los intervalos rugosos unificados de cada variable de decisión para el límite inferior (Línea 18) y el superior (Línea 19).

Algoritmo 5. rsim_intervals

Input: η número de variables de decisión de cada solución también llamada clase, conjunto de soluciones padres seleccionados (SS), conjunto de soluciones hijas con mutación aplicada (CS) = { x_1, x_2 }.
Output: intervals con límites de variables de decisión.
1: rsim_intervals(η , SS, CS)
2: $num_sol \leftarrow SS + CS $
3: $info_sys \leftarrow SS \cup CS$ //Formulación del sistema de información en clases x variables
4: for $j \leftarrow 1$ to η // Jerarquización de gránulos
5: for $i \leftarrow 1$ to <i>num_sol</i> //Transpuesta en variables x clases
6: $rank_info_sys_{ji} \leftarrow info_sys_{ij}$
7: for $i \leftarrow 1$ to η
8: ordenar(<i>rank_info_sys_i</i>) //Ordenamiento por variables de decisión

9: for $i \leftarrow 1$ to η 10: for $j \leftarrow 1$ to num_sol LAprox $\leftarrow \cup \{(r \in rank \ info \ sys_i) \le rank \ info \ sys_{ii}\} // Aproximación inferior$ 11: //Límite inferior individual 12: $LB_{ii} \leftarrow (\sum y \mid y \in LAprox)/|LAprox|$ 13: for $i \leftarrow 1$ to η 14: for $j \leftarrow 1$ to num_sol 15: UAprox $\leftarrow \cup \{(r \in rank_info_sys_i) \ge rank_info_sys_{ij}\} // Aproximación superior$ 16: $UB_{ij} \leftarrow (\sum y \mid y \in UAprox)/|UAprox|$ // Límite superior individual 17: //Obtención de intervalos rugosos unificados for $i \leftarrow 1$ to η *intervals*_{i0} \leftarrow ($\sum LB_i$) / / LB_i / 18: // Límite inferior unificado 19: *intervals*_{i1} \leftarrow ($\sum UB_i$) / / UB_i / // Límite superior unificado 20: return intervals

Algoritmo 6 (MOEA/D/RSIM)

Este algoritmo muestra la incorporación de la propuesta RSIM a la estructura algorítmica del MOEA/D. La Línea 1 inicializa las estructuras de trabajo del entorno de MOEA/D, las cuales van a ser actualizadas en un ciclo hasta alcanzar el criterio de paro. En las Líneas 2 a la 9 se realiza el ciclo evolutivo en los subproblemas planteados, siendo uno de dichos pasos la mejora de solución con la propuesta RSIM como operador de mejora (Línea 5).

Algoritmo 6. MOEA/D/RSIM

Input: Numero de objetivos *n*, número de subproblemas escalares *N*, tamaño de vecindad de vectores de peso *T*, número máximo de evaluaciones *maxEvaluations*, número de variables de decisión η , cantidad de vecinos *L*.

Output: Última generación de solución asociada a los vectores de peso $x = \{x_1, x_2, ..., x_N\}$.

1: $(x, z, FV, B(i), eval) \leftarrow$ Inicialización (N, n, T)

- 2: repeat
- 3: for $i \leftarrow 1$ to N do

4: $\{P_1, P_2, y'_1, y'_2\} \leftarrow \text{Reproducción}(x, B(i), T)$

- 5: $\{y_1, y_2\} \leftarrow \text{RSIM}(\eta, L, \{P_1, P_2\}, \{y'_1, y'_2\})$
- 6: ActualizarZ(z, { y_1 , y_2 })
- 7: ActualizarVecindad $(x,B(i), FV, \{y_1, y_2\})$
- 8: $eval \leftarrow eval+1$
- 9: **until** eval < maxEvaluations

4.3 Evaluación experimental de MOEA/D/RSIM

Se realizó una experimentación para evaluar el desempeño del algoritmo propuesto MOEA/D/RSIM resolviendo problemas de los conjuntos de prueba DTLZ 1 -7. En esta sección se evalúa el algoritmo con n = 3 objetivos para observar su comportamiento.

4.3.1 Configuración experimental

Se realizaron un total de 30 ejecuciones por cada instancia en un CPU *Intel Core* i7-10700 @ 2.90 GHz (16 CPU's) con 40 GB de RAM. El algoritmo se desarrolló en lenguaje C++ empleando *Visual Studio Community* 2019.

Problema	Número de variables (η)	Iteraciones
1	7	30
2	12	30
3	12	30
4	12	30
5	12	30
6	12	30
7	22	30

Tabla 4.2. Parámetros usados para instancias de los problemas DTLZ 1-7 de 3 objetivos.

La configuración de las instancias DTLZ se encuentra en la Tabla 4.2. Para MOEA/D/RSIM las soluciones iniciales son aleatorias, el máximo de evaluaciones se estableció en 100 mil, la cantidad de vectores (N) es de 100 y la cantidad de vectores por vector de peso (T) es 10. Los parámetros de configuración para la creación de vectores de peso, operadores de mutación, cruza, selección, reparación, mejora y actualización se presentan en la Tabla 4.3.

Parámetro	Tipo	Valor
Modelo generador de vectores de peso	Uniforme	Número de vectores = N , número de objetivos = n
Operador de mutación	Polinomial	Probabilidad = $1/\eta$, índice de distribución = 20.0
Operador de cruza	Cruza SBX	Probabilidad = 1.0, índice de distribución = 15.0
Operador de selección	Aleatorio	Tamaño de vecindad de selección = T
Operador de reparación	Ninguno	-
Operador de mejora	RSIM	Número de variables de decisión = η , número de vecinos $L = 10$
Operador de actualización	Tchebycheff	-

4.3.2 Análisis de resultados

La Tabla 4.4 muestra el mínimo, máximo y promedio de reemplazos realizados en el proceso de mejora con RSIM durante las ejecuciones del algoritmo, así como el porcentaje de reemplazos realizados en base a la cantidad máxima de vecinos T a obtener y el máximo de evaluaciones a realizar, como sigue: % reemplazos = reemplazos / (T x máximo de evaluaciones).

Instancia	Mínimo	Máximo	Promedio	Porcentaje de reemplazos
N03-DTLZ1	638146	729413	681462.5667	68 %
N03-DTLZ2	279462	624380	324683.7	32 %
N03-DTLZ3	631702	752278	708039.4667	71 %
N03-DTLZ4	856546	882686	871959.6	87 %
N03-DTLZ5	334468	476404	393345.1	39%
N03-DTLZ6	98665	295030	160272.0333	16%
N03-DTLZ7	266808	372909	303269.0333	30%
Promedio	443685.2857	590442.8571	491861.6429	49%

 Tabla 4.4. Cantidad de reemplazos realizados por RSIM.

Los resultados anteriores muestran que en todos los casos ocurren reemplazos, que son mejoras de hijos durante el algoritmo, siendo el valor más bajo alrededor de 16%. El promedio de los porcentajes de reemplazos de todos los problemas es de poco menos del 50%, observándose que hay problemas donde la tasa de reemplazo es más de la mitad. Dichos problemas son DTLZ 1, DTLZ 3 y DTLZ 4, mientras que DTLZ 2, DTLZ 5 y DTLZ 7 tienen casi el doble de reemplazos que DTLZ 6, quien es el que tiene el porcentaje más bajo.

4.4 MOEA/D/RSIM vs. MOEA/D

Como parte de la experimentación se compararon los frentes no dominados generados entre las instancias con el método RSIM aplicado e instancias sin RSIM, es decir, una implementación de MOEA/D sin método de mejora. Los parámetros de configuración para MOEA/D son iguales a la configuración descrita en la Tabla 4.3 para MOEA/D/RSIM, con la diferencia de no incluir un operador de mejora.

La Tabla 4.5 muestra los resultados obtenidos comparando las soluciones totales generadas, el número de soluciones únicas omitiendo repeticiones, así como el total de soluciones dominadas por alguna solución proveniente del algoritmo contrario, es decir, soluciones de MOEA/D/RSIM dominadas por MOEA/D o viceversa, el porcentaje de soluciones que están en el frente aproximado de Pareto común y finalmente el porcentaje de no conservación de la dominancia del frente generado.

	MOEA/D/RSIM						MOEA/D			
Instancia	Generadas	No duplicadas	Dominadas por MOEA/D	Aportación a frente común	No conservación de dominancia	Generadas	No duplicadas	Dominadas por MOEA/D/ RSIM	Aportación a frente común	No conservación de dominancia
N03-DTLZ1	174	25	1	9.16%	4.00%	1503	240	2	90.84%	0.83%
N03-DTLZ2	452	164	31	48.90%	18.90%	539	236	97	51.10%	41.10%
N03-DTLZ3	208	41	41	0.00%	100.00%	864	75	0	100.00%	0.00%
N03-DTLZ4	3000	286	0	90.51%	0.00%	3000	30	0	9.49%	0.00%
N03-DTLZ5	491	193	95	44.14%	49.23%	1202	160	36	55.86%	22.50%
N03-DTLZ6	466	79	76	30.00%	96.20%	288	7	0	70.00%	0.00%
N03-DTLZ7	1167	510	9	60.87%	1.76%	2564	328	6	39.13%	1.83%

Tabla 4.5. Comparación de frentes generados por MOEA/D/RSIM y MOEA/D.

En la misma Tabla 4.5 se remarcan sombreadas las celdas del algoritmo que obtuvo el menor valor de la no conservación de la dominancia y el que tuvo el mayor porcentaje de aportación al frente común. Los resultados muestran que se genera mayor cantidad de soluciones duplicadas en MOEA/D para los primeros problemas a diferencia de MOEA/D/RSIM donde se generan menos.

Gráfica 4.2. Aportación a frente común por MOEA/D/RSIM y MOEA/D.

Las Gráficas 4.1 y 4.2 muestran los resultados de la aportación al frente común y la no conservación de la dominancia respectivamente. Con estos resultados se puede apreciar que el método propuesto tiene un mejor comportamiento en las dos medidas de desempeño para los problemas DTLZ 4 y DTLZ 7 con 3 objetivos. En cambio, es en DTLZ 3 donde MOEA/D es la mejor opción.

Se aplicó una prueba de pares Wilcoxon para la aportación al frente común y una prueba de pares t*-student* para el porcentaje de no conservación de la dominancia. Estas pruebas fueron aplicadas en base a la naturaleza propia de cada conjunto de datos, proporcionando los siguientes resultados con un nivel de significancia de 5%:

1. p-value:

- a. Aportación (Wilcoxon): 0.310494;
- b. No conservación (*t-student*): 0.16860;
- 2. Estadístico:
 - a. Aportación: 8;
 - b. No conservación: 1.5651;

Los resultados estadísticos muestran que a pesar de que la propuesta presenta mejor comportamiento para las dos mediciones de desempeño, no se sostienen que existan diferencias significativas entre ambos algoritmos. En las siguientes secciones se presentan extensiones de esta propuesta básica y se introducen otras medidas de desempeño.

PROPUESTA DE SOLUCIÓN MOEA/D/RSIM⁺

Este capítulo presenta una primera variante de la forma base de MOEA/D/RSIM, mejorando el proceso de generación de soluciones al reducir la cantidad de reemplazos e incorporando un archivo de soluciones generadas durante la ejecución del algoritmo, característica propia de una búsqueda local multiobjetivo. Inicialmente se muestran los cambios en el modelo, método y metodología, así como los cambios en la arquitectura diseñada. Como último paso, se realiza un experimento para validar su implementación con instancias de los problemas DTLZ similares a las aplicadas en el capítulo 4.

5.1 Método de Mejora de Conjuntos Aproximados Modificado

Modified Rough Sets Improvement Method (RSIM⁺)

5.1.1 Modelo, método y metodología

La *metodología de solución* propuesta en esta sección se continúa basando principalmente en el enfoque de Hassanien et al. (2018) y se complementa con el trabajo de Santana-Quintero et al. (2008a); ambos trabajos proponen una búsqueda local que genera nuevas soluciones mejoradas.

Las características principales de la variante propuesta (RSIM⁺) y sus similitudes y diferencias con la metodología previamente presentada en la Sección 4.2 (RSIM) se enuncian a continuación.

- I. La propuesta y los trabajos de la literatura están soportados por el *modelo de conjuntos aproximados* de Pawlak (1991).
- I. La propuesta almacena un conjunto de soluciones en *archive* que combina los elementos del conjunto CS y las soluciones generadas durante las iteraciones de vecindad, almacenando soluciones no repetidas. La propuesta también condiciona el reemplazo de hijos a máximo uno por iteración con el propósito de evitar que la solución generada reemplace a todos los hijos.
- II. Finalizada la búsqueda en la vecindad establecida, se comparan por dominancia las soluciones del conjunto *archive* contra la totalidad del conjunto final EP a través de una probabilidad de realizar dicha comparación. Esta probabilidad *P* es el cociente del producto de *L* (vecinos a buscar), η (clases) y el índice *i* de *archive* entre el tamaño de EP, como establece la Ecuación 5.1:

$$P = \frac{L \times \eta \times i}{|EP|}.$$
(5.1)

El índice *i* de *archive* cumple la función de controlar la variabilidad en conjunto con los parámetros propios del método de mejora RSIM⁺, como lo son el máximo de vecindad y la cantidad de variables de decisión. El tamaño de EP aumenta conforme avanzan las evaluaciones realizadas, por lo que la probabilidad de la Ecuación 5.1 tiene como propósito realizar más cambios cuando el frente aproximado generado no es muy extenso.

III. En caso de que una solución en *archive* y otra solución en EP sean no dominadas entre sí o no exista ningún elemento de EP que domine a la solución de *archive*, la primera solución dominada que encuentre en el recorrido de EP será reemplazada por la solución de *archive*. Lo anterior busca mantener la no dominancia de las soluciones generadas, con el fin de que la solución generada durante la reparación/mejora en el algoritmo MOEA/D resulte en un mejor desempeño del mismo.

Los componentes anteriores dieron como resultado una versión modificada de RSIM, la cual será referida como *Modified Rough Sets Improvement Method*, De manera general, los componentes del *método propuesto para la mejora de soluciones* son los siguientes:

- Entradas: Se heredan las entradas de RSIM (cantidad de variables η, máximo de iteraciones para la búsqueda de vecinos *L*, conjunto SS de soluciones seleccionadas por el operador de selección y el conjunto CS de soluciones hijas sometido al operador de mutación), añadiéndose el conjunto EP de la estructura algorítmica de MOEA/D.
- Proceso: Almacenamiento en *archive* de CS; obtención de intervalos rugosos a través del sistema de información generado con las entradas; realización de la búsqueda local por medio de *L* iteraciones, comparando si una solución *x_i* aleatoria dentro de dichos intervalos resulta mejor que las soluciones producto del operador de mutación, condicionando el reemplazo a uno máximo por iteración; almacenamiento en *archive* de nueva solución aleatoria; y reemplazo de elementos de EP con soluciones del conjunto *archive* no dominadas por EP o no dominadas entre sí.
- Salida: Reemplazo de las mutaciones (CS) por soluciones mejoradas y/o reparadas, y reemplazo de soluciones en EP con elementos de *archive*.

5.1.2 Diseño de arquitectura

El diseño del método propuesto se describe en el Algoritmo 7. El Algoritmo 7 (RSIM⁺) corresponde a la mejora propuesta para el método RSIM de mejora de soluciones, el cual invoca el Algoritmo 5 (rsim_intervals) para la generación de los intervalos rugosos por medio la teoría de conjuntos aproximados. El Algoritmo 8 (MOEA/D/RSIM⁺) incorpora RSIM⁺ a la estructura algorítmica de MOEA/D.

Algoritmo 7 (RSIM⁺)

El primer paso es la inicialización (Líneas 1-5). El método recibe el conjunto EP del MOEA/D y para generar el sistema de información recibe los mismos conjuntos que RSIM: el de padres elegidos (SS) y los hijos sometidos al operador de mutación (CS). En la Línea 1 se invoca al Algoritmo 5 para obtener los intervalos rugosos con el sistema de información generado con las entradas. En las Líneas 3-5 se inicializa el conjunto *archive* con el primer hijo y₁ de CS para después añadir a *archive* el segundo hijo y₂ si no es repetido. Lo siguiente es realizar una búsqueda local por medio de L iteraciones (Líneas 6-19), comparando si una solución aleatoria x_i , generada dentro de dichos intervalos (Línea 8), resulta mejor en dominancia que las soluciones producto del operador de mutación, condicionando el reemplazo a máximo uno por iteración y evitando soluciones repetidas. La diferencia con el Algoritmo 4 es comparar por dominancia al primer elemento de CS y, en caso de ser dominado por x, continuar con el siguiente hijo (Líneas 10 y 14). Si la solución x es no dominada por alguno de los hijos y además x no existe en archive (Líneas 12 y 16), se agrega la solución a dicho conjunto (Líneas 13 y 17). Terminada la búsqueda local, para cada solución de *archive* se compara su dominancia contra el conjunto EP (Líneas 20-27), comprobando si existe algún elemento de EP dominado por la solución en archive. Durante este recorrido, se verifica si la probabilidad de la Ecuación 5.1 es mayor a un número aleatorio (Línea 22) y si la solución actual de archive cumple el requisito de no dominancia y su suma de objetivos es diferente de cero (Línea 23). En caso de cumplir dicha condición se realiza el reemplazo con la solución de *archive* al primer elemento en EP que no la domine, actualizándolo con soluciones únicas generadas durante la búsqueda local (Líneas 24-27); si no se cumple la condición el ciclo de recorrido del archive continúa a la siguiente solución.

Algoritmo 7. Modified Rough Sets Improvement Method (RSIM⁺)

Input: η número de variables de decisión, *L* cantidad de vecinos, conjunto de soluciones padres seleccionados (SS), conjunto de soluciones hijas con mutación aplicada (CS) = {*y*₁, *y*₂}, conjunto de soluciones EP.

Output: $\{y_1, y_2\}$ soluciones mejoradas y/o reparadas, EP actualizado.

1: *intervals* \leftarrow rsim_intervals(η , SS, CS)

2: *Iter* \leftarrow 0

3: archive $\leftarrow y_1$

```
4: if \neg(CS_1 \text{ in } archive) then
5:
       archive \leftarrow archive \cup y_2
6: repeat
7:
       for all i \in \{1, ..., \eta\} //Genera una nueva solución.
8:
            x_i = \text{rand}(intervals_i) //Variable generada con una distribución uniforme.
9:
        Evaluar x.
       if y_1 \neq x then //x no es dominada
10:
11:
           v_1 \leftarrow x
12:
           if \neg(CS<sub>1</sub> in archive) then
13:
              archive \leftarrow archive \cup \{x\}
14:
        else if y_2 \ge x then //x no es dominada
15:
                y_2 \leftarrow x
16:
                if \neg(CS<sub>2</sub> in archive) then
17:
                   archive \leftarrow archive \cup \{x\}
18:
       Iter + 1
19: until Iter < L
20: for i \leftarrow 1 to |archive|
21:
       obj \leftarrow suma objetivos(archive<sub>i</sub>)
22:
       if rand (0,1) < ((L^*\eta^*i) / |EP|) then //Ecuación 5.1
           if (obj \neq 0) \land (\forall y \in EP, y \geq archive_i) then
23:
24:
              for j \leftarrow 1 to |EP|
25:
                 if EP_i \neq archive_i then
26:
                     EP_i \leftarrow archive_i
                     break
27:
```

Algoritmo 8 (MOEA/D/RSIM⁺)

Este algoritmo muestra la incorporación de la propuesta de solución RSIM⁺ a la estructura algorítmica del MOEA/D. La Línea 1 inicializa las estructuras de trabajo del entorno de MOEA/D, las cuales van a ser actualizadas en un ciclo hasta alcanzar el criterio de paro. En las Líneas 2 a la 9 se realiza el ciclo evolutivo en los subproblemas planteados, siendo uno de dichos pasos la mejora de solución con la propuesta RSIM⁺ como operador de mejora (Línea 5), la cual incluye como parámetro de entrada el conjunto EP.

Algoritmo 8. MOEA/D/RSIM⁺

Input: Numero de objetivos *n*, número de subproblemas escalares *N*, tamaño de vecindad de vectores de peso *T*, número máximo de evaluaciones *maxEvaluations*, número de variables de decisión η , cantidad de vecinos, conjunto de soluciones EP.

Output: Última generación de solución asociada a los vectores de peso $x = \{x_1, x_2, ..., x_N\}$.

```
1: (x, z, FV, B(i), eval) \leftarrow Inicialización (N, n, T)
```

```
2: repeat
```

- 3: for $i \leftarrow 1$ to N do
- 4: $\{P_1, P_2, y'_1, y'_2\} \leftarrow \text{Reproducción}(x, B(i), T)$
- 5: $\{y_1.y_2\} \leftarrow \text{RSIM}^+(\eta, L, \{P_1, P_2\}, \{y'_1, y'_2\}, \text{EP})$
- 6: ActualizarZ(z, { y_1 , y_2 })
- 7: ActualizarVecindad($x, B(i), \lambda_i, FV, \{y_1, y_2\}, R$)
- 8: $eval \leftarrow eval+1$
- 9: **until** *eval* < *maxEvaluations*

5.2 Evaluación experimental de MOEA/D/RSIM⁺

Se realizó una experimentación para evaluar el desempeño del algoritmo propuesto $MOEA/D/RSIM^+$ resolviendo problemas de los conjuntos de prueba DTLZ 1-7. En esta sección se evalúa el algoritmo con n = 3 objetivos para observar su comportamiento.

5.2.1 Configuración experimental

Se realizaron un total de 30 ejecuciones por cada instancia en un CPU *Intel Core* i7-10700 @ 2.90 GHz (16 CPU's) con 40 GB de RAM. El algoritmo se desarrolló en lenguaje C++ empleando *Visual Studio Community* 2019.

La configuración de las instancias DTLZ se encuentra en la Tabla 4.2. Para MOEA/D/RSIM⁺ las soluciones iniciales son aleatorias, el máximo de evaluaciones se estableció en 100 mil, la cantidad de vectores (N) es de 100 y la cantidad de vectores por vector de peso (T) es 10. Los parámetros de configuración para la creación de vectores de peso, operadores de mutación, cruza, selección, reparación, mejora y actualización se presentan en la Tabla 5.1.

Parámetro	Tipo	Valor
Modelo generador de vectores de peso	Uniforme	Número de vectores = N , número de objetivos = n
Operador de mutación	Polinomial	Probabilidad = $1/\eta$, índice de distribución = 20.0
Operador de cruza	Cruza SBX	Probabilidad = 1.0 , índice de distribución = 15.0
Operador de selección	Aleatorio	Tamaño de vecindad = T
Operador de reparación	Ninguno	-
Operador de mejora	\mathbf{RSIM}^+	Número de variables de decisión = η , número de vecinos $L = 10$
Operador de actualización	Tchebycheff	-

Tabla 5.1. Parámetros usados en MOEA/D/RSIM+.

5.2.2 Análisis de resultados

La Tabla 5.2 muestra el mínimo, máximo y promedio de reemplazos realizados en el proceso de mejora con RSIM⁺ durante las ejecuciones del algoritmo, así como el porcentaje de reemplazos realizados en base a la cantidad máxima de vecinos *T* a obtener y el máximo de evaluaciones a realizar como sigue: % reemplazos = reemplazos / (*T* x máximo de evaluaciones).

Instancia	Mínimo	Máximo	Promedio	Porcentaje de reemplazos	Porcentaje de reemplazos con RSIM	
N03-DTLZ1	80802	121415	116093.8333	12%	68 %	
N03-DTLZ2	60005	150915	77543.6000	8%	32 %	
N03-DTLZ3	109543	136786	122995.6667	12%	71 %	
N03-DTLZ4	154986	156738	155766.0667	16%	87 %	
N03-DTLZ5	73367	96074	84399.2667	8%	39%	
N03-DTLZ6	5304	16829	8668.1333	0.87%	16%	
N03-DTLZ7	18021	28190	23711.9333	2%	30%	
Promedio	71718.28571	100992.4286	84168.35714	8%	49%	

Tabla 5.2. Cantidad de reemplazos realizados por RSIM⁺.

Los resultados anteriores muestran que en todos los casos ocurren reemplazos, que son mejoras de hijos durante el algoritmo, encontrándose valores de porcentaje inferiores al 1% como en el caso de DTLZ 6. El promedio de los porcentajes de reemplazos de todos los problemas es menor al 10%, encontrándose que la reducción de reemplazos equivale a casi 80% del valor obtenido para esta métrica en la sección 4.3 de la tesis.

Se observa que los problemas con más del 10% son DTLZ 1, DTLZ 3 y DTLZ 4. También se aprecia que los porcentajes de reemplazos de los problemas DTLZ 5 a 7 poseen gran variabilidad, en contraposición a los problemas DTLZ 1 a 4.

5.3 MOEA/D/RSIM⁺ vs. MOEA/D

Como parte de la experimentación se compararon los frentes no dominados generados entre las instancias con el método RSIM⁺ aplicado, y el frente obtenido por el MOEA/D sin método de mejora (capítulo 4). Los parámetros de configuración para MOEA/D son iguales a la configuración descrita en la Tabla 5.1 para MOEA/D/RSIM⁺, con la diferencia de no incluir un operador de mejora.

La Tabla 5.3 muestra los resultados obtenidos comparando las soluciones totales generadas, el número de soluciones únicas omitiendo repeticiones, así como el total de soluciones dominadas por alguna solución del algoritmo contrario, es decir, soluciones de MOEA/D/RSIM⁺ dominadas por MOEA/D o viceversa, y finalmente el porcentaje de no conservación de la dominancia del frente generado.

	MOEA/D/RSIM ⁺					MOEA/D				
Instancia	Generadas	No duplicadas	Dominadas por MOEA/D	Aportación a frente común	No conservación de dominancia	Generadas	No duplicadas	Dominadas por MOEA/D/ RSIM+	Aportación a frente común	No conservación de dominancia
N03-DTLZ1	2493	354	0	72.39%	0.00%	1503	135	0	27.61%	0.00%
N03-DTLZ2	801	215	16	67.00%	7.44%	539	387	289	33.00%	74.68%
N03-DTLZ3	1266	137	2	77.14%	1.46%	864	537	497	22.86%	92.55%
N03-DTLZ4	3000	52	0	65.82%	0.00%	3000	27	0	34.18%	0.00%
N03-DTLZ5	704	179	49	53.72%	27.37%	1202	311	199	46.28%	63.99%
N03-DTLZ6	200	23	23	0.00%	100.00%	288	7	0	100.00%	0.00%
N03-DTLZ7	2858	390	9	54.35%	2.31%	2564	337	17	45.65%	5.04%

Tabla 5.3. Comparación de frentes generados por MOEA/D/RSIM⁺ y MOEA/D.

Los resultados favorecen en su mayoría a MOEA/D/RSIM⁺ ya que se observa en las celdas sombreadas que la mayor parte del frente común es aportada por éste. También se aprecia que el único problema que no obtuvo mejores valores con MOEA/D/RSIM⁺ fue el DTLZ 6, donde la totalidad del frente fue aportado por MOEA/D. A su vez se observa que de todas las instancias es en dos donde el porcentaje de no conservación es el mismo que en MOEA/D, a pesar de que la mayoría del frente es aportado por MOEA/D/RSIM⁺, siendo estos problemas DTLZ 1 y DTLZ 4.

Gráfica 5.1. No conservación de la dominancia para MOEA/D/RSIM⁺ y MOEA/D.

Gráfica 5.2. Aportación a frente común por MOEA/D/RSIM⁺ y MOEA/D.

Las Gráficas 5.1 y 5.2 muestran los resultados de la aportación al frente común y la no conservación de la dominancia respectivamente. Con estos resultados se puede apreciar que la mayoría de problemas obtuvo la mayor aportación de soluciones al frente, aunque se observa que son los primeros problemas (DTLZ 1 - 4) quienes poseen valores superiores al 60% de aportación, reflejando ese comportamiento con una no conservación de dominancia baja.

Al igual que en la evaluación para MOEA/D/RSIM, se aplicó la prueba de pares Wilcoxon tanto para la aportación al frente común como para el porcentaje de no conservación de la dominancia, de acuerdo a la composición del conjunto de datos. Los resultados proporcionados con un nivel de significancia de 5% fueron:

- *1. p-value* (Wilcoxon):
 - a. Aportación: 0.23672;
 - b. No conservación: 0.50018;
- 2. Estadístico:
 - a. Aportación: 7;
 - b. No conservación: 5;

Los resultados estadísticos muestran que a pesar de que la propuesta presenta mejor comportamiento para las dos mediciones de desempeño no se sostienen que existan diferencias significativas entre ambos algoritmos, al igual que lo observado con el algoritmo MOEA/D/RSIM. En los siguientes capítulos se presentan extensiones de esta propuesta y se introducen otras medidas de desempeño.
PROPUESTA DE SOLUCIÓN MOEA/D/RSIM/KLP

Este capítulo presenta una segunda mejora del algoritmo MOEA/D/RSIM. En la nueva propuesta se mantiene el uso del archivo de soluciones de la búsqueda local de RSIM⁺, con la integración de un método alternativo de actualización de la población externa EP basado en el trabajo de Kung et al. (1975). La propuesta surge de un análisis experimental que mostró que el recorrido entero del conjunto EP generado por la base algorítmica de MOEA/D resulta inviable por tiempos de ejecución. Este capítulo inicia presentando el funcionamiento de la técnica Kung et al. (1975), que será referida como KLP. Posteriormente se presentan los cambios en el modelo, método y metodología, así como en la arquitectura. Finalmente se realiza un experimento para validar el nuevo algoritmo propuesto MOEA/D/RSIM/KLP con instancias de los problemas DTLZ.

6.1 Método de Mejora de Conjuntos Aproximados *KLP Rough* Sets Improvement Method (RSIM/KLP)

6.1.1 Ordenamiento KLP: Búsqueda del máximo de un conjunto de vectores

De acuerdo con Kung et al. (1975), sean $U_1, U_2, ..., U_d$ conjuntos completamente ordenados y V un conjunto de *n* vectores *d*-dimensionales en el producto cartesiano $U_1, \times U_2 \times ... \times U_d$. Para todo vector *v* en *V*, $x_i(v)$ señala el *i*-ésimo componente de *v*. Un ordenamiento \leq es definido en *V* de manera natural, es decir, para *v*, $u \in V$, $v \leq u$ si y solo si $x_i(v) \leq x_i(u)$ para todo i = 1, ..., d, donde \leq es el ordenamiento total en *U*. Para $v \in V$, v se define como el *elemento máximo* o *máximo* de *V* si no existe $u \in V$ tal que $u \geq v$ y $u \neq v$. Kung et al. (1975) tratan el problema de *encontrar todos los máximos elementos de V*. La complejidad computacional de este problema es

$$C_d(n) = \min_{A} \max_{V} C_d(A, V), \tag{6.1}$$

donde C_d (A, V) es el número de comparaciones usadas por un algoritmo A en todo conjunto V, es decir, es el número máximo de comparaciones usadas por el algoritmo que resuelve el problema más rápido en el peor caso.

Kung et al. (1975) proponen dos algoritmos para la búsqueda del máximo de vectores. El algoritmo propuesto para d = 2,3 logra $C_d(n) = O(nlog_2n)$, y el algoritmo propuesto para $d \ge 4$ logra $C_d(n) \le O(n(log_2n)^{d-2})$. Para dos dimensiones, el máximo de vectores encontrado es equivalente al primer frente no-dominado de *V*, para más dimensiones solo se obtiene una aproximación (Cheng, 2012).

Para la búsqueda del máximo de conjunto de vectores, con $d \ge 4$ dimensiones, Kung et al. (1975) proponen un algoritmo *divide-y-vencerás*, parecido a un ordenamiento recursivo tipo *MergeSort*. En la literatura especializada (Dai et al., 2004), este algoritmo se denomina comúnmente KLP (Kung, Luccio, Preparata), y en el presente trabajo, el algoritmo es nombrado ordenarKLP. El algoritmo es ajustado en descripción y nomenclatura para obtener una aproximación del conjunto no-dominado en problemas de minimización.

En ordenarKLP, *V* es un conjunto soluciones y la dimensión *d* se sustituye por los *m* objetivos usados para comparar soluciones por dominancia de Pareto. Este algoritmo es un procedimiento recursivo para encontrar el conjunto V_M de la máxima de $V = \{x_1, ..., x_n\}$, V_M corresponde con la aproximación del conjunto no-dominado de *V*. En cada paso recursivo, dado que $f_i(x)$ es la *i*-ésimo función objetivo para evaluar *x*, en la Línea 4 el algoritmo ordena *V* por el objetivo indicado en *i*, esto es, para minimización $f_i(x_1) < f_i(x_2) < ... < f_i(x_n)$. Para encontrar V_M , primero se encuentra *R*, el conjunto de la máxima de $\{x_1, ..., x_n\}$ (Línea 5), después se encuentra *S*, el conjunto de la máxima de $\{x_{n/2+1}, ..., x_n\}$ (Línea 6), y

posteriormente encuentran *T*, el conjunto de elementos en *S* los cuales no son dominados por algún elemento en *R* (Línea 7). Por el ordenamiento realizado, los elementos de *R* no se verifican porque son también maximales de *V*. Finalmente encuentra el conjunto $V_M = R \cup T$ (Línea 8).

Dos casos no están especificados en KLP, pero su manejo es trivial. Cuando n < m causa que no se consideren todos los objetivos en el ordenamiento; este caso no requiere tratamiento ya que su evaluación se realiza en la prueba de dominancia. Cuando $2^m < n$ causa que el número de objetivos no sea suficiente para llegar a una partición de tamaño 1; este caso requiere una condición de paro que retorne como máxima las soluciones no-dominadas del conjunto recibido.

Algoritmo 9. ordenarKLP
Input: $V = \{x_1,, x_n\}$ conjunto de <i>n</i> soluciones; <i>i</i> índice del objetivo para ordenar <i>V</i> , iniciando con <i>i</i> = 1;
n número de objetivos para evaluar en dominancia.
Dutput: V_M todos los máximos elementos de V y corresponden a soluciones no-dominadas de V.
1: if $n \leq 1$ then
2: return $\{x_1,, x_n\}$ //Condición de paro que regresa la máxima con la única solución en V.
3: else
4: $V = ordenar V de acuerdo con al objetivo i.$
5: $R = \text{ordenarKLP}(\{x_1, \dots, x_{n/2}\}, i-1)$ //Los elementos de R son también maximales de V.
6: $S = \text{ordenarKLP}(\{x_{n/2+1},, x_n\}, i-1) //\text{Los elementos de } S \text{ no siempre son maximales de } V.$
7: $T = \text{descartar}_{\text{maximo}} \text{falso}(R, S) //\text{Descarta máximos en } S \text{ dominados por máximos en } R.$
8: return $V_M = R \cup T$

La Figura 6.1 muestra el árbol de *divide-y-vencerás* que se genera al aplicar ordenarKLP a un ejemplo con ocho soluciones y tres objetivos. En la fase de recursividad, se ordenan el conjunto de soluciones por el objetivo actual y se divide este conjunto a la mitad. La recursividad se detiene cuando la partición tiene una solo solución que se retorna como un maximal. En los pasos de retroceso se reciben en R y S los maximales de cada partición, y se retorna como maximal los elementos de R y los de S que no fueron descartados por dominancia con respecto a R.

Figura 6.1. Ejemplo de funcionamiento de ordenarKLP a través de árbol divide-y-vencerás.

Los siguientes pasos muestran de manera resumida el algoritmo ordenarKLP para minimización. Se parte de un conjunto V de n soluciones evaluadas con m objetivos, específicamente de los valores objetivos de sus soluciones f_{ij} , $i \in \{1, ..., n\}$, $j \in \{1, ..., m\}$. Estos pasos se ejemplifican en el diagrama de la Figura 6.2.

- 1. Crear *m* vectores $V' = \{v'_1, v'_2, ..., v'_m\}$ de ordenamiento ascendente, cada vector $v'_i = \{v'_{i1}, ..., v'_{in}\}$ corresponde al conjunto *V* ordenado en función de valor del objetivo *i*, donde v'_{ik} indica qué solución en *V* ocupa la posición *k* en el ordenamiento de acuerdo al objetivo *i*;
- 2. Para cada pareja de objetivos (i, j)
- 3. Mínimo = ∞
- 4. Para k = 1 hasta n en v'_i
- 5. Cada vez que el valor de $f_{v'_{ik}j}$ sea menor que Minimo, cambiar Mínimo por $f_{v'_{ik}j}$ y agregar v'_{ik} al conjunto no dominado V_M .

De esta manera se asegura obtener un conjunto aproximado no dominado, donde las soluciones mantengan la no dominancia entre sí, reduciendo el costo computacional.

Figura 6.2. Aproximación de conjunto no dominado mediante búsqueda por máximo en conjunto de vectores.

6.1.2 Modelo, método y metodología

La *metodología* propuesta sigue usando principalmente la técnica de Hassanien et al. (2018) y se complementa con el trabajo de Santana-Quintero et al. (2008a). Estos trabajos están soportados por el *modelo de conjuntos aproximados* de Pawlak (1991).

Las principales características del *método propuesto* y sus similitudes y diferencias con el método RSIM⁺ se enuncian a continuación.

I. Se sigue utilizando *archive*, el conjunto de soluciones de la búsqueda local de RSIM⁺, cuya creación se detalla en el Algoritmo 7.

- II. Se integra el método KLP para la actualización eficiente de la población externa EP.
- III. Una vez finalizada la búsqueda en la vecindad de los hijos, cada una de las soluciones en *archive* se compara en dominancia contra todos los elementos del conjunto EP sin condicionarla con la probabilidad de la Ecuación 5.1. Con ello se logra una mayor cantidad de reemplazos y diversidad en el conjunto EP con un menor uso de recursos.
- IV. La propuesta mantiene la no dominancia de las soluciones aleatorias generadas, con lo cual se busca que la solución generada durante la reparación/mejora en el algoritmo MOEA/D resulte en un mejor desempeño de este.

6.1.3 Diseño de arquitectura

El diseño del método propuesto para la mejora de soluciones se describe en el Algoritmo 10 (RSIM/KLP) en el cual la modificación con respecto al Algoritmo 7 es que no se condiciona el reemplazo de soluciones en EP por probabilidad. El Algoritmo 5 (rsim_intervals) se utiliza de igual manera para la obtención de los intervalos rugosos por medio de la teoría de conjuntos aproximados. El Algoritmo 11 (MOEA/D/RSIM/KLP) incorpora la propuesta RSIM/KLP a la estructura algorítmica del MOEA/D. La Figura 6.3 presenta un diagrama de flujo del nuevo algoritmo propuesto.

Algoritmo 10 (RSIM/KLP)

Las entradas del Algoritmo 9 (RSIM/KLP) se mantienen iguales a las de RSIM⁺, excepto que el conjunto de soluciones EP es sometido previamente al ordenamiento KLP para usar una aproximación de este conjunto no dominado que crece drásticamente en cada generación. El primer paso es de inicialización (Líneas 1-5). En la Línea 1 se realiza la obtención de intervalos rugosos a través del sistema de información generado con las entradas. En las Líneas 3-5 se inicializa el conjunto *archive* con el primer hijo de CS para después comprobar que si el segundo es no repetido y añadirlo al archivo. Enseguida se realiza una búsqueda local por medio de *L* iteraciones (Líneas 6-19), comparando si una solución aleatoria *x*, generada dentro de dichos intervalos (Línea 8), resulta mejor que las soluciones producto del operador de mutación, condicionando el reemplazo a uno por iteración. Finalizada la búsqueda local, cada solución del archivo compara su dominancia contra el conjunto EP (Líneas 20-26), comprobando si existe algún elemento de *EP* dominado por la solución del archivo. Durante este recorrido se omiten aquellas soluciones que, además de cumplir el requisito de no dominancia, su suma de objetivos sea igual a cero (Línea 22). En caso de no cumplir dicha condición, el ciclo de recorrido del archivo con el primer elemento en EP que no la domine, actualizándolo con soluciones únicas generadas durante la búsqueda local (Líneas 23-26).

Algoritmo 10. KLP Rough Sets Improvement Method (RSIM/KLP)

Input: η número de variables de decisión, *L* cantidad de vecinos, conjunto de soluciones padres seleccionado (SS), conjunto de soluciones hijas con mutación aplicada (CS) = {*y*₁, *y*₂}, conjunto de soluciones EP. **Output:** {*y*₁, *y*₂} soluciones mejoradas y/o reparadas, EP actualizado.

```
1: intervals = rsim_intervals(\eta, SS, CS)
2: Iter \leftarrow 0
3: archive \leftarrow y_1
4: if \neg(CS_1 in archive) then
       archive \leftarrow archive \cup y<sub>2</sub>
5:
6: repeat
7:
       for all i \in \{1, ..., \eta\} //Genera una nueva solución.
           x_i = \text{rand}(intervals_i) // Variable generada con una distribución uniforme.
8:
9:
       Evaluar x.
10:
       if y_1 \not\succ x then //x no es dominada
11:
          v_1 \leftarrow x
12:
          if \neg(CS_1 in archive) then
13:
              archive \leftarrow archive \cup \{x\}
14:
       else if y_2 \not> x then //x no es dominada
15:
                y_2 \leftarrow x
```

16:	if $\neg(CS_2 \text{ in } archive)$ then
17:	archive \leftarrow archive $\cup \{x\}$
18:	Iter + 1
19: u	intil $Iter < L$
20: f	for $i \leftarrow 1$ to $ archive $
21:	$obj \leftarrow \text{suma_objetivos}(archive_i)$
22:	if $(obj \neq 0) \land (\forall y \in EP, y \succ archive_i)$ then
23:	for $j \leftarrow 1$ to $ EP $
24:	if $EP_j \not\succ archive_i$ then
25:	$EP_j \leftarrow archive_i$
26:	break

La Figura 6.3 ilustra de manera diagramática la incorporación de la propuesta de solución RSIM/KLP a la estructura algorítmica del MOEA/D. Las estructuras de datos y su inicialización se mantienen iguales a las del Algoritmo 6. Es en la actualización en donde los cambios realizados por la propuesta se remarcan de color gris. El primer proceso corresponde al operador de mejora RSIM/KLP y el segundo proceso, el cual se encuentra antes de la condicional de paro, es el algoritmo de Kung et al. (1975) para la actualización eficiente de la población externa EP.

Figura 6.3. Diagrama de flujo de MOEA/D/RSIM/KLP. Los procesos sombreados muestran las modificaciones propias del algoritmo.

Algoritmo 11 (MOEA/D/RSIM/KLP)

El Algoritmo 11 incorpora el método de mejora RSIM/KLP a la estructura algorítmica del MOEA/D. La Línea 1 inicializa las estructuras de trabajo del entorno de MOEA/D, las cuales van a ser actualizadas en un ciclo hasta alcanzar el criterio de paro. En las Líneas 2 a la 10 se realiza el ciclo evolutivo en los subproblemas planteados, siendo uno de dichos pasos la mejora de solución con la propuesta RSIM/KLP como operador de mejora (Línea 5) y el ordenamiento KLP (Línea 9).

Algoritmo 11. MOEA/D/RSIM/KLP

Input: Numero de objetivos *n*, número de subproblemas escalares *N*, tamaño de vecindad de vectores de peso *T*, número máximo de evaluaciones *maxEvaluations*, número de variables de decisión η , cantidad de vecinos *L*, conjunto de soluciones EP

Output: Última generación de solución asociada a los vectores de peso $x = \{x_1, x_2, ..., x_N\}$.

1: $(x, z, FV, B(i), eval) \leftarrow$ Inicialización (N, n, T)2: repeat 3: for $i \leftarrow 1$ to N do $\{P_1, P_2, y'_1, y'_2\} \leftarrow \text{Reproducción}(x, B(i), T)$ 4: 5: $\{y_1, y_2\} \leftarrow \text{RSIM KLP}(\eta, L, \{P_1, P_2\}, \{y'_1, y'_2\}, \text{EP})$ 6: Actualizar $Z(z, \{y_1, y_2\})$ ActualizarVecindad($x, B(i), FV, \{y_1, y_2\}$) 7: $eval \leftarrow eval+1$ 8: ordenarKLP(EP) Q٠ 10: **until** *eval* < *maxEvaluations*

6.2 Evaluación experimental de MOEA/D/RSIM/KLP

Se realizó una experimentación para evaluar el desempeño del algoritmo propuesto MOEA/D/RSIM/KLP resolviendo problemas de los conjuntos de prueba DTLZ 1-7. En esta sección se evalúa el algoritmo con n = 3 objetivos, para observar su comportamiento.

6.2.1 Configuración experimental

Se realizaron un total de 30 ejecuciones por cada instancia en un CPU *Intel Core* i7-10700 @ 2.90 GHz (16 CPU's) con 40 GB de RAM. El algoritmo se desarrolló en lenguaje C++ empleando *Visual Studio Community* 2019.

La configuración de las instancias DTLZ se encuentra en la Tabla 4.2. Para MOEA/D/RSIM/KLP las soluciones iniciales son aleatorias, el máximo de evaluaciones se estableció en 100 mil, la cantidad de vectores (N) es de 100 y la cantidad de vectores por vector de peso (T) es 10. Los parámetros de configuración para la creación de vectores de peso, operadores de mutación, cruza, selección, reparación, mejora y actualización se presentan en la Tabla 6.1.

Parámetro	Тіро	Valor
Modelo generador de vectores de peso	Uniforme	Número de vectores = N , número de objetivos = n
Operador de mutación	Polinomial	Probabilidad = $1/\eta$, índice de distribución = 20.0
Operador de cruza	Cruza SBX	Probabilidad = 1.0 , índice de distribución = 15.0
Operador de selección	Aleatorio	Tamaño de vecindad = T
Operador de reparación	Ninguno	-
Operador de mejora	RSIM/KLP	Número de variables de decisión = η , número de vecinos $L = 10$
Operador de actualización	Tchebycheff	-

Tabla 6.1. Parámetros usados en MOEA/D/RSIM/KLP.

6.2.2 Análisis de resultados

La Tabla 6.2 muestra el mínimo, máximo y promedio de reemplazos realizados en el proceso de mejora con RSIM/KLP durante las ejecuciones del algoritmo, así como el porcentaje de reemplazos realizados en base a la cantidad máxima de vecinos T a obtener y el máximo de evaluaciones a realizar, como sigue: % reemplazos = reemplazos / (T x máximo de evaluaciones).

Instancia	Mínimo	Máximo	Promedio	Porcentaje de reemplazos	Porcentaje de reemplazos con RSIM ⁺	Porcentaje de reemplazos con RSIM
N03-DTLZ1	81490	121159	115436.6000	12%	12%	68 %
N03-DTLZ2	60123	147177	84813.7667	8%	8%	32 %
N03-DTLZ3	106482	133870	124417.0333	12%	12%	71 %
N03-DTLZ4	154611	156741	155574.3000	16%	16%	87 %
N03-DTLZ5	73486	92060	82358.4333	8%	8%	39%
N03-DTLZ6	4868	17822	8399.5333	0.84%	0.87%	16%
N03-DTLZ7	18201	28218	23008.0333	2%	2%	30%
Promedio	71323	99578.14286	84858.24284	8%	8%	49%

Tabla 6.2. Cantidad de reemplazos realizados por RSIM/KLP.

Los resultados anteriores muestran que en todos los casos ocurren reemplazos, que son mejoras de hijos durante el algoritmo, siendo el único valor inferior al 1% el del problema DTLZ 6. La Tabla 6.2 muestra que el promedio del porcentaje de reemplazos de todos los problemas es menor al 10%. Comparado con los resultados de la sección 4.3 de la tesis, los reemplazos se redujeron a poco menos de una quinta parte, manteniendo valores similares a los obtenidos en la sección 5.3.

Se observa que los problemas con más del 10% de reemplazos son DTLZ 1, DTLZ 3 y DTLZ 4. También se aprecia que los máximos de reemplazos se mantienen por debajo de las 100 mil en los problemas DTLZ 5, 6 y 7, destacando que el problema DTLZ 2 obtuvo un promedio similar a DTLZ 5, pero con mínimos y máximos mayores, alcanzando el mismo porcentaje de reemplazos.

6.3 MOEA/D/RSIM/KLP vs. MOEA/D

Como parte de la experimentación se compararon los frentes no dominados generados con los métodos MOEA/D/RSIM/KLP y MOEA/D. Los parámetros de configuración para MOEA/D son iguales a la configuración descrita en la Tabla 6.1 para MOEA/D/RSIM/KLP, con la diferencia de no incluir un operador de mejora.

La Tabla 6.3 muestra los resultados obtenidos comparando las soluciones totales generadas, el número de soluciones únicas omitiendo repeticiones, así como el total de soluciones dominadas por alguna solución proveniente del algoritmo contrario, es decir, soluciones de MOEA/D/RSIM/KLP dominadas por MOEA/D o viceversa, y finalmente el porcentaje de no conservación de la dominancia del frente generado.

	MOEA/D/RSIM/KLP							MOEA/D				
Instancia	Generadas	No duplicadas	Dominadas por MOEA/D	Aportación a frente común	No conservación de dominancia	Generadas	No duplicadas	Dominadas por MOEA/D/ RSIM/KLP	Aportación a frente común	No conservación de dominancia		
N03-DTLZ1	2461	317	0	70.29%	0.00%	1503	134	0	29.71%	0.00%		
N03-DTLZ2	636	208	15	64.33%	7.21%	539	293	186	35.67%	63.48%		
N03-DTLZ3	1130	82	0	67.77%	0.00%	864	615	576	32.23%	93.66%		
N03-DTLZ4	3000	30	0	51.72%	0.00%	3000	28	0	48.28%	0.00%		
N03-DTLZ5	506	199	73	52.07%	36.68%	1202	236	120	47.93%	50.85%		
N03-DTLZ6	610	81	78	30.00%	96.30%	288	7	0	70.00%	0.00%		
N03-DTLZ7	2725	369	16	52.61%	4.34%	2564	337	19	47.39%	5.64%		

Tabla 6.3. Comparación de frentes generados por MOEA/D/RSIM/KLP y MOEA/D.

Los resultados favorecen casi en su totalidad a MOEA/D/RSIM/KLP, ya que se observa en las celdas sombreadas que la mayor parte del frente común es aportada por éste. Dicha ventaja se aprecia por el hecho de que, de siete instancias de problemas, es en seis donde KLP obtiene ambos atributos con mejores o iguales valores que MOEA/D.

Las Gráficas 6.1 y 6.2 muestran los resultados de la aportación al frente común y la no conservación de la dominancia. Con estos resultados se puede apreciar que en los problemas DTLZ 1, 2 y 3, el algoritmo propuesto tiene una aportación de más del 50% mientras que DTLZ 4, 5 y 7 tiene una aportación de poco más del 50%. En el problema DTLZ 6 se tiene una aportación de menos de la mitad y es el problema que presenta mayor porcentaje de no conservación de dominancia.

De igual manera que en los casos de MOEA/D/RSIM y MOEA/D/RSIM⁺, se aplicó la prueba de pares Wilcoxon para la aportación al frente común y el porcentaje de no conservación de la dominancia, acorde a la naturaleza del conjunto de datos. Con el nivel de significancia de 5% los resultados obtenidos de las pruebas fueron:

- *1. p-value* (Wilcoxon):
 - a. Aportación: 0.1762;
 - b. No conservación: 0.5;
- 2. Estadístico (Wilcoxon):
 - a. Aportación: 6;
 - b. No conservación: 5;

A pesar de las diferencias cuantitativas, estadísticamente no se detectan diferencias significativas entre MOEA/D/RSIM/KLP y MOEA/D

Tabla 6.4. Compara	ción entre MOEA/D/RSIM.	, MOEA/D/RSIM+	, MOEA/D/RSIM/KLP	y MOEA/D.
--------------------	-------------------------	----------------	-------------------	-----------

		Aportación		No conservación		
Algoritmo	Prueba	Valor de estadístico	p-value	Prueba	Valor de estadístico	p-value
MOEA/D/RSIM	Wilcoxon	8	0.310494	<i>t-student</i> par	1.5651	0.16860
MOEA/D/RSIM ⁺	Wilcoxon	7	0.23672	Wilcoxon	5	0.50018
MOEA/D/RSIM/KLP	Wilcoxon	6	0.1762	Wilcoxon	5	0.5

Mediante el estudio de los resultados de las propuestas de los capítulos 4 y 5 contra MOEA/D/RSIM/KLP, se observa una mejora del *p-value* en favor del porcentaje de aportación al frente común, mientras se observa un empeoramiento para los resultados de la no conservación de la dominancia. Estudios formales de su comportamiento de manera particular, con más objetivos y de manera general, se presentan en el capítulo 7.

CAPÍTULO 7

EVALUACIÓN EXPERIMENTAL DE ALGORITMOS PROPUESTOS

Los capítulos 4, 5 y 6 presentaron una evaluación experimental preliminar del comportamiento de MOEA/D/RSIM (RSIM), MOEA/D/RSIM⁺ (RSIM⁺) y MOEA/D/RSIM/KLP (RSIM/KLP) con los problemas estándar DTLZ para 3 objetivos. Después de observar su comportamiento con esa dimensión, se optó por realizar la experimentación para 5 y 10 objetivos. Este capítulo presenta la configuración para dicha experimentación, así como un análisis de los resultados obtenidos de manera general de todas las instancias con diferentes objetivos, así como el análisis de los resultados particulares de cada problema DTLZ utilizado. Para la evaluación se consideraron los indicadores de desempeño presentadas en la sección 7.2.

7.1 Configuración experimental

Se realizaron un total de 30 ejecuciones por cada instancia en un CPU *Intel Core* i7-10700 @ 2.90 GHz (16 CPU's) con 40 GB de RAM. Los algoritmos fueron desarrollaron en lenguaje C++ empleando *Visual Studio Community* 2019.

La configuración de las instancias DTLZ para todos los objetivos se encuentra en la Tabla 7.1. Para todos los algoritmos las soluciones iniciales son aleatorias, el máximo de evaluaciones se estableció en 100 mil, la cantidad de vectores (N) es de 100 y la cantidad de vectores por vector de peso (T) es 10. La Tabla 7.2 enlista los parámetros para la creación de vectores de peso, operadores de mutación, cruza, selección, reparación y actualización. Finalmente, la Tabla 7.3 contiene la configuración para el operador de mejora utilizado en cada algoritmo evaluado.

Droblomo	Número	Itorogionos		
TTODIema	<i>n</i> = 3	<i>n</i> = 5	<i>n</i> = 10	iteraciones
1	7	10	14	30
2	12	14	19	30
3	12	14	19	30
4	12	14	19	30
5	12	14	19	30
6	12	14	19	30
7	22	24	29	30

Tabla 7.1. Parámetros de configuración usados para instancias de problemas DTLZ 1-7 de 3, 5 y 10 objetivos.

Tabla 7.2. Parámetros de configuración usados en evaluación experimental.

Parámetro	Tipo	Valor
Modelo generador de vectores de peso	Uniforme	Número de vectores = N , número de objetivos = n
Operador de mutación	Polinomial	Probabilidad = $1/\eta$, índice de distribución = 20.0
Operador de cruza	Cruza SBX	Probabilidad = 1.0 , índice de distribución = 15.0
Operador de selección	Aleatorio	Tamaño de vecindad = T
Operador de reparación	Ninguno	Ninguno
Operador de actualización	Tchebycheff	Ninguno

Tabla 7.3. Parámetros de configuración del operador de mejora para MOEA/D/RSIM, MOEA/D/RSIM⁺, MOEA/D/RSIM/KLP y MOEA/D.

Algoritmo	Parámetro	Tipo	Valor
MOEA/D/RSIM		RSIM	
MOEA/D/RSIM ⁺	On ano do matorio no	$RSIM^+$	Numero de variables de decision = η ,
MOEA/D/RSIM/KLP	Operador de mejora	RSIM/KLP	numero de vecnios – 10
MOEA/D		Ninguno	Ninguno

7.2 Indicadores de desempeño de algoritmos

Por cada ejecución de instancia de un algoritmo evaluado se obtienen los frentes no dominados de la última población, los cuales son sometidos a los indicadores de desempeño descritos en esta sección. Dichos indicadores o métricas se seleccionaron para evaluar la calidad de los resultados de los algoritmos propuestos tanto en convergencia, distribución-dispersión y distribución-convergencia.

7.2.1 Inverted Generational Distance (IGD)

El indicador de Distancia Generacional Invertida (I_{IGD}) es una modificación al indicador de Distancia Generacional (*Generational Distance*, I_{GD}), el cual pertenece al grupo que evalúa la convergencia de un conjunto no dominado al "frente de Pareto en el espacio objetivo" (Audet et al., 2020). La GD según Bezerra et al. (2017) se define como la distancia entre un vector objetivo *a* de un frente aproximado *A* y un vector objetivo *r* en un frente de referencia *R*. Formalmente,

$$GD(A, R) = \frac{1}{|A|} \left(\sum_{a \in A} \min_{r \in R} d(a, r) \right)^{\frac{1}{p}} \qquad d(a, r) = \sqrt{\sum_{k=1}^{n} (a_k - r_k)^2}.$$
(7.1).

Un valor de p = 1 se utiliza por simplicidad para la interpretación y cálculo, convirtiendo la GD en un promedio de la distancia euclidiana entre A y R. La IGD fue propuesta con la idea de revertir el orden de los frentes de entrada para GD, es decir, $I_{IGD}(A, R) = I_{GD}(R, A)$. A diferencia de su predecesora, la IGD no es sensible al tamaño de los frentes de aproximación y provee un orden que intuitivamente relaciona de manera más cercana la convergencia al frente de referencia.

7.2.2 Modified Inverted Generational Distance (IGD⁺)

La Distancia Generacional Invertida Modificada (I_{IGD+}) es una modificación a la IGD en la función de distancia, que al igual que su predecesora mide que tan cercano es un conjunto aproximado al frente de Pareto en el espacio objetivo (Audet et al., 2020). Para objetivos que son dominados por el frente de referencia se usa una distancia euclidiana, mientras que para los vectores objetivos no dominados solo se usan a componentes dominados para la distancia. De manera formal, dado un problema de maximización de *n* objetivos la distancia *d* en la Ecuación 7.1 se reemplaza por:

$$d^{+}(r, a) = \sqrt{\sum_{k=1}^{n} (\max\{r_{k} - a_{k}, 0\})^{2}}$$
 (7.2)

7.2.3 Hipervolumen

Esta métrica pertenece al grupo que evalúa tanto la distribución como la convergencia (Audet et al., 2020). De acuerdo con Manoalt (2013), el hipervolumen (I_H) es el único indicador unario compatible con la dominancia de Pareto, al que se ha demostrado que su maximización es sinónimo de lograr convergencia al verdadero frente de Pareto, cobrando relevancia por ello en los últimos años.

El hipervolumen es usado para medir y comparar la calidad de las soluciones finales producto de un algoritmo evolutivo. La definición formal (Ecuación 7.3) es el *tamaño del espacio cubierto o dominado*. Dado un conjunto A y un punto de referencia r, λ denota la métrica de Lebesgue de la unión de los hipercubos limitados por r.

$$I_H(A) = \lambda \left(\bigcup_{a \in A} \{ x \mid a \prec x \prec r \} \right)$$
(7.3)

7.2.4 *Generalized Spread* (Δ^*)

La dispersión generalizada (Δ^*) es del conjunto de métricas que consideran la distribución y dispersión, pero particularmente este indicador las considera de manera simultánea. Zhou, et al., (2006) define la dispersión generalizada para más de 2 objetivos como

$$\Delta^*(S, P) = \frac{\sum_{k=1}^m d(\vec{e}_k, S) + \sum_{i=1}^{|S|} |d_i - \vec{d}|}{\sum_{k=1}^m d(\vec{e}_k, S) + (|S|)\vec{d}}$$
(7.4)

donde $d(\vec{e}_k, S) = \min_{\vec{s} \in S} ||F(\vec{e}_k) - F(\vec{s})||$ y $\vec{e}_k \in P$ son las soluciones extremo en el *k*-ésimo objetivo. Otra distancia es $d_i = \min_{\vec{s}_j \in S, \, \vec{s}_j \neq \vec{s}_i} ||F(\vec{s}_i) - F(\vec{s}_j)||$ la cual identifica el par de soluciones más cercanas en *S*, y \vec{d} que representa la media de d_i .

7.2.5 Overall Spread (OS)

Este indicador mide la distribución y dispersión. La métrica solo capta la extensión del frente cubierto por la aproximación al frente de Pareto, la cual entre mayor sea se considera mejor (Audet et al., 2020). La dispersión cuantifica que tanto de las regiones extremos son cubiertas por la aproximación *S* (Wu, et al., 2001). La *Overall Pareto Spread* es definida por

$$OS(S, P_G, P_B) = \prod_{k=1}^{m} \frac{\left| \max_{\vec{s} \in S} f_k(\vec{s}) - \min_{\vec{s} \in S} f_k(\vec{s}) \right|}{f_k(P_B) - f_k(P_G)}$$
(7.5)

donde $\max_{\vec{s} \in S} f_k(\vec{s})$ y $\min_{\vec{s} \in S} f_k(\vec{s})$ son los valores máximos y mínimos del *k*-ésimo objetivo en S.

7.2.6 *Epsilon* Aditivo (ϵ +)

La familia de indicadores ε (Zitzler et al., 2003) se compone de 2 tipos: aditivo y multiplicativo, los cuales pertenecen a la categoría de indicadores que miden la convergencia de un conjunto no dominado al frente de Pareto en el espacio objetivo. En un indicador ε , un vector x^1 es ε -dominante, para $\varepsilon > 0$, a un vector x^2 si para todo $i = (1, 2, ..., m), f_i(x^1) \le \varepsilon f_i(x^2)$. El indicador ε para 2 conjuntos aproximados de Pareto A y *B* se define como

$$I_{\varepsilon}(A, B) = \inf_{\varepsilon > 0} \left\{ x^2 \in B : \exists x^1 \in A \text{ tal que } x^1 \text{ es } \varepsilon \text{-dominante } x^2 \right\}$$
(7.6)

$$I_{\varepsilon}(A, B) = \max_{x^{2} \in B} \min_{x^{1} \in A} \max_{1 \le i \le m} \frac{f_{i}(x^{1})}{f_{i}(x^{2})}$$
(7.7)

Dado un conjunto de referencia *P*, la métrica unaria puede definirse como $I_{\varepsilon}(S) = I_{\varepsilon}(P, S)$. Zitzler et al. (2003) definen el ε aditivo con la siguiente ε dominancia: un vector de decisión x^1 es ε -dominante a un vector de decisión x^2 para $\varepsilon > 0$ si para todo i = (1, 2, ..., m) $f_i(x^1) \le \varepsilon + f_i(x^2)$. El indicador es calculado por la Ecuación 7.8:

$$I_{\varepsilon}(A, B) = \max_{x^2 \in B} \min_{x^1 \in A} \max_{1 \le i \le m} f_i(x^1) - f_i(x^2).$$
(7.8)

7.3 Análisis de resultados

En esta sección se presentan los resultados de la experimentación realizada para analizar el desempeño de los algoritmos propuestos. Primero se presentan los resultados de manera tabular y gráfica para observar tendencias. Finalmente se presenta el análisis de estos resultados con soporte estadístico y las conclusiones finales a las que se llegó.

Las Tablas 7.4 a 7.9 muestran la comparación de los valores de la mediana y rango intercuartil (IQR) obtenidos de los indicadores de desempeño en los problemas DTLZ para 3, 5 y 10 objetivos. El mejor valor obtenido en cada instancia se resalta de color gris oscuro y el segundo mejor valor es señalado con color gris claro. El símbolo " \blacktriangle " señala aquellos algoritmos que obtuvieron un mejor desempeño que MOEA/D, mientras que " \bigtriangledown " señala aquellos algoritmos con un peor desempeño que MOEA/D. En caso de no existir diferencia con MOEA/D, se utiliza símbolo "-". Debajo de la columna de cada algoritmo propuesto se contabiliza en cuántas instancias superaron, perdieron o empataron contra el resultado obtenido por MOEA/D sin método de mejora.

En el caso del indicador de hipervolumen, los valores en cero indican que el espacio objetivo está por fuera de la región abarcada por el punto de referencia. Esto indica que el algoritmo no converge al frente de Pareto ya que el conjunto de aproximación no contiene soluciones dentro del frente de referencia, siendo el mismo caso para valores igual a uno en el indicador ε aditivo.

Objetivos	Problema	MOEA/D/RSIM	MOEA/D/RSIM ⁺	MOEA/D/RSIM/KLP	MOEA/D
	DTLZ1	1.701128E-01 _{2.183799E-01} ∇	5.628960E-02 _{3.915609E-04} ▲	5.632237E-02 _{1.947576E-04} ▲	5.703551E-02 _{3.334077E-01}
	DTLZ2	8.241177E-012.774587E-02 ▽	8.175918E-012.577603E-02 ▲	8.118752E-019.185764E-03 ▲	8.214257E-012.020541E-02
	DTLZ3	7.466077E-015.478801E-02 ∇	6.824432E-012.071794E-02 ▲	6.824432E-012.442570E-02 ▲	7.165081E-018.227460E-02
3	DTLZ4	1.273184E+00 _{0.000000E+00} -	1.273184E+00 _{0.000000E+00} -	1.273184E+00 _{0.00000E+00} -	1.273184E+000.000000E+00
	DTLZ5	6.971981E-01 _{4.026333E-02} ▲	6.997363E-01 _{3.859277E-02} ▲	6.938711E-01 _{4.011484E-02} ▲	7.033001E-014.177719E-02
	DTLZ6	7.991801E-01 _{1.090054E-01} ∇	7.021636E-01 _{1.847192E-03} ▽	7.027360E-01 _{2.122809E-03} ∇	7.005710E-01 _{1.800390E-03}
	DTLZ7	5.870600E-013.399115E-02 ▲	6.979353E-011.437163E-01 ▲	6.966629E-011.134535E-01 ▲	7.142182E-011.611669E-01
	DTLZ1	6.482051E-026.857666E-02 ▲	4.024159E-026.823023E-02 ▲	1.080329E-02 _{3.810157E-02} ▲	1.309228E-011.188236E-01
	DTLZ2	7.816772E-01 _{1.517055E-01} -	7.816772E-01 _{1.517055E-01} -	7.816772E-01 _{1.517055E-01} -	7.816772E-013.839789E-01
	DTLZ3	1.035204E-01 _{2.656040E-01} ▲	1.310943E-02 _{1.244098E-01} ▲	4.732548E-037.404420E-02 ▲	1.557364E-01 _{1.955570E-01}
5	DTLZ4	1.354680E+00 _{0.000000E+00} -	1.354680E+00 _{0.00000E+00} -	1.354680E+00 _{0.00000E+00} -	1.354680E+00 _{0.000000E+00}
	DTLZ5	2.679297E-01 _{1.005952E-01} ∇	2.780416E-01 _{6.519669E-02} ▽	2.697514E-019.580511E-02 ▽	2.605069E-017.641194E-02
	DTLZ6	2.486932E-01 _{8.684978E-02} ∇	2.657756E-01 _{1.150661E-01} ∇	2.588107E-019.698955E-02 ▽	2.391256E-01 _{1.002204E-01}
	DTLZ7	9.014341E-011.284329E-01 ▲	9.496941E-011.145882E-01 ▲	9.231532E-011.033960E-01 ▲	9.962734E-019.168545E-02

 Tabla 7.4. Comparación de valores de mediana e IQR del indicador IGD para algoritmos propuestos en problemas DTLZ.

Tabla 7.4 (continuación).							
	DTLZ1	4.472940E-011.893531E-01 ▲	2.793504E-017.742368E-02 ▲	3.113104E-018.155782E-02 ▲	5.356825E-012.311659E-01		
	DTLZ2	6.235696E-01 _{0.000000E+00} -	6.235696E-01 _{0.000000E+00} -	6.235696E-01 _{0.000000E+00} -	6.235696E-01 _{0.000000E+00}		
	DTLZ3	6.318400E-011.532235E-02 ∇	6.125368E-01 _{1.298824E-02} ▲	6.125368E-017.728427E-03 ▲	6.202652E-01 _{1.755442E-02}		
10	DTLZ4	1.385234E+000.000000E+00 -	1.385234E+000.000000E+00 -	1.385234E+000.000000E+00 -	1.385234E+00 _{0.000000E+00}		
	DTLZ5	2.004685E+003.318808E-02 -	2.004685E+003.318808E-02 -	2.004685E+00 _{2.725998E-03} -	2.004685E+004.085842E-02		
	DTLZ6	2.081109E+00 _{9.110176E-02} -	2.081109E+00 _{4.634143E-02} -	2.081109E+00 _{0.00000E+00} -	2.081109E+00 _{0.00000E+00}		
	DTLZ7	1.730742E+00 _{1.195495E-01} ∇	1.716405E+00 _{0.000000E+00} ▲	1.716405E+00 _{0.000000E+00} ▲	1.721941E+00 _{1.673121E-02}		
		6/8/7	11/3/7	11/3/7			

 Tabla 7.5. Comparación de valores de mediana e IQR del indicador IGD⁺ para algoritmos propuestos en problemas DTLZ.

Objetivos	Problemas	MOEA/D/RSIM	MOEA/D/RSIM ⁺	MOEA/D/RSIM/KLP	MOEA/D
	DTLZ1	1.581896E-01 _{2.428777E-01} ∇	8.507127E-031.233238E-03 ▲	8.455129E-034.684455E-04 ▲	1.482302E-023.759438E-01
3	DTLZ2	4.388781E-01 _{4.299221E-02} ▽	4.310959E-01₄.032328E-02 ▲	4.185131E-011.569061E-02 ▲	4.348379E-013.254664E-02
	DTLZ3	2.757768E-01 _{1.385100E-01} ∇	5.702913E-031.373424E-01	5.782794E-031.509463E-01 ▲	1.851321E-012.250440E-01
3	DTLZ4	8.498437E-01 _{0.000000E+00} -	8.498437E-01 _{0.000000E+00} -	8.498437E-01 _{0.000000E+00} -	8.498437E-010.000000E+00
	DTLZ5	4.979926E-01 _{1.240255E-02} ▲	4.980492E-01 _{1.145005E-02} ▲	4.964223E-01 _{1.211718E-02} ▲	4.980602E-01 _{1.437245E-02}
	DTLZ6	3.865222E-01 _{2.746677E-01} ∇	1.282453E-01 _{1.023472E-02} ▽	1.313232E-01 _{1.149397E-02} ∇	1.187725E-017.149843E-03
	DTLZ7	2.064964E-01 _{1.212874E-02} ▲	2.446005E-01 _{6.030793E-02} ▲	2.448670E-01 _{4.735439E-02} ▲	2.533271E-01 _{1.024696E-01}
	DTLZ1	6.480074E-02 _{6.859843E-02} ▲	4.021040E-02 _{6.843288E-02} ▲	1.068431E-02 _{3.850451E-02} ▲	1.309130E-01 _{1.188625E-01}
	DTLZ2	5.542033E-01 _{1.641908E-01} -	5.542033E-01 _{3.104400E-01} -	5.542033E-01 _{2.311504E-01} -	5.542033E-01 _{3.862271E-01}
	DTLZ3	1.034938E-01 _{2.656537E-01} ▲	1.296546E-02 _{1.257975E-01} ▲	4.178208E-037.541478E-02 ▲	1.557202E-01 _{1.956082E-01}
5	DTLZ4	9.356661E-010.000000E+00 -	9.356661E-010.000000E+00 -	9.356661E-010.000000E+00 -	9.356661E-01 _{0.00000E+00}
	DTLZ5	2.357273E-01 _{1.225599E-01} ∇	2.299091E-01 _{2.276041E-01} ∇	1.942181E-01 _{1.941020E-01} ▲	1.971943E-01 _{1.104333E-01}
	DTLZ6	2.463447E-01 _{8.640077E-02} ▽	2.504095E-01 _{1.548821E-01} ∇	2.501996E-01 _{9.225651E-02} ∇	2.288459E-011.072076E-01
	DTLZ7	9.744400E-02 _{1.008594E-01} ∇	8.343090E-02 _{2.108063E-01} ∇	7.876276E-021.398152E-01 ▲	7.908323E-022.320291E-02
	DTLZ1	3.599112E-012.234234E-01 ▲	1.409922E-011.126126E-01 ▲	1.878391E-011.171171E-01 ▲	4.617130E-012.648649E-01
	DTLZ2	1.368799E-01 _{0.000000E+00} -	1.368799E-01 _{0.000000E+00} -	1.368799E-01 _{0.000000E+00} -	1.368799E-010.000000E+00
	DTLZ3	1.440718E-015.110497E-02 ▽	6.948616E-02 _{6.906077E-02} ▲	6.948616E-02 _{3.453039E-02} ▲	1.040165E-01 _{6.906077E-02}
10	DTLZ4	9.697306E-01 _{0.000000E+00} -	9.697306E-01 _{0.000000E+00} -	9.697306E-01 _{0.00000E+00} -	9.697306E-01 _{0.00000E+00}
	DTLZ5	8.036636E-017.142857E-02 -	8.036636E-017.142857E-02 -	8.036636E-01 _{5.714286E-03} -	8.036636E-018.857143E-02
	DTLZ6	9.375293E-01 _{1.845455E-01} -	9.375293E-01 _{9.090909E-02} -	9.375293E-01 _{0.000000E+00} -	9.375293E-010.000000E+00
	DTLZ7	3.723509E-01 _{2.775100E-01} ∇	9.143710E-02 _{0.000000E+00} ▲	9.143710E-02 _{0.00000E+00} ▲	1.740588E-01 _{1.652434E-01}
F	•	5/9/7	10/4/7	12/2/7	•

Tabla 7.6.	. Comparación de valores de mediana e IQR del indicador Δ^* para algoritmos propuestos en prob	blemas
	DTLZ.	

Objetivos	Problemas	MOEA/D/RSIM	MOEA/D/RSIM ⁺	MOEA/D/RSIM/KLP	MOEA/D
	DTLZ1	1.172995E-01 _{3.138153E-01} ∇	4.939536E-019.180330E-03 ▲	4.934834E-01₄.944696E-03 ▲	4.842133E-014.737132E-01
	DTLZ2	3.757129E-01 _{3.686583E-02} ∇	3.808324E-01 _{3.447522E-02} ▲	3.894120E-011.383941E-02 ▲	3.788473E-012.959628E-02
3	DTLZ3	3.014534E-01 _{5.017267E-02} ∇	3.597127E-012.628815E-02 ▲	3.597127E-01 _{3.044807E-02} ▲	3.220322E-017.659048E-02
	DTLZ4	1.547740E-01 _{0.000000E+00} -	1.547740E-01 _{0.000000E+00} -	1.547740E-01 _{0.000000E+00} -	1.547740E-01 _{0.00000E+00}
	DTLZ5	5.656499E-01 _{2.966409E-02} ▲	5.648691E-01 _{2.894373E-02} ▲	5.663731E-01 _{2.883257E-02} ▲	5.616092E-013.054445E-02

			Tabla 7.6 (continuación).		
2	DTLZ6	2.921155E-01 _{6.790042E-02} ∇	3.512160E-01 _{6.991913E-04} ∇	3.511192E-01 _{7.327718E-04} ∇	3.517771E-012.242156E-04
3	DTLZ7	5.094472E-011.463874E-02 ▲	4.621647E-016.691345E-02 ▲	4.598721E-01₄.259872E-02 ▲	4.540695E-019.665064E-02
	DTLZ1	2.399003E-033.954089E-03 ▲	4.721356E-031.084991E-01 ▲	1.946084E-022.912071E-01 ▲	1.755689E-036.388112E-03
	DTLZ2	1.397448E-018.764573E-02 -	1.397448E-018.764573E-02 -	1.397448E-019.290448E-02 -	1.397448E-01 _{2.049268E-01}
	DTLZ3	7.154013E-03 _{7.758888E-03} ▲	1.099526E-01 _{3.360280E-01} ▲	1.748429E-01 _{3.360280E-01} ▲	5.571317E-03 _{5.293692E-03}
5	DTLZ4	7.513466E-020.000000E+00 -	7.513466E-020.000000E+00 -	7.513466E-020.000000E+00 -	7.513466E-02 _{0.00000E+00}
	DTLZ5	8.439323E-01 _{1.074982E-01} ▲	8.032596E-01 _{1.221108E-01} ∇	8.330527E-01 _{1.407577E-01} ▲	8.292021E-01 _{1.473908E-01}
	DTLZ6	5.511879E-01 _{1.447681E-01} ▽	5.026080E-01 _{1.616001E-01} ∇	5.389116E-01 _{1.998123E-01} ∇	5.849839E-01 _{1.844434E-01}
	DTLZ7	2.369867E-01 _{3.245963E-02} ▲	2.324855E-01 _{2.179798E-02} ▲	2.345817E-01 _{1.627260E-02} ▲	2.234916E-01 _{1.467341E-02}
	DTLZ1	2.088218E-01 _{1.526955E-01} ▲	4.654839E-01 _{1.866702E-01} ▲	4.406666E-01 _{1.887669E-01} ▲	1.461004E-01 _{1.397155E-01}
	DTLZ2	4.614039E-01 _{0.00000E+00} -	4.614039E-01 _{0.000000E+00} -	4.614039E-01 _{0.00000E+00} -	4.614039E-01 _{0.000000E+00}
	DTLZ3	4.068863E-01 _{2.247041E-02} ∇	4.360207E-012.169044E-02 ▲	4.360207E-011.251230E-02 ▲	4.235084E-012.725487E-02
10	DTLZ4	4.129136E-02 _{0.00000E+00} -	4.129136E-02 _{0.00000E+00} -	4.129136E-02 _{0.00000E+00} -	4.129136E-020.00000E+00
	DTLZ5	3.601620E-01 _{1.143135E-02} -	3.601620E-01 _{1.143135E-02} -	3.601620E-019.159495E-04 -	3.601620E-011.416366E-02
	DTLZ6	3.257982E-01 _{3.007974E-02} -	3.257982E-01 _{1.472154E-02} -	3.257982E-01 _{0.000000E+00} -	3.257982E-010.000000E+00
	DTLZ7	1.232521E-01₄.013966E-03 ∇	1.243279E-01 _{0.000000E+00} ▲	1.243279E-01 _{0.000000E+00} ▲	1.240262E-01 _{1.309672E-03}
		7/7/7	11/3/7	12/2/7	

 Tabla 7.7. Comparación de valores de mediana e IQR del indicador OS para algoritmos propuestos en problemas DTLZ.

Objetivos	Problemas	MOEA/D/RSIM	MOEA/D/RSIM ⁺	MOEA/D/RSIM/KLP	MOEA/D
	DTLZ1	3.554230E-16 _{1.514881E-06} ▲	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.00000E+00}
3 5 10	DTLZ2	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{1.384533E-19}
	DTLZ3	2.574786E-10 _{1.289456E-08} ▲	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.00000E+00}
3	DTLZ4	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.000000E+00} -	0.000000E+00 _{0.000000E+00} -	0.000000E+00 _{0.00000E+00}
	DTLZ5	5.207496E-05 _{1.671849E-04} ∇	1.028443E-048.088409E-05 ▲	5.951444E-051.248356E-04 ▲	5.867347E-051.281205E-04
	DTLZ6	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.000000E+00} -	0.000000E+00 _{0.00000E+00} -	0.000000E+000.000000E+00
	DTLZ7	1.406698E-031.327823E-03 ▲	0.000000E+00 _{1.482112E-03} -	0.000000E+00 _{4.200921E-04} -	0.000000E+008.260558E-04
	DTLZ1	0.000000E+00 _{2.400833E-40} -	0.000000E+00 _{2.416050E-21} -	0.000000E+00 _{5.790335E-58} -	0.000000E+000.000000E+00
	DTLZ2	0.000000E+00 _{6.231661E-51} -	0.000000E+001.318980E-73 -	0.000000E+001.659350E-22 -	0.000000E+00 _{3.177717E-15}
	DTLZ3	2.921655E-75 _{6.347221E-09} ▲	$0.000000E + 00_{0.00000E+00}$ -	$0.000000E + 00_{0.00000E+00}$ -	0.000000E+00 _{6.063550E-16}
5	DTLZ4	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.00000E+00} -	0.000000E+000.000000E+00
	DTLZ5	2.630120E-017.267759E-02 ▲	2.295910E-01 _{1.769044E-01} ∇	2.420544E-011.568379E-01 ▲	2.390747E-011.082976E-01
	DTLZ6	1.218711E-03 _{4.288306E-04} ▲	9.917727E-04 _{4.916558E-04} ▲	9.747170E-04 _{5.371906E-04} ▲	8.908639E-04 _{5.869953E-04}
	DTLZ7	7.172905E-40 _{9.600112E-07} ▲	0.000000E+004.009500E-21 -	0.000000E+001.103647E-27 -	0.000000E+00 _{0.00000E+00}
	DTLZ1	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.000000E+00} -	0.000000E+00 _{0.000000E+00} -	0.000000E+00 _{0.00000E+00}
	DTLZ2	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.000000E+00} -	0.000000E+00 _{0.000000E+00} -	0.000000E+00 _{0.000000E+00}
	DTLZ3	$0.000000E + 00_{0.00000E+00}$ -	0.000000E+00 _{0.00000E+00} -	$0.000000E + 00_{0.00000E+00}$ -	0.000000E+000.000000E+00
10	DTLZ4	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.00000E+00} -	0.000000E+000.000000E+00
	DTLZ5	0.000000E+00 _{1.809699E-165} -	0.000000E+00 _{4.220668E-166} -	0.000000E+00 _{0.00000E+00} -	0.000000E+001.253833E-163
	DTLZ6	0.000000E+00 _{3.258782E-175} -	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.00000E+00}
	DTLZ7	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.00000E+00}
	•	7/1/13	2/18/1	3/0/18	

7/1/13

2/18/1

Objetivos	Problemas	MOEA/D/RSIM	MOEA/D/RSIM ⁺	MOEA/D/RSIM/KLP	MOEA/D
	DTLZ1	8.719855E-01 _{2.315144E-01} ∇	9.849766E-01 _{3.734601E-03} ▲	9.839167E-01 _{3.548473E-03} ▲	9.799605E-013.595526E-01
	DTLZ2	2.000786E-01 _{3.502315E-02} ∇	2.102996E-014.124465E-02 ▲	2.226020E-012.400122E-02 ▲	2.007869E-013.253035E-02
	DTLZ3	7.241210E-01 _{1.327496E-01} ∇	9.906542E-011.557235E-01 ▲	9.906542E-01 _{1.628924E-01} ▲	7.974746E-012.483875E-01
3	DTLZ4	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.00000E+00} -
	DTLZ5	1.005413E-021.846596E-03 ▲	1.031253E-02 _{1.370800E-03} ▲	9.850797E-031.434353E-03 ▲	9.675981E-031.844476E-03
	DTLZ6	5.269553E-01 _{1.828621E-01} ∇	6.477786E-01 _{1.144791E-02} ∇	6.435365E-01 _{1.053494E-02} ∇	6.528739E-01 _{1.005628E-02}
	DTLZ7	3.108862E-01 _{2.437702E-02} ▲	2.863906E-014.145085E-02 ∇	2.936950E-01 _{2.954371E-02} ▲	2.869907E-017.179083E-02
	DTLZ1	9.417112E-01 _{6.952983E-02} ▲	9.743758E-01 _{5.220655E-02} ▲	9.905882E-01 _{2.736660E-02} ▲	8.834225E-011.099792E-01
	DTLZ2	2.753623E-01 _{9.564137E-02} -	2.753623E-01 _{2.943723E-01} -	2.753623E-01 _{2.373079E-01} -	2.753623E-01 _{1.932243E-01}
	DTLZ3	9.029412E-01 _{2.553085E-01} ▲	9.950980E-01 _{1.259427E-01} ▲	9.969325E-01 _{2.996404E-02} ▲	8.725490E-01 _{1.544938E-01}
5	DTLZ4	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.00000E+00}
	DTLZ5	1.219245E-01₄.409682E-01 ▽	3.793631E-01 _{6.785340E-01} ▲	3.096352E-01 _{5.986196E-01} ∇	3.166317E-01 _{4.542576E-01}
	DTLZ6	4.220436E-01 _{3.022467E-01} ∇	5.010682E-01 _{3.198441E-01} ▲	4.897090E-01 _{2.073766E-01} ∇	4.923908E-01 _{2.824397E-01}
	DTLZ7	7.140245E-01 _{3.227924E-01} ∇	6.843502E-01 _{5.053172E-01} ∇	7.425360E-01 _{4.056848E-01} ∇	7.705701E-011.459809E-01
	DTLZ1	6.486486E-012.234234E-01 ▲	8.585586E-011.126126E-01 ▲	8.450450E-011.171171E-01 ▲	5.378378E-012.648649E-01
	DTLZ2	5.555556E-01 _{0.000000E+00} -	5.555556E-01 _{0.000000E+00} -	5.555556E-01 _{0.00000E+00} -	5.555556E-010.000000E+00
	DTLZ3	8.563536E-01 _{5.110497E-02} ∇	9.295580E-016.906077E-02 ▲	9.295580E-013.453039E-02 ▲	8.950276E-016.906077E-02
10	DTLZ4	0.000000E+00 _{0.000000E+00} -	0.000000E+00 _{0.000000E+00} -	0.000000E+00 _{0.000000E+00} -	0.000000E+00 _{0.000000E+00}
	DTLZ5	0.000000E+007.142857E-02 -	0.000000E+007.142857E-02 -	0.000000E+005.714286E-03 -	0.000000E+00 _{8.857143E-02}
	DTLZ6	0.000000E+00 _{1.845455E-01} -	0.000000E+00 _{9.090909E-02} -	0.000000E+00 _{0.00000E+00} -	0.000000E+00 _{0.00000E+00}
	DTLZ7	4.940779E-01 _{4.835277E-01} ∇	7.964734E-010.000000E+00 ▲	7.964734E-010.000000E+00	7.149071E-012.230786E-01
		5/9/7	11/3/7	10/4/7	

 Tabla 7.8. Comparación de valores de mediana e IQR del indicador de hipervolumen para algoritmos propuestos en problemas DTLZ.

Tabla 7.9. Comparación de valores de mediana e IQR del indicador ε (+) para algoritmos propuestos en problemas
DTLZ.

Objetivos	Problemas	MOEA/D/RSIM	MOEA/D/RSIM ⁺	MOEA/D/RSIM/KLP	MOEA/D
	DTLZ1	1.185950E-01 _{1.837555E-01} ▲	1.115702E-02 _{2.052402E-03} ▽	1.086777E-02 _{1.048937E-03} ▽	2.030568E-02 _{2.729236E-01}
	DTLZ2	6.775701E-01 _{2.523364E-02} ∇	6.738318E-01 _{3.551402E-02} ∇	6.785047E-01 _{2.336449E-02} ∇	6.841121E-013.457944E-02
	DTLZ3	2.327103E-01 _{1.365328E-01} ∇	9.261682E-03 _{1.022502E-01} ∇	9.345794E-03 _{1.200072E-01} ∇	1.719626E-011.790662E-01
3	DTLZ4	1.000000E+000.000000E+00 -	1.000000E+000.000000E+00 -	1.000000E+000.000000E+00 -	1.000000E+000.000000E+00 -
	DTLZ5	9.068241E-011.049869E-02 -	9.055118E-01 _{7.874016E-03} ∇	9.055118E-01 _{9.186352E-03} ∇	9.068241E-017.874016E-03
	DTLZ6	3.928571E-01 _{1.961538E-01} ▲	2.051020E-01 _{1.126374E-02} ▲	2.082418E-01 _{1.169545E-02} ▲	1.997253E-01 _{6.318681E-03}
	DTLZ7	6.345476E-01 _{2.269890E-02} ∇	6.799455E-01 _{7.944616E-02} ∇	6.822153E-01 _{6.582682E-02} ∇	6.935648E-01 _{1.225741E-01}
	DTLZ1	6.486486E-02 _{6.869823E-02} ∇	4.037433E-02 _{6.841832E-02} ∇	$1.074844\text{E-}02_{3.741818\text{E-}02} \nabla$	1.309771E-011.138821E-01
	DTLZ2	7.246377E-01 _{1.736487E-01} ∇	7.246377E-01 _{3.107320E-01} ∇	7.246377E-01 _{2.233766E-01} ∇	7.414634E-012.895787E-01
	DTLZ3	1.040724E-012.553300E-01 ▽	1.395973E-02 _{1.259427E-01} ∇	4.901961E-037.541478E-02 ∇	1.564417E-01 _{1.993430E-01}
5	DTLZ4	1.000000E+00 _{0.00000E+00} -	1.000000E+00 _{0.00000E+00} -	1.000000E+00 _{0.00000E+00} -	1.000000E+00 _{0.00000E+00} -
	DTLZ5	5.156627E-01 _{3.439222E-01} ▲	3.692902E-01 _{4.866632E-01} ∇	4.361446E-01 _{4.332274E-01} ▲	4.192771E-013.352910E-01
	DTLZ6	4.869684E-01 _{1.252018E-01} ▲	4.883402E-01 _{2.732949E-01} ▲	4.677641E-01 _{1.563786E-01} ▽	4.855967E-01 _{1.687243E-01}
	DTLZ7	2.238228E-012.615383E-01 ▲	1.913607E-014.942109E-01 -	1.913607E-013.370538E-01 -	1.913607E-014.275948E-02
10	DTLZ1	3.621622E-01 _{2.234234E-01} ∇	1.432432E-01 _{1.126126E-01} ∇	1.900901E-01 _{1.171171E-01} ∇	4.639640E-012.648649E-01

	Tabla 7.9 (continuación).									
	DTLZ2	4.44444E-010.000000E+00 -	4.44444E-010.000000E+00 -	4.44444E-010.000000E+00-	4.44444E-010.000000E+00					
	DTLZ3	1.450276E-015.110497E-02 ▲	7.044199E-02 _{6.906077E-02} ∇	7.044199E-02 _{3.453039E-02} ∇	1.049724E-016.906077E-02					
10	DTLZ4	1.000000E+000.000000E+00 -	1.000000E+000.000000E+00 -	1.000000E+000.000000E+00 -	1.000000E+000.000000E+00					
	DTLZ5	1.000000E+007.142857E-02 -	1.000000E+007.142857E-02 -	1.000000E+00 _{5.714286E-03} -	1.000000E+00 _{8.857143E-02}					
	DTLZ6	1.000000E+00 _{1.845455E-01} -	1.000000E+00 _{9.090909E-02} -	1.000000E+00 _{0.000000E+00} -	1.000000E+00 _{0.000000E+00}					
	DTLZ7	5.110000E-01 _{4.060958E-01} ▲	2.035266E-01 _{0.000000E+00} ▲	2.035266E-01 _{0.000000E+00} ▲	2.861484E-01 _{2.230786E-01}					
		7/7/7	3/11/7	3/11/7						

7.3.1 Análisis gráfico de resultados globales

Las gráficas 7.1 (a - e) engloban los resultados de los indicadores de desempeño para todas las instancias en los problemas DTLZ, con los diferentes valores de objetivos estudiados (3, 5 y 10).

Gráfica 7.1 (a). Comparación global de resultados de indicador IGD para algoritmos propuestos.

Gráfica 7.1 (b). Comparación global de resultados de indicador IGD⁺ para algoritmos propuestos.

IGD Modified

La gráfica 7.1 (a) revela que existe variabilidad en los resultados inferiores a 1, así como una ligera ventaja para RSIM/KLP frente al algoritmo de referencia MOEA/D, manteniendo similitud al resultado de RSIM⁺. También muestra que el valor de la métrica (menor a 1) es superado en todos los algoritmos, incluyendo MOEA/D.

La gráfica 7.1 (b) muestra mayor variabilidad en las medianas, notando un mejor resultado en favor de RSIM/KLP contra MOEA/D, mientras que el valor de la mediana de RSIM⁺ empata con el de MOEA/D, teniendo mejores valores inferiores que este último.

Gráfica 7.1 (c). Comparación global de resultados de indicador Δ^* para algoritmos propuestos.

Generalized Spread

Gráfica 7.1 (d). Comparación global de resultados de indicador OS para algoritmos propuestos.

Overall Spread

En la gráfica 7.1 (c) RSIM⁺ y RSIM/KLP tiene mejores valores de métrica (mayores a cero) que MOEA/D, existiendo un empate entre ambas estrategias, mientras que la gráfica 7.1 (d) muestra que estos algoritmos tienen peores valores que MOEA/D, siendo RSIM quien tiene mejor valor que el algoritmo de referencia. El tamaño de las gráficas para el indicador Δ^* resulta menor que para el indicador OS, teniendo la dispersión generalizada valores atípicos menores que la *overall*. A pesar de ello, ambas métricas presentan valores inferiores o cercanos a 0.5, indicando poca dispersión entre las soluciones.

Hypervolume

Gráfica 7.1 (f). Comparación global de resultados de indicador ε (+) para algoritmos propuestos.

Las gráficas 7.1 (e) y 7.1 (f) muestran un comportamiento simétrico entre ambos indicadores. El indicador de hipervolumen muestra que los valores de las medianas son superiores a los de la media, mientras que ε (+) muestra el caso contrario. En el caso de las estrategias RSIM⁺ y RSIM/KLP, estas mantienen valores cercanos a MOEA/D y entre sí, mientras que RSIM tiene peor resultado con el hipervolumen y mejor resultado con ε (+).

La gráfica 7.1 (e) muestra que RSIM⁺ tiene mejor resultado que RSIM/KLP y el algoritmo de referencia MOEA/D en el hipervolumen, mientras que la gráfica 7.1 (f) establece que ambos son peores que MOEA/D, siendo la mejor estrategia RSIM quien supera a MOEA/D.

7.3.2 Análisis gráfico de resultados particulares por problema

Las gráficas 7.2 a 7.7 muestran la comparación de resultados por indicador en cada problema DTLZ, en los diferentes tamaños de objetivos tratados (3, 5 y 10).

Para el indicador IGD se observan las siguientes tendencias:

- DTLZ 1 obtiene mejores resultados con MOEA/D, notándose que RSIM/KLP lo supera con 5 objetivos y pierde con 10.
- DTLZ 2 obtiene resultados cercanos con ventaja para MOEA/D, seguido de RSIM/KLP, RSIM y RSIM⁺. Esto solo ocurre para 3 objetivos, ya que para 5 y 10 los resultados se igualan, aunque mejoran sus valores con respecto a 3 objetivos.
- DTLZ 3 obtiene resultados empatados entre RSIM/KLP y MOEA/D. Comienza con valores altos en 3 objetivos, los cuales mejoran con 5 y vuelven a empeorar con 10, aunque son mejores que con 3 objetivos.
- DTLZ 4 no muestra ninguna ventaja en ningún algoritmo al aumentar el valor de la métrica conforme aumentan los objetivos.
- DTLZ 5 muestra ligeras separaciones entre algoritmos sin llegar a ser definitivas, teniendo una mejora de valores con 5 objetivos para empeorar con 10 objetivos.
- DTLZ 6 tiene una mejora de valores de 3 a 5 objetivos, volviendo a tener resultados peores con 10. Solamente con 3 objetivos hay diferencia entre algoritmos, superando el valor de RSIM⁺ los algoritmos RSIM, RSIM/KLP y MOEA/D, aunque estos últimos son similares.
- DTLZ 7 muestra que los valores se igualan y empeoran conforme aumentan los objetivos. Con 3 y 5 objetivos RSIM⁺ tiene la ventaja por sobre los demás.

Gráfica 7.3. Comparación de resultados de IGD⁺ con 3, 5 y 10 objetivos en problemas DTLZ 1-7.

Para el indicador IGD⁺ se observan las siguientes tendencias:

- DTLZ 1 obtiene resultados cercanos a cero con 3 objetivos, mientras que RSIM⁺ y RSIM/KLP muestran mejor desempeño con 5 objetivos que con 3 y 10. Los algoritmos RSIM/KLP y MOEA/D tiene un comportamiento similar, siendo el mejor MOEA/D con 5 objetivos y RSIM/KLP con 10.
- DTLZ 2 obtiene resultados cercanos con ventaja para MOEA/D en 3 objetivos, igualándose todos los algoritmos para 5 y 10 objetivos. Existe un pico con 5 objetivos que mejora resultados con 10.
- DTLZ 3 obtiene resultados cercanos a cero en 3 y 5 objetivos con MOEA/D y RSIM/KLP, elevándose con 10 objetivos. RSIM mejora sus valores conforme aumentan los objetivos, y RSIM⁺ tiene un pico que mejora sus valores con 5 y empeoran con 10.
- DTLZ 4 vuelve a mostrar que no existe ventaja con ningún algoritmo y aumenta la métrica conforme aumentan los objetivos.
- DTLZ 5 muestra un pico de mejora con 5 objetivos, pero empeorando con 10. El algoritmo con mejor desempeño junto MOEA/D con igual comportamiento es RSIM⁺.
- DTLZ 6 mejora sus valores solo en 5 objetivos con RSIM⁺. El resto de algoritmos tiene resultados parecidos que empeoran conforme aumentan objetivos.
- DTLZ 7 cuenta con un pico de mejora en 5 objetivos, el cual solo mantienen con 10 objetivos ligeramente MOEA/D y RSIM/KLP. RSIM⁺ es quien tiene mejor valor con 3 objetivos.

Gráfica 7.4. Comparación de resultados de Δ^* con 3, 5 y 10 objetivos en problemas DTLZ 1-7.

Para el indicador Δ^* se observan las siguientes tendencias:

- DTLZ 1 tiene valores cercanos a cero con 5 objetivos, teniendo mejores valores con 3 y 10. MOEA/D obtiene mejor valor con 3 objetivos mientras que RSIM/KLP es quien tiene mejor valor con 10, empatando ambos con 5 objetivos.
- DTLZ 2 obtiene resultados cercanos con ventaja para MOEA/D con 3 objetivos, igualándose todos los algoritmos para 5 y 10. Existe un pico con 5 objetivos que empeora los resultados, mejorándose con 10.
- DTLZ 3 muestra que todos los algoritmos tienen un pico con 5 objetivos que empeora los resultados de 3 objetivos y los vuelve a mejorar para 10. MOEA/D es quien tiene mejores resultados, siendo igualado por RSIM/KLP con 3 y 10 objetivos.
- DTLZ 4 continua sin mostrar ventaja con ningún algoritmo y empeorando la métrica al aumentar objetivos.
- DTLZ 5 muestra un pico de mejora de 3 a 5 objetivos y empeorándolos con 10. Es con 5 objetivos donde hay una clara desventaja para RSIM/KLP, mientras que con 3 y 10 no hay diferencias entre los algoritmos.
- DTLZ 6 mejora los valores de 3 a 5 objetivos, pero es RSIM⁺ quien supera a MOEA/D y RSIM/KLP, es decir, tiene un mejoramiento en sus resultados iniciales. Todos los algoritmos obtienen peores resultados con 10 objetivos.
- DTLZ 7 presenta una disminución lineal de la métrica, empeorando los resultados de todos los algoritmos. RSIM⁺ tiene ventaja sobre todos los demás con 3 objetivos, siendo igualado a partir de 5.

Gráfica 7.5. Comparación de resultados de OS con 3, 5 y 10 objetivos en problemas DTLZ 1-7.

Para el indicador OS se observan las siguientes tendencias:

- DTLZ 1 tiene valores cercanos a cero en todos los objetivos con casi todos los algoritmos, con excepción de RSIM⁺ de 3 objetivos.
- DTLZ 2 tiene valores en cero con todos los algoritmos y objetivos.
- DTLZ 3 presenta el mismo comportamiento que DTLZ 1, teniendo únicamente valores buenos para RSIM⁺ con 3 objetivos.
- DTLZ 4 presenta el mismo comportamiento que DTLZ 2.
- DTLZ 5 muestra un pico de mejora de 3 a 5 objetivos, empeorándolos con 10 y siendo muy cercanos entre sí. El algoritmo que supera a todos es RSIM⁺, seguido de MOEA/D, RSIM y RSIM/KLP.
- DTLZ 6 presenta el mismo comportamiento que DTLZ 5, pero con resultados más separados. RSIM⁺ sigue ganando a los demás, seguido ahora por RSIM/KLP, MOEA/D y RSIM.
- DTLZ 7 presenta el mismo comportamiento que DTLZ 1, obteniendo buenos valores para RSIM⁺ con 3 objetivos.

Gráfica 7.6. Comparación de resultados de hipervolumen con 3, 5 y 10 objetivos en problemas DTLZ 1-7.

Para el indicador de hipervolumen se observan las siguientes tendencias:

- DTLZ 1 presenta un decrecimiento de la métrica al aumentar objetivos, MOEA/D y RSIM/KLP tienen un desempeño muy cercano, mientras que RSIM⁺ tiene su mejor valor con 5 objetivos.
- DTLZ 2 presenta una mejora en el valor de la métrica, pero los algoritmos tienen valores muy cercanos para 5 y 10 objetivos. Solo con 3 objetivos se ve una ventaja para MOEA/D seguido de RSIM/KLP, igualándose todos los algoritmos para 5 y 10.
- DTLZ 3 muestra un decrecimiento de valores para MOEA/D y RSIM/KLP, los cuales son los mejores con valores cercanos. RSIM muestra una mejora conforme aumentan los objetivos y RSIM⁺ cuenta con un pico en 5 objetivos, empeorando con 3 y 10.
- DTLZ 4 mantiene valores en cero durante todos los objetivos.
- DTLZ 5 muestra un pico de mejora de 3 a 5 objetivos, que empeoran con 10. RSIM/KLP es el mejor algoritmo de 5 objetivos, seguido de RSIM y MOEA/D empatando, y finalizando con RSIM⁺.
- DTLZ 6 empeora los resultados conforme aumentan objetivos. RSIM, RSIM/KLP y MOEA/D tiene valores similares y no hay una clara ventaja para alguno. El peor algoritmo es RSIM⁺ con malos resultados en 3 y 5 objetivos.
- DTLZ 7 presenta mejora de resultados conforme aumentan los objetivos para MOEA/D y RSIM/KLP. RSIM y RSIM⁺ tiene un decrecimiento de 5 a 10 objetivos, ampliando la ventaja de RSIM sobre RSIM⁺.

Gráfica 7.7. Comparación de resultados de ε (+) con 3, 5 y 10 objetivos en problemas DTLZ 1-7.

Para el indicador ε (+) se observan las siguientes tendencias:

- DTLZ 1 presenta mejora de resultados marcada para RSIM y RSIM⁺. MOEA/D comienza perdiendo contra RSIM/KLP para superarlo con 10 objetivos.
- DTLZ 2 tiene un pico de mejora de 3 a 5 objetivos, siendo RSIM quien supera ligeramente a los demás en 5 objetivos. Con 10 objetivos se obtienen resultados cercanos a cero para todos los algoritmos.
- DTLZ 3 presenta resultados bajos con MOEA/D y RSIM/KLP de 3 y 5 objetivos, para aumentar con 10. RSIM tiene un decrecimiento de sus resultados al aumentar objetivos, y RSIM⁺ tiene una ligera disminución con 5 objetivos para recuperarse con 10.
- DTLZ 4 mantiene resultados en cero para todos los objetivos.
- DTLZ 5 muestra un pico de mejora de 3 a 5 objetivos, empeorándolos con 10. Es con 5 objetivos donde hay una clara desventaja para RSIM/KLP, mientras que con 3 y 10 no hay diferencias entre los algoritmos.
- DTLZ 6 mejora los resultados para todos los algoritmos conforme aumenta los objetivos, pero con resultados similares a partir de 5 objetivos. RSIM⁺ es el mejor algoritmo para 3 objetivos.
- DTLZ 7 presenta una disminución de la métrica en 5 objetivos, siendo los únicos en recuperar ventaja RSIM⁺ y RSIM, superando a MOEA/D.

7.3.3 Análisis estadístico de resultados

En esta sección se presentan los resultados de las pruebas estadísticas y de hipótesis realizadas a los resultados de los indicadores de desempeño. Dada la cantidad de algoritmos comparados, se realizó la prueba de Friedman de Rangos Alineados para el análisis, así como la prueba *post-hoc* de Holm para detectar las diferencias entre los algoritmos y MOEA/D.

<u>3 objetivos</u>

La Tabla 7.10 muestra que en ninguna métrica el resultado del *p-value* es menor a 0.05, por lo que no existe diferencias estadísticas entre los algoritmos para las instancias de 3 objetivos. La Tabla 7.11 muestra el mejor algoritmo en el rankeo estadístico de Borda de cada indicador. Los resultados completos de las pruebas *post-hoc* y análisis de Borda se incluyen en el Anexo A.

Tabla 7.10. Resultados de prueba de Friedman de Rangos Alineados con significancia de 5% para 3 objetivos.

	IGD	IGD ⁺	Δ^*	OS	Hipervolumen	ε (+)
Estadístico	3.05096	6.33670	4.11654	4.11654	5.98801	4.51420
p-value	0.38384	0.09633	0.24915	0.24915	0.11219	0.21103

Tabla 7.11. Mejor algoritmo en Ranking Borda de prueba de Friedman de Rangos Alineados para 3 objetivos.

	IGD	IGD ⁺	Δ^*	OS	Hipervolumen	(+) 3
Algoritmo	RSIM/KLP	RSIM/KLP	RSIM/KLP	RSIM/KLP	RSIM ⁺	RSIM

Con el *ranking* Borda de la Tabla 7.11 se observa que RSIM/KLP tiene el mejor desempeño con las métricas de distancia generacional (IGD e IGD⁺) y distribución-dispersión (Δ * y OS), mientras que RSIM⁺ tiene mejor desempeño para el hipervolumen y ϵ (+) tiene mejor ventaja con RSIM. Estos resultados muestran que las propuestas fueron mejores opciones que el algoritmo de referencia MOEA/D en todos los indicadores.

<u>5 objetivos</u>

La Tabla 7.12 muestra que en el indicador OS y ε (+) el *p-value* es menor a 0.05, por lo que existen diferencias estadísticas entre los algoritmos para las instancias de 5 objetivos. Con lo anterior se observa que los datos tienen diferencias para la distribución-dispersión y la convergencia al Frente de Pareto. La Tabla 7.13 contiene el mejor algoritmo en el *ranking* de cada indicador. Los resultados completos y el análisis de Borda se incluyen en el Anexo A.

Tabla 7.12. Resultados de prueba de Friedman de Rangos Alineados con significancia de 5% para 5 objetivos.

	IGD	IGD ⁺	Δ^*	OS	Hipervolumen	ε (+) 3
Estadístico	1.79786	5.00310	1.92336	10.20978	7.29156	8.09310
p-value	0.61540	0.17157	0.58846	0.01686	0.06316	0.04413

Tabla 7.13. Mejor algoritmo en Ranking Borda de prueba de Friedman de Rangos Alineados para 5 objetivos.

	IGD	IGD ⁺	Δ^*	OS	Hipervolumen	(+) 3
Algoritmo	RSIM/KLP	RSIM/KLP	RSIM/KLP	RSIM	RSIM/KLP	RSIM

Fabla 7.14. Resultados de	prueba p	post-hoc de Holm	para 5 objetivos	con algoritmo de control.
---------------------------	----------	------------------	------------------	---------------------------

Algoritmo de control	Comparación	IGD	IGD ⁺	Δ^*	OS	Hipervolumen	ε (+)
MOEA/D/RSIM	RSIM vs MOEA/D	> 0.05	> 0.05	> 0.05	0.02549	> 0.05	> 0.05
MOEA/D/RSIM ⁺	RSIM ⁺ vs MOEA/D	> 0.05	> 0.05	> 0.05	> 0.05	> 0.05	> 0.05
MOEA/D/RSIM/KLP	RSIM/KLP vs MOEA/D	> 0.05	> 0.05	> 0.05	> 0.05	> 0.05	> 0.05

Con el *ranking* Borda de la Tabla 7.13 se observa que, tanto para el indicador OS y como ε (+), el mejor algoritmo es RSIM. Por otro lado, RSIM/KLP tiene el mejor posicionamiento con los indicadores de distancia generacional (IGD e IGD⁺) e hipervolumen. Estos resultados muestran que las propuestas fueron mejores opciones que el algoritmo de referencia MOEA/D.

La Tabla 7.14 muestra que los resultados de la prueba *post-hoc*, tomando cada algoritmo como método de control contra MOEA/D, solo fueron significativos para RSIM en el indicador OS. La Tabla 7.15 muestra los resultados de la prueba *post-hoc* sin algoritmo de control donde se comparan las propuestas contra MOEA/D. Tanto el resto de resultados *post-hoc* como los resultados del análisis de Borda aplicado se incluyen en el anexo A, observándose en este último que comparaciones que no obtuvieron resultados significativos no poseen diferencias entre sí, más allá del *ranking* obtenido.

Comparación	<i>p-value</i> ajustado
RSIM/KLP vs. MOEA/D	> 0.05
RSIM vs. MOEA/D	> 0.05
RSIM ⁺ vs. MOEA/D	> 0.05
RSIM/KLP vs. MOEA/D	> 0.05
RSIM vs. MOEA/D	> 0.05
RSIM ⁺ vs. MOEA/D	> 0.05
RSIM/KLP vs. MOEA/D	> 0.05
RSIM vs. MOEA/D	> 0.05
RSIM ⁺ vs. MOEA/D	> 0.05
RSIM vs. MOEA/D	> 0.05
RSIM/KLP vs. MOEA/D	> 0.05
RSIM ⁺ vs. MOEA/D	> 0.05
RSIM vs. MOEA/D	> 0.05
RSIM/KLP vs. MOEA/D	> 0.05
RSIM ⁺ vs. MOEA/D	> 0.05
RSIM/KLP vs. MOEA/D	> 0.05
RSIM ⁺ vs. MOEA/D	> 0.05
RSIM vs. MOEA/D	> 0.05
	Comparación RSIM/KLP vs. MOEA/D RSIM vs. MOEA/D RSIM' vs. MOEA/D RSIM/KLP vs. MOEA/D RSIM vs. MOEA/D RSIM/KLP vs. MOEA/D

Tabla 7.15. Resultados de prueba *post-hoc* de Holm para 5 objetivos sin algoritmo de control.

10 objetivos

Con la Tabla 7.16 se observa que de nueva cuenta ninguna métrica alcanza a tener valores de *p-value* menores a 0.05, por lo que no existen diferencias estadísticas entre los algoritmos para las instancias de 10 objetivos. La Tabla 7.17 contiene el mejor algoritmo en el *ranking* de cada indicador. Los resultados completos y su análisis de Borda se incluyen en el Anexo A.

Tabla 7.16. Resultados de prueba de Friedman de Rangos Alineados con significancia de 5% para 10 objetivos.

	IGD	IGD ⁺	Δ^*	OS	Hipervolumen	ε (+)
Estadístico	7.16288	6.16332	6.02576	0.00000	6.16332	6.16332
p-value	0.06688	0.10393	0.11036	1.00000	0.10393	0.10393

Tabla 7.17. Mejor algoritmo en Ranking Borda de prueba de Friedman de Rangos Alineados para 10 objetivos.

	IGD	IGD ⁺	Δ^*	OS	Hipervolumen	(+) 3
Algoritmo	RSIM ⁺	RSIM ⁺	RSIM ⁺	RSIM	RSIM ⁺	RSIM

Con el *ranking* de la Tabla 7.17 se observa que RSIM⁺ reemplaza a RSIM/KLP como el mejor algoritmo a diferencia de lo ocurrido con 3 y 5 objetivos. RSIM es el mejor algoritmo en los indicadores de OS y ε (+), mientras que RSIM⁺ lo es para los de distancia generacional, la dispersión generalizada y el hipervolumen. Lo anterior muestra que la primera versión mejorada de RSIM tiene mejor capacidad de generación de soluciones y la propuesta original tiene mejor capacidad de converger al Frente de Pareto. Es observable también de nueva cuenta que las propuestas tuvieron un mejor desempeño en el *ranking* que el algoritmo de referencia MOEA/D.

<u>Global</u>

La Tabla 7.18 muestra que, de manera global, todas las métricas cuentan con valores de *p-value* menores a 0.05, por lo que existen diferencias estadísticas entre los algoritmos para todas las instancias de 3, 5 y 10 objetivos en conjunto. La Tabla 7.19 contiene el mejor algoritmo en el *ranking* Borda de cada indicador. Los resultados completos se incluyen en el Anexo A.

Tabla 7.18. Resultados de prueba de Friedman de Rangos Alineados global con significancia de 5%.

	IGD	IGD ⁺	Δ^*	OS	Hipervolumen	ε (+)
Estadístico	8.27808	17.31695	8.28369	11.60542	19.43634	19.49560
p-value	0.04060	0.00061	0.04050	0.00886	0.00022	0.00022

 Tabla 7.19. Mejor algoritmo en Ranking Borda de prueba de Friedman de Rangos Alineados global.

	IGD	IGD ⁺	Δ^*	OS	Hipervolumen	ε (+)
Algoritmo	RSIM/KLP	RSIM/KLP	RSIM/KLP	RSIM	RSIM/KLP	RSIM

Con el *ranking* Borda de la Tabla 7.19 y los resultados de la Tabla 7.18, se observa RSIM/KLP tiene la ventaja con los indicadores de distancia generacional, dispersión generalizada e hipervolumen; mientras que RSIM es el mejor algoritmo para el indicador OS y para ε (+). Con lo anterior se observa una tendencia de RSIM/KLP a generar soluciones cercanas al frente de referencia; y una tendencia de RSIM a tener mejor distribución-dispersión y convergencia al Frente de Pareto.

Tabla 7.20. Resultados globales de prueba *post-hoc* de Holm con algoritmo de control.

Algoritmo de control	Comparación	IGD	IGD ⁺	Δ^*	OS	Hipervolumen	ε(+)
MOEA/D/RSIM	RSIM vs MOEA/D	> 0.05	> 0.05	> 0.05	0.00814	> 0.05	> 0.05
MOEA/D/RSIM ⁺	RSIM ⁺ vs MOEA/D	> 0.05	> 0.05	> 0.05	> 0.05	0.04017	0.00590
MOEA/D/RSIM/KLP	RSIM/KLP vs MOEA/D	0.02389	0.02773	0.02606	> 0.05	0.03629	0.00957

La Tabla 7.20 muestra que los resultados de la prueba *post-hoc*, tomando cada algoritmo como método de control contra MOEA/D, tienen diferencias significativas para RSIM/KLP con los indicadores de distancia generacional y dispersión generalizada (Δ^*). Los resultados en el indicador OS solo son significativos en favor de RSIM. Finalmente, los resultados para las métricas que evalúan la convergencia al Frente de Pareto tiene resultados significativos a favor de RSIM⁺ y RSIM/KLP, aunque notándose que RSIM/KLP tiene mejor desempeño en el hipervolumen y RSIM⁺ lo tiene para ε (+), a pesar de que en el ranking el mejor algoritmo posicionado fue RSIM.

La Tabla 7.21 muestra los resultados de la prueba *post-hoc* sin algoritmo de control donde se comparan las propuestas contra MOEA/D, observándose que solamente existen diferencias significativas en los indicadores IGD, OS y ε (+). El algoritmo RSIM/KLP es quien tiene la mayor cantidad de indicadores con diferencias significativas (IGD y ε +), seguido de RSIM y RSIM⁺ (OS y ε + respectivamente).

Indicador	Comparación	p-value ajustado
	RSIM/KLP vs. MOEA/D	0.04777
IGD	RSIM ⁺ vs. MOEA/D	> 0.05
	RSIM vs. MOEA/D	> 0.05
	RSIM/KLP vs. MOEA/D	> 0.05
IGD^+	RSIM vs. MOEA/D	> 0.05
	RSIM ⁺ vs. MOEA/D	> 0.05
	RSIM/KLP vs. MOEA/D	> 0.05
Δ^*	RSIM ⁺ vs. MOEA/D	> 0.05
	RSIM vs. MOEA/D	> 0.05
	RSIM vs. MOEA/D	0.01628
OS	RSIM ⁺ vs. MOEA/D	> 0.05
	RSIM/KLP vs. MOEA/D	> 0.05
	RSIM/KLP vs. MOEA/D	> 0.05
Hipervolumen	RSIM ⁺ vs. MOEA/D	> 0.05
	RSIM vs. MOEA/D	> 0.05
ε (+)	RSIM ⁺ vs. MOEA/D	0.01179
	RSIM/KLP vs. MOEA/D	0.01435
	RSIM vs. MOEA/D	> 0.05

Tabla 7.21. Resultados globales de prueba *post-hoc* de Holm sin algoritmo de control.

A su vez en el Anexo A se incluye el análisis de Borda de estas comparaciones, obteniendo de igual manera que RSIM/KLP es el mejor evaluado, seguido de RSIM+ y por último un empate entre RSIM y MOEA/D.

Con los resultados globales anteriores que consideran un algoritmo de control, el algoritmo que tiene más indicadores de desempeño con diferencias significativas en la prueba *post-hoc* es MOEA/D/RSIM/KLP. Por otro lado, considerando las comparaciones sin algoritmo de control, el algoritmo MOEA/D/RSIM/KLP es quien tiene el mayor número de indicadores con diferencias significativas. Y finalmente considerando el análisis de Borda realizado, de nueva cuenta es MOEA/D/RSIM/KLP el mejor algoritmo de todos los evaluados.

7.3.4 Discusión

De la experimentación realizada se puede concluir que:

- De manera general, el análisis gráfico muestra que en los problemas DTLZ resueltos, MOEA/D parece tener mejor desempeño en la dispersión, pero en algunos casos MOEA/D/RSIM y sus 2 mejoras parecen igualar los resultados de MOEA/D en la generación de soluciones. Dicho de manera particular, en la generación de soluciones distintas (distancia generacional) MOEA/D/RSIM⁺ y MOEA/D/RSIM/KLP parecen contar con mejor desempeño, en los indicadores de distribución-dispersión no parece haber clara ventaja de los algoritmos propuestos sobre MOEA/D; y finalmente, el hipervolumen y ε (+) parecen contar con mejor desempeño en los algoritmos propuestos, seguidos de MOEA/D.
- En el análisis de los resultados obtenidos (Tablas 7.4 7.9), MOEA/D/RSIM/KLP parece ser quien gana en mayor número de instancias en superar o igualar los valores obtenidos por MOEA/D.
- De manera particular por problema DTLZ, existen casos en los que dos algoritmos parecen tener un comportamiento indiscernible, pero basado en el número de indicadores en los que obtienen el mejor desempeño a lo largo de 3, 5 y 10 objetivos se establecen lo siguiente: MOEA/D/RSIM parece desempeñarse mejor con el problema DTLZ 6, MOEA/D/RSIM⁺ parece tener mejores valores con DTLZ 5 y DTLZ 7, MOEA/D/RSIM/KLP

parece superar a los demás en DTLZ 1 y MOEA/D aparenta ser en DTLZ 2 y DTLZ 3 la mejor opción. El problema DTLZ 4 parece no mostrar valores distinguibles entre los algoritmos, obteniendo pésimos resultados en la mayoría.

• De acuerdo a los resultados de las pruebas estadísticas, no existen diferencias significativas entre los algoritmos considerando las pruebas por objetivos separados. La única prueba con resultados significativos es para el indicador OS en favor de MOEA/D/RSIM considerando un algoritmo de control. De manera global, los resultados de MOEA/D/RSIM/KLP cuentan con 5 indicadores (IGD, IGD⁺, Δ^* , hipervolumen y ϵ +) cuyos resultados considerando un algoritmo de control muestran diferencias significativas respecto a MOEA/D, mientras que RSIM⁺ cuenta con resultados con diferencia significativa para el hipervolumen y ϵ (+), dejando a RSIM con diferencias significativas en el indicador OS. Por otro lado, en los resultados muestran diferencias significativas contra MOEA/D, seguido de MOEA/D/RSIM y MOEA/D/RSIM⁺ quienes cuentan con diferencias significativas en los indicadores OS y ϵ (+) respectivamente. Por último, los resultados del análisis de Borda aplicado a las comparaciones sin algoritmo de control muestran una ventaja de MOEA/D/RSIM/KLP sobre todos los algoritmos de manera global y con 5 objetivos. Las diferencias encontradas son en el segundo mejor algoritmo, ya que para 5 objetivos resulta un empate entre MOEA/D/RSIM⁺ y MOEA/D, y de manera global entre los algoritmos que compiten es MOEA/D/RSIM⁺ el segundo mejor, habiendo un empate en el tercer mejor algoritmo entre MOEA/D/RSIM y MOEA/D.

Por lo anterior, mediante el análisis de la prueba *post-hoc* y el análisis de Borda, se encontró que existen diferencias significativas entre MOEA/D/RSIM/KLP y MOEA/D, en diversos números y tipo de indicadores, para confirmar que tiene mejor o igual desempeño con respecto al algoritmo representante del estado del arte para problemas multiobjetivo. A su vez, los algoritmos MOEA/D/RSIM y MOEA/D/RSIM⁺ pueden ser consideradas igualmente alternativas para cubrir aspectos de la distribución-dispersión de soluciones.

CONCLUSIONES Y TRABAJO FUTURO

Este capítulo presenta las conclusiones y resultados obtenidos del trabajo de tesis realizado, abarcando la propuesta original MOEA/D/RSIM y las 2 variantes desarrolladas, MOEA/D/RSIM⁺ y MOEA/D/RSIM/KLP. De igual forma, se presentan sugerencias para el desarrollo de trabajos futuros.

8.1 Conclusiones

El trabajo de tesis abordó el problema de la optimización de muchos objetivos (más de 4) mediante MOEA's, en los cuales el manejo de más de 3 objetivos se encuentra con dificultad para lograr la convergencia al frente óptimo de Pareto. El uso de MOEA/D aminora esta problemática, pero requiriendo del reforzamiento mediante estrategias heurísticas. Lo anterior fue abordado mediante el diseño de una estrategia de búsqueda local basada en la teoría de conjuntos aproximados, que fuese incorporada como parte del proceso algorítmico de MOEA/D, a diferencia de los usos previos en el estado del arte como estrategia de mejora de soluciones finales de un algoritmo predecesor. El estudio realizado para el desarrollo de esta estrategia generó tres versiones diferentes, que cubren diversos aspectos entre sí.

Para lograr esta meta, se analizaron los únicos métodos de búsqueda local basados en la teoría de conjuntos aproximados que se encontraron en la literatura especializada, así como los componentes de dichos métodos. Este análisis permitió el diseño de un método incorporado a la base algorítmica del MOEA/D, que trabaja con la información que el propio algoritmo genera de manera interna durante su ejecución. Durante el desarrollo de RSIM se identificaron oportunidades de mejora que fueron abordadas mediante el desarrollo de dos versiones mejoradas, las cuales hacen uso de una estrategia de búsqueda local multiobjetivo: una mediante probabilidad y la otra con una aproximación del conjunto no dominado.

Finalmente, se realizaron un conjunto de pruebas experimentales para analizar la eficiencia y eficacia de los tres algoritmos propuestos MOEA/D/RSIM, MOEA/D/RSIM⁺ y MOEA/D/RSIM/KLP contra el algoritmo del estado del arte MOEA/D. En los experimentos, para la evaluación del desempeño algorítmico se aplicó un amplio conjunto de indicadores de la literatura utilizados por la comunidad. El análisis basado en estadística descriptiva indica que para cada problema DTLZ (con 3, 5 y 10 objetivos), MOEA/D/RSIM, MOEA/D/RSIM⁺ y MOEA/D/RSIM/KLP tienen en conjunto un mejor desempeño que MOEA/D en los indicadores de convergencia (IGD e IGD⁺); mientras que MOEA/D/RSIM y MOEA/D/RSIM⁺ tienen igual o mejor desempeño que MOEA/D en los indicadores de dispersión (Δ^* y OS). El análisis basado en pruebas de hipótesis indica que para todos los problemas y considerando todos los objetivos, MOEA/D/RSIM, MOEA/D/RSIM⁺ y MOEA/D/RSIM⁺ y MOEA/D/RSIM, MOEA/D/RSIM⁺ tienen igual o mejor desempeño que MOEA/D en los indicadores de dispersión (Δ^* y OS). El análisis basado en pruebas de hipótesis indica que para todos los problemas y considerando todos los objetivos, MOEA/D/RSIM, MOEA/D/RSIM⁺ y MOEA/D/RSIM/KLP en conjunto tienen mejor desempeño que MOEA/D en todos los indicadores. En particular, MOEA/D/RSIM/KLP tiene un desempeño significativamente mejor en cuatro indicadores (IGD, IGD⁺, Δ^* e hipervolumen), MOEA/D/RSIM en el indicador OS y MOEA/D/RSIM⁺ en el indicador ε (+).

El diseño de los tres algoritmos propuestos, los análisis realizados a las soluciones generadas por estos, el uso de métricas de desempeño para medir la convergencia y dispersión de soluciones, así como el análisis estadístico (descriptivo e inferencial) de los resultados, responden de manera positiva a la hipótesis planteada al inicio de la investigación (véase Sección 1.2). Así mismo, el estudio de trabajos previos con la teoría de conjuntos aproximados en otros algoritmos (véase Sección 3.2), la selección de problemas estándar DTLZ (véase Sección 2.5), el desarrollo del método de mejora de soluciones basado en conjuntos aproximados integrado a MOEA/D (véase Capítulo 4) y dos mejoras de dicho método (véase Capítulo 5 y Capítulo 6), la selección de indicadores de desempeño mayormente usados por la comunidad (véase Sección 7.2) y el análisis estadístico (véase Sección 7.3) hicieron posible cumplir todos los objetivos planteados. Consideran los resultados globales, tanto *post-hoc* como Borda, en conjunto MOEA/D/RSIM, MOEA/D/RSIM/KLP tienen mejor desempeño que MOEA/D sin método de mejora aplicado. A

pesar de las mejoras importantes obtenidas por los algoritmos propuestos, el algoritmo MOEA/D es competitivo en varios problemas.

De las aportaciones presentadas en esta investigación, se destaca a las siguientes:

- 1. Se diseña el primer método de búsqueda local de mejora basada en conjuntos rugosos para el algoritmo MOEA/D. El estudio de la literatura que soporta la originalidad de la propuesta se presentó en el *International Virtual Workshop on Business Analytics EUREKA 2021*.
- 2. Se desarrolló la estrategia de mejora RSIM implementada en el algoritmo MOEA/D/RSIM.
- 3. Se desarrollaron las versiones mejoradas MOEA/D/RSIM⁺ y MOEA/D/RSIM/KLP como alternativas para mejorar los resultados obtenidos con MOEA/D/RSIM.
- 4. Los tres algoritmos anteriores destacan por utilizar una estrategia poco explorada por la comunidad como lo es la teoría de conjuntos aproximados para la intensificación en un MOEA, y por mejorar el desempeño del algoritmo MOEA/D.

8.2 Trabajo futuro

Como trabajos a futuro derivados de la tesis, se identificaron las siguientes rutas:

- 1. Estudiar experimentalmente los límites del método RSIM (y sus variantes) en la mejora del desempeño de MOEA/D, incrementando el número máximo de evaluaciones y las dimensiones del problema (objetivos).
- 2. Analizar otras estrategias para el reforzamiento de la búsqueda local que eviten sobrexplotar una misma región añadiendo diversidad. Por ejemplo, para la construcción de intervalos incorporar más soluciones buenas, además del padre y los hijos; y para la generación de la nueva solución considerar los intervalos construidos y los hijos.
- 3. Desarrollar métodos de sintonización autoadaptiva de parámetros y estudiar experimentalmente el efecto en el desempeño causado por esta sintonización, tanto de RSIM (el tamaño de vecinos que RSIM genera en la búsqueda local) como del algoritmo en el que está incorporado.
- 4. Estudiar experimentalmente la integración del método RSIM (y sus variantes) en otras estrategias metaheurísticas (algoritmos) distintas a MOEA/D.

REFERENCIAS BIBLIOGRÁFICAS

- Aimin Zhou, Yaochu Jin, Qingfu Zhang, Sendhoff, B., & Tsang, E. (n.d.). Combining Model-based and Genetics-based Offspring Generation for Multi-objective Optimization Using a Convergence Criterion. 2006 IEEE International Conference on Evolutionary Computation. doi:10.1109/cec.2006.1688406
- Audet, C., Bigeon, J., Cartier, D., Le Digabel, S., & Salomon, L. (2020). Performance indicators in multiobjective optimization. European Journal of Operational Research. doi:10.1016/j.ejor.2020.11.016
- Bechikh S., Elarbi M., Ben Said L. (2017) Many-objective Optimization Using Evolutionary Algorithms: A Survey. In: Bechikh S., Datta R., Gupta A. (eds) Recent Advances in Evolutionary Multi-objective Optimization. Adaptation, Learning, and Optimization, vol 20. Springer, Cham. <u>https://doi.org/10.1007/978-3-319-42978-6_4</u>
- Bezerra, L. C. T., López-Ibáñez, M., & Stützle, T. (2017). An Empirical Assessment of the Properties of Inverted Generational Distance on Multi- and Many-Objective Optimization. En H. Trautmann, G. Rudolph, K. Klamroth, O. Schütze, M. Wiecek, Y. Jin, & C. Grimme (Eds.), *Evolutionary Multi-Criterion Optimization* (Vol. 10173, pp. 31-45). Springer International Publishing. <u>https://doi.org/10.1007/978-3-319-54157-0_3</u>
- Blot, A., Kessaci, M.-É. y Jourdan, L. (2018) "Survey and unification of local search techniques in metaheuristics for multi-objective combinatorial optimisation", Journal of Heuristics, 24(6), pp. 853-877. doi:10.1007/s10732-018-9381-1.
- Chen, W. M., Hwang, H. K., & Tsai, T. H. (2012). Maxima-finding algorithms for multidimensional samples: A twophase approach. Computational Geometry, 45(1-2), 33-53.
- Coello, C., Lamont, G. y Van Veldhuizen, D. (2007) Evolutionary Algorithms for Solving Multi-Objective Problems. Boston, MA: Springer US (Genetic and Evolutionary Computation Series). doi:10.1007/978-0-387-36797-2.
- Dai, H. K., & Zhang, X. W. (2004, April). Improved linear expected-time algorithms for computing maxima. In Latin American Symposium on Theoretical Informatics (pp. 181-192). Springer, Berlin, Heidelberg.
- Deb, K., Thiele, L., Laumanns, M. y Zitzler, E. (2005) "Scalable Test Problems for Evolutionary Multiobjective Optimization", en Abraham, A., Jain, L., y Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. London: Springer-Verlag (Advanced Information and Knowledge Processing), pp. 105-145. doi:10.1007/1-84628-137-7_6.
- Elsawy, A. A., Hussein, M. A., Zaki, E.-S. M. y Mousa, A. A. A. (2014) "Local Search-Inspired Rough Sets for Improving Multiobjective Evolutionary Algorithm", Applied Mathematics. Scientific Research Publishing, 2014. doi:10.4236/am.2014.513192.
- Fernandez, E., Rangel-Valdez, N., Cruz-Reyes, L., Gomez-Santillán, C.G., Coello-Coello, C.A. (2021). Preference Incorporation into MOEA/D using an Outranking approach with imprecise model parameters. SWEVO. En evaluación.
- Greco, S., Matarazzo, B. y Slowinski, R. (2001) "Rough sets theory for multicriteria decision analysis", European Journal of Operational Research, 129(1), pp. 1-47. doi:10.1016/S0377-2217(00)00167-3.
- Hassanien, A. E., Rizk-Allah, R. M. y Elhoseny, M. (2018) "A hybrid crow search algorithm based on rough searching scheme for solving engineering optimization problems", Journal of Ambient Intelligence and Humanized Computing. doi:10.1007/s12652-018-0924-y
- Hernández-Díaz, A. G., Santana-Quintero, L. V., Coello, C. A. C., Caballero, R., & Molina, J. (2008a). Rough Sets Theory for Multi-Objective Optimization Problems. En C. Cotta, S. Reich, R. Schaefer, & A. Ligęza (Eds.), Knowledge-Driven Computing: Knowledge Engineering and Intelligent Computations (pp. 81-98). Springer. <u>https://doi.org/10.1007/978-3-540-77475-4_6</u>
- Kung, H. T., Luccio, F., & Preparata, F. P. (1975). On Finding the Maxima of a Set of Vectors. *Journal of the ACM*, 22(4), 469-476. <u>https://doi.org/10.1145/321906.321910</u>
- Li, K. (2019) "Progressive Preference Learning: Proof-of-Principle Results in MOEA/D", en Deb, K., Goodman, E., Coello Coello, C. A., Klamroth, K., Miettinen, K., Mostaghim, S., y Reed, P. (eds.) Evolutionary Multi-Criterion

Optimization. Cham: Springer International Publishing (Lecture Notes in Computer Science), pp. 631-643. doi:10.1007/978-3-030-12598-1 50.

- Li, L., Chen, H., Li, J., Jing, N. y Emmerich, M. (2018) "Integrating region preferences in multiobjective evolutionary algorithms based on decomposition", en 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI). 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI), pp. 379-384. doi:10.1109/ICACI.2018.8377488.
- Ma, X., Liu, F., Qi, Y., Li, L., Jiao, L., Deng, X., Wang, X., Dong, B., Hou, Z., Zhang, Y. y Wu, J. (2016) "MOEA/D with biased weight adjustment inspired by user preference and its application on multi-objective reservoir flood control problem", Soft Computing, 20(12), pp. 4999-5023. doi:10.1007/s00500-015-1789-z.
- Manoatl Lopez, E. (2013). Un Algoritmo Evolutivo Multiobjetivo basado en Hipervolumen en GPUs [Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Zacatenco]. https://www.cs.cinvestav.mx/tesisgraduados/2014/resumenEdgarManoatl.html
- Muñoz, A. D., Fernández, J. J. P. y Carrillo, M. G. (2010) Metaheurísticas. Universidad Rey Juan Carlos, Servicio de Publicaciones.
- Pawlak, Z. y Skowron, A. (2007) "Rudiments of rough sets", Information Sciences, 177(1), pp. 3-27. doi:10.1016/j.ins.2006.06.003.
- Pilat, M. y Neruda, R. (2015) "Incorporating User Preferences in MOEA/D through the Coevolution of Weights", en Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation. New York, NY, USA: Association for Computing Machinery (GECCO '15), pp. 727-734. doi:10.1145/2739480.2754801.
- Qi, Y., Li, X., Yu, J. y Miao, Q. (2019) "User-preference based decomposition in MOEA/D without using an ideal point", Swarm and Evolutionary Computation, 44, pp. 597-611. doi:10.1016/j.swevo.2018.08.002.
- Rodríguez-Fdez, I., Canosa A., Mucientes M., Bugarín A., STAC: a web platform for the comparison of algorithms using statistical tests, in: Proceedings of the 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2015. https://tec.citius.usc.es/stac/index.html (Accedida en Mayo 2 2022)
- Santana-Quintero, L. V., Ramírez-Santiago, N., Coello, C. A. C., Luque, J. M. y Hernández-Díaz, A. G. (2006) "A New Proposal for Multiobjective Optimization Using Particle Swarm Optimization and Rough Sets Theory", en Runarsson, T. P., Beyer, H.-G., Burke, E., Merelo-Guervós, J. J., Whitley, L. D., y Yao, X. (eds.) Parallel Problem Solving from Nature - PPSN IX. Berlin, Heidelberg: Springer (Lecture Notes in Computer Science), pp. 483-492. doi:10.1007/11844297 49.
- Santana-Quintero, L., Coello, C. y Hernández-Díaz, A. (2008b) "Hybridizing surrogate techniques, rough sets and evolutionary algorithms to efficiently solve multi-objective optimization problems", en, pp. 763-764. doi:10.1145/1389095.1389244.
- Santana-Quintero, L. y Coello, C. (2008c) "Accelerating convergence using rough sets theory for multi-objective optimization problems", en, pp. 1799-1802. doi:10.1145/1388969.1388974.
- de Souza, D. E., Goulart, F., Batista, L. S. y Campelo, F. (2017) "A Preference-guided Multiobjective Evolutionary Algorithm based on Decomposition", en XIV Encontro Nacional de Inteligencia Artificial e Computacional. XIV Encontro Nacional de Inteligência Artificial e Computacional, BRA: Sociedade Brasileira de Computação, pp. 37-48. Disponible en: http://publications.aston.ac.uk/id/eprint/40979/ (Accedido: 30 de abril de 2021).
- Talbi, E. G. (2009) Metaheuristics: From Design to Implementation. Wiley (Wiley Series on Parallel and Distributed Computing). Disponible en: https://books.google.com.mx/books?id=SIsa6zi5XV8C.
- Tomczyk, M. K. y Kadziński, M. (2020) "Decomposition-Based Interactive Evolutionary Algorithm for Multiple Objective Optimization", IEEE Transactions on Evolutionary Computation. IEEE Transactions on Evolutionary Computation, 24(2), pp. 320-334. doi:10.1109/TEVC.2019.2915767.
- Trabelsi, K., Sevaux, M., Coussy, P., Rossi, A. y Sörensen, K. (2010) "Metaheuristics", en. Disponible en: https://www.researchgate.net/profile/Kenneth-

- Wu, J., & Azarm, S. (2001). Metrics for Quality Assessment of a Multiobjective Design Optimization Solution Set. Journal of Mechanical Design, 123(1), 18. doi:10.1115/1.1329875
- Zhang, Q. y Li, H. (2007) "MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition", IEEE Transactions on Evolutionary Computation, 11(6), pp. 712-731. doi:10.1109/TEVC.2007.892759.
- Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & da Fonseca, V. G. (2003). Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation, 7(2), 117– 132. doi:10.1109/tevc.2003.810758.

ANEXO A. RESULTADOS DE PRUEBAS ESTADÍSTICAS

Las pruebas estadísticas para las evaluaciones experimentales fueron realizadas con la herramienta *Statistical Test for Algorithms Comparison* (STAC) de Rodríguez-Fernández et al. (2015). Las tablas de este anexo se presentan de la siguiente manera para los indicadores de distancia generacional invertida (IGD), distancia generacional invertida modificada (IGD⁺), dispersión generalizada (Δ^*), *overall spread* (OS), hipervolumen y el indicador de ε aditivo (ε +):

- Resultados de prueba de Friedman de Rangos Alineados y prueba *post-hoc* para 3 objetivos.
- Resultados de prueba de Friedman de Rangos Alineados y prueba *post-hoc* para 5 objetivos.
- Resultados de prueba de Friedman de Rangos Alineados y prueba *post-hoc* para 10 objetivos.
- Resultados de prueba de Friedman de Rangos Alineados y prueba post-hoc globales.
- Análisis de Borda para resultados de 3 objetivos.
- Análisis de Borda para resultados de 5 objetivos.
- Análisis de Borda para resultados de 10 objetivos.
- Análisis de Borda para resultados globales.
A.1. Prueba estadística de Friedman de Rangos Alineados y prueba *post-hoc* para 3 objetivos.

Indicador	Valor	Estadístico	p-value	H_0
IGD	Mediana	3.05096	0.38384	Aceptada
IGD^+	Mediana	6.33670	0.09633	Aceptada
Δ^*	Mediana	4.11654	0.24915	Aceptada
OS	Mediana	4.11654	0.24915	Aceptada
Hipervolumen	Mediana	5.98801	0.11219	Aceptada
ε (+)	Mediana	4.51420	0.21103	Aceptada

Tabla A.1.1. Resultados de prueba de Friedman de Rangos Alineados para 3 objetivos con significancia de 0.05.

Tabla A.1.2. Ranking de prueba Friedman de Rangos Alineados para 3 objetivos.

		IGD		IGD ⁺		Δ^*		OS	Hipe	rvolumen		ε (+)
#	Rank	Algoritmo	Rank	Algoritmo	Rank	Algoritmo	Rank	Algoritmo	Rank	Algoritmo	Rank	Algoritmo
1	11.14	RSIM/KLP	9.93	RSIM/KLP	10.86	RSIM/KLP	10.86	RSIM/KLP	10.29	RSIM ⁺	9.93	RSIM
2	12.43	$RSIM^+$	11.50	RSIM ⁺	11.86	$RSIM^+$	11.86	RSIM ⁺	11.14	RSIM/KLP	12.21	MOEA/D
3	15.93	MOEA/D	16.07	MOEA/D	16.21	MOEA/D	16.21	MOEA/D	16.21	MOEA/D	17.36	RSIM/KLP
4	18.50	RSIM	20.50	RSIM	19.07	RSIM	19.07	RSIM	20.36	RSIM	18.50	$RSIM^+$

Tabla A.1.3. Resultados para 3 objetivos de prueba post-hoc Holm con algoritmo de control.

Indicador	Algoritmo de control	Comparación	Estadístico	<i>p-value</i> ajustado	H_0
		RSIM vs. RSIM/KLP	1.67323	0.28285	Aceptada
	MOEA/D/RSIM	RSIM vs. RSIM ⁺	1.38082	0.33467	Aceptada
		RSIM vs. MOEA/D	0.58482	0.55867	Aceptada
		RSIM ⁺ vs. RSIM	1.38082	0.50200	Aceptada
	MOEA/D/RSIM ⁺	RSIM ⁺ vs. MOEA/D	0.79600	0.85206	Aceptada
		RSIM ⁺ vs. RSIM/KLP	0.29241	0.85206	Aceptada
IGD		RSIM/KLP vs. RSIM	1.67323	0.28285	Aceptada
	MOEA/D/RSIM/KLP	RSIM/KLP vs. MOEA/D	1.08841	0.55283	Aceptada
		RSIM/KLP vs. RSIM ⁺	0.29241	0.76997	Aceptada
		MOEA/D vs. RSIM/KLP	1.08841	0.82924	Aceptada
	MOEA/D	MOEA/D vs. RSIM ⁺	0.79600	0.85206	Aceptada
		MOEA/D vs. RSIM	0.58482	0.85206	Aceptada
		RSIM vs. RSIM/KLP	2.40425	0.04862	Rechazada
	MOEA/D/RSIM	RSIM vs. RSIM ⁺	2.04686	0.08134	Aceptada
		RSIM vs. MOEA/D	1.00719	0.31384	Aceptada
		RSIM ⁺ vs. RSIM	2.04686	0.12201	Aceptada
	MOEA/D/RSIM ⁺	RSIM ⁺ vs. MOEA/D	1.03968	0.59698	Aceptada
		RSIM ⁺ vs. RSIM/KLP	0.35739	0.72080	Aceptada
IGD^+		RSIM/KLP vs. RSIM	2.40425	0.04862	Rechazada
	MOEA/D/RSIM/KLP	RSIM/KLP vs. MOEA/D	1.39707	0.32479	Aceptada
		RSIM/KLP vs. RSIM ⁺	0.35739	0.72080	Aceptada
		MOEA/D vs. RSIM/KLP	1.39707	0.48718	Rechazada
	MOEA/D	MOEA/D vs. RSIM ⁺	1.03968	0.59698	Aceptada
		MOEA/D vs. RSIM	1.00719	0.59698	Aceptada
		RSIM vs. RSIM/KLP	1.86817	0.18522	Aceptada
Δ^*	MOEA/D/RSIM	RSIM vs. RSIM ⁺	1.64074	0.20170	Aceptada
		RSIM vs. MOEA/D	0.64980	0.51582	Aceptada

		RSIM ⁺ vs. RSIM	1.64074	0.30255	Aceptada
	MOEA/D/RSIM ⁺	RSIM ⁺ vs MOEA/D	0.99094	0.64343	Aceptada
		RSIM ⁺ vs. RSIM/KLP	0.22743	0.82009	Aceptada
Δ^*		RSIM/KLP vs. RSIM	1.86817	0.18522	Aceptada
	MOEA/D/RSIM/KLP	RSIM/KLP vs MOEA/D	1.21837	0.44617	Aceptada
		RSIM/KLP vs. RSIM ⁺	0.22743	0.82009	Aceptada
		MOEA/D vs. RSIM/KLP	1.21837	0.66925	Aceptada
	MOEA/D	MOEA/D vs. RSIM ⁺	0.99094	0.66925	Aceptada
		MOEA/D vs. RSIM	0.64980	0.66925	Aceptada
		RSIM vs. RSIM/KLP	1.86817	0.18522	Aceptada
	MOEA/D/RSIM	RSIM vs. RSIM ⁺	1.64074	0.20170	Aceptada
		RSIM vs. MOEA/D	0.6498	0.51582	Aceptada
		RSIM ⁺ vs. RSIM	1.64074	0.30255	Aceptada
	MOEA/D/RSIM ⁺	RSIM ⁺ vs. MOEA/D	0.99094	0.64343	Aceptada
		RSIM ⁺ vs. RSIM/KLP	0.22743	0.82009	Aceptada
OS		RSIM/KLP vs. RSIM	1.86817	0.18522	Aceptada
	MOEA/D/RSIM/KLP	RSIM/KLP vs. MOEA/D	1.21837	0.44617	Aceptada
		RSIM/KLP vs. RSIM ⁺	0.22743	0.82009	Aceptada
		MOEA/D vs. RSIM/KLP	1.21837	0.66925	Aceptada
	MOEA/D	MOEA/D vs. RSIM ⁺	0.99094	0.66925	Aceptada
		MOEA/D vs. RSIM	0.6498	0.66925	Aceptada
		RSIM vs. RSIM ⁺	2.29054	0.06597	Aceptada
	MOEA/D/RSIM	RSIM vs. RSIM/KLP	2.0956	0.07224	Aceptada
		RSIM vs. MOEA/D	0.94221	0.34609	Aceptada
		RSIM ⁺ vs. RSIM	2.29054	0.06597	Aceptada
	MOEA/D/RSIM ⁺	RSIM ⁺ vs. MOEA/D	1.34833	0.35510	Aceptada
		RSIM ⁺ vs. RSIM/KLP	0.19494	0.84544	Aceptada
Hipervolumen		RSIM/KLP vs. RSIM	2.0956	0.10835	Aceptada
	MOEA/D/RSIM/KLP	RSIM/KLP vs. MOEA/D	1.15339	0.49750	Aceptada
		RSIM/KLP vs. RSIM ⁺	0.19494	0.84544	Aceptada
		MOEA/D vs. RSIM ⁺	1.34833	0.53266	Aceptada
	MOEA/D	MOEA/D vs. RSIM/KLP	0.15339	0.53266	Aceptada
		MOEA/D vs. RSIM	0.94221	0.53266	Aceptada
		RSIM vs. RSIM ⁺	1.94939	0.15374	Aceptada
	MOEA/D/RSIM	RSIM vs. RSIM/KLP	1.68948	0.18226	Aceptada
		RSIM vs. MOEA/D	0.51984	0.60318	Aceptada
		RSIM ⁺ vs. RSIM	1.94939	0.15374	Aceptada
	MOEA/D/RSIM ⁺	RSIM ⁺ vs. MOEA/D	1.42956	0.30569	Aceptada
		RSIM ⁺ vs. RSIM/KLP	0.25992	0.79493	Aceptada
ϵ (+)		RSIM/KLP vs. RSIM	1.68948	0.27338	Aceptada
	MOEA/D/RSIM/KLP	RSIM/KLP vs. MOEA/D	1.16964	0.48429	Aceptada
		RSIM/KLP vs. RSIM ⁺	0.25992	0.79493	Aceptada
		MOEA/D vs. RSIM ⁺	1.42956	0.45853	Aceptada
	MOEA/D	MOEA/D vs. RSIM/KLP	1.16964	0.48429	Aceptada
		MOEA/D vs. RSIM	0.51984	0.60318	Aceptada

Indicador	Comparación	Estadístico	<i>p-value</i> ajustado	H_0
	RSIM vs. RSIM/KLP	1.67323	0.56569	Aceptada
	RSIM vs. RSIM ⁺	1.38082	0.83667	Aceptada
	RSIM/KLP vs. MOEA/D	1.08841	1.00000	Aceptada
IGD	RSIM ⁺ vs. MOEA/D	0.79600	1.00000	Aceptada
	RSIM vs. MOEA/D	0.58482	1.00000	Aceptada
	RSIM/KLP vs RSIM ⁺	0.29241	1.00000	Aceptada
	RSIM vs. RSIM/KLP	2.40425	0.09723	Aceptada
	RSIM vs. RSIM ⁺	2.04686	0.20336	Aceptada
	RSIM/KLP vs. MOEA/D	1.39707	0.64957	Aceptada
IGD^+	RSIM ⁺ vs. MOEA/D	1.03968	0.89547	Aceptada
	RSIM vs. MOEA/D	1.00719	0.89547	Aceptada
	RSIM/KLP vs. RSIM ⁺	0.35739	0.89547	Aceptada
	RSIM vs. RSIM/KLP	1.86817	0.37043	Aceptada
	RSIM vs. RSIM ⁺	1.64074	0.50426	Aceptada
	RSIM/KLP vs. MOEA/D	1.21837	0.89233	Aceptada
Δ^*	RSIM ⁺ vs. MOEA/D	0.99094	0.96514	Aceptada
	RSIM vs. MOEA/D	0.64980	1.00000	Aceptada
	RSIM/KLP vs. RSIM ⁺	0.22743	1.00000	Aceptada
	RSIM vs. RSIM/KLP	1.86817	0.37043	Aceptada
	RSIM vs. RSIM ⁺	1.64074	0.50426	Aceptada
	RSIM/KLP vs. MOEA/D	1.21837	0.89233	Aceptada
OS	RSIM ⁺ vs. MOEA/D	0.99094	0.96514	Aceptada
	RSIM vs. MOEA/D	0.64980	1.00000	Aceptada
	RSIM/KLP vs. RSIM ⁺	0.22743	1.00000	Aceptada
	RSIM vs. RSIM ⁺	2.29054	0.13194	Aceptada
	RSIM vs. RSIM/KLP	2.09560	0.18059	Aceptada
	RSIM ⁺ vs. MOEA/D	1.34833	0.71021	Aceptada
Hipervolumen	RSIM/KLP vs. MOEA/D	1.15339	0.74625	Aceptada
	RSIM vs. MOEA/D	0.94221	0.74625	Aceptada
	RSIM/KLP vs. RSIM ⁺	0.19494	0.84544	Aceptada
	RSIM vs. RSIM ⁺	1.94939	0.30749	Aceptada
	RSIM vs. RSIM/KLP	1.68948	0.45564	Aceptada
	RSIM ⁺ vs. MOEA/D	1.42956	0.61138	Aceptada
ε (+)	RSIM/KLP vs. MOEA/D	1.16964	0.72644	Aceptada
	RSIM vs. MOEA/D	0.51984	1.00000	Aceptada
	RSIM/KLP vs. RSIM ⁺	0.25992	1.00000	Aceptada

Tabla A.1.4. Resultados para 3 objetivos de prueba *post-hoc* Holm sin algoritmo de control.

A.2. Prueba estadística de Friedman de Rangos Alineados y prueba *post-hoc* para 5 objetivos.

Indicador	Valor	Estadístico	p-value	H_0
IGD	Mediana	1.79786	0.61540	Aceptada
IGD^+	Mediana	5.00310	0.17157	Aceptada
Δ^*	Mediana	1.92336	0.58846	Aceptada
OS	Mediana	10.20978	0.01686	Rechazada
Hipervolumen	Mediana	7.29156	0.06316	Aceptada
ε (+)	Mediana	8.09310	0.04413	Rechazada

Tabla A.2.1. Resultados de prueba de Friedman de Rangos Alineados para 5 objetivos con significancia de 0.05.

Tabla A.2.2. Ranking de prueba Friedman de Rangos Alineados para 5 objetivos.

	_	IGD		IGD ⁺		Δ^*		OS	Hip	ervolumen		ε (+)
#	Rank	Algoritmo	Rank	Algoritmo	Rank	Algoritmo	Rank	Algoritmo	Rank	Algoritmo	Rank	Algoritmo
1	11.29	RSIM/KLP	9.57	RSIM/KLP	10.86	RSIM/KLP	5.93	RSIM	9.86	RSIM/KLP	8.5	RSIM
2	13.86	RSIM	13.00	RSIM ⁺	13.86	RSIM	17.21	RSIM/KLP	11.14	RSIM ⁺	10.79	MOEA/D
3	15.00	$RSIM^+$	15.14	MOEA/D	16.57	$RSIM^+$	17.36	$RSIM^+$	15.29	MOEA/D	19.36	RSIM/KLP
4	17.86	MOEA/D	20.29	RSIM	16.71	MOEA/D	17.50	MOEA/D	21.72	RSIM	19.36	$RSIM^+$

Tabla A.2.3. Resultados para 5 objetivos de prueba post-hoc Holm con algoritmo de control.

Indicador	Algoritmo de control	Comparación	Estadístico	<i>p-value</i> ajustado	H_0
		RSIM vs. MOEA/D	0.90972	1.00000	Aceptada
	MOEA/D/RSIM	RSIM vs. RSIM/KLP	0.58482	1.00000	Aceptada
		RSIM vs. RSIM ⁺	0.25992	1.00000	Aceptada
		RSIM ⁺ vs. RSIM/KLP	0.84474	1.00000	Aceptada
	MOEA/D/RSIM ⁺	RSIM ⁺ vs. MOEA/D	0.64980	1.00000	Aceptada
		RSIM ⁺ vs. RSIM	0.25992	1.00000	Aceptada
IGD		RSIM/KLP vs. MOEA/D	1.49454	0.40511	Aceptada
	MOEA/D/RSIM/KLP	RSIM/KLP vs. RSIM ⁺	0.84474	0.79651	Aceptada
		RSIM/KLP vs. RSIM	0.58482	0.79651	Aceptada
		MOEA/D vs. RSIM/KLP	1.49454	0.40511	Aceptada
	MOEA/D	MOEA/D vs. RSIM	0.90972	0.72594	Aceptada
		MOEA/D vs. RSIM ⁺	0.64980	0.72594	Aceptada
		RSIM vs. RSIM/KLP	2.43674	0.04446	Rechazada
	MOEA/D/RSIM	RSIM vs. RSIM ⁺	1.65699	0.19504	Aceptada
		RSIM vs. MOEA/D	1.16964	0.24215	Aceptada
		RSIM ⁺ vs. RSIM	1.65699	0.29257	Aceptada
	MOEA/D/RSIM ⁺	RSIM ⁺ vs. RSIM/KLP	0.77976	0.87107	Aceptada
		RSIM ⁺ vs. MOEA/D	0.48735	0.87107	Aceptada
IGD^+		RSIM/KLP vs. RSIM	2.43674	0.04446	Rechazada
	MOEA/D/RSIM/KLP	RSIM/KLP vs. MOEA/D	1.26711	0.41023	Aceptada
		RSIM/KLP vs. RSIM ⁺	0.77976	0.43553	Aceptada
		MOEA/D vs. RSIM/KLP	1.26711	0.61535	Aceptada
	MOEA/D	MOEA/D vs. RSIM	1.16964	0.61535	Aceptada
		MOEA/D vs. RSIM ⁺	0.48735	0.62601	Aceptada
		RSIM vs. RSIM/KLP	0.68229	1.00000	Aceptada
Δ^*	MOEA/D/RSIM	RSIM vs. MOEA/D	0.64980	1.00000	Aceptada
		RSIM vs. RSIM ⁺	0.61731	1.00000	Aceptada

		RSIM ⁺ vs. RSIM/KLP	1.29960	0.58122	Aceptada
	MOEA/D/RSIM ⁺	RSIM ⁺ vs. RSIM	0.61731	1.00000	Aceptada
		RSIM ⁺ vs. MOEA/D	0.03249	1.00000	Aceptada
Δ^*		RSIM/KLP vs. MOEA/D	1.33209	0.54850	Aceptada
	MOEA/D/RSIM/KLP	RSIM/KLP vs. RSIM ⁺	1.29960	0.54850	Aceptada
		RSIM/KLP vs. RSIM	0.68229	0.54850	Aceptada
		MOEA/D vs. RSIM/KLP	1.33209	0.54850	Aceptada
	MOEA/D	MOEA/D vs. RSIM	0.64980	1.00000	Aceptada
		MOEA/D vs. RSIM ⁺	0.03249	1.00000	Aceptada
		RSIM vs. MOEA/D	2.63168	0.02549	Rechazada
	MOEA/D/RSIM	RSIM vs. RSIM ⁺	2.59919	0.02549	Rechazada
		RSIM vs. RSIM/KLP	2.56670	0.02549	Rechazada
		RSIM ⁺ vs. RSIM	2.59919	0.02803	Rechazada
	MOEA/D/RSIM ⁺	RSIM ⁺ vs. RSIM/KLP	0.03249	1.00000	Aceptada
		RSIM ⁺ vs. MOEA/D	0.03249	1.00000	Aceptada
OS		RSIM/KLP vs. RSIM	2.56670	0.03080	Rechazada
	MOEA/D/RSIM/KLP	RSIM/KLP vs. MOEA/D	0.06498	1.00000	Aceptada
		RSIM/KLP vs. RSIM ⁺	0.03249	1.00000	Aceptada
		MOEA/D vs. RSIM	2.63168	0.02549	Rechazada
	MOEA/D	MOEA/D vs. RSIM/KLP	0.06498	1.00000	Aceptada
		MOEA/D vs. RSIM ⁺	0.03249	1.00000	Aceptada
		RSIM vs. RSIM/KLP	2.69666	0.02101	Rechazada
	MOEA/D/RSIM	RSIM vs. RSIM ⁺	2.40425	0.03241	Rechazada
		RSIM vs. MOEA/D	1.46205	0.14373	Aceptada
		RSIM ⁺ vs. RSIM	2.40425	0.04862	Rechazada
	MOEA/D/RSIM ⁺	RSIM ⁺ vs. MOEA/D	0.94221	0.69217	Aceptada
		RSIM ⁺ vs. RSIM/KLP	0.29241	0.76997	Aceptada
Hipervolumen		RSIM/KLP vs. RSIM	2.69666	0.02101	Rechazada
	MOEA/D/RSIM/KLP	RSIM/KLP vs. MOEA/D	1.23462	0.43395	Aceptada
		RSIM/KLP vs. RSIM ⁺	0.29241	0.76997	Aceptada
		MOEA/D vs. RSIM	1.46205	0.43119	Aceptada
	MOEA/D	MOEA/D vs. RSIM/KLP	1.23462	0.43395	Aceptada
		MOEA/D vs. RSIM ⁺	0.94221	0.43395	Aceptada
		RSIM vs. RSIM/KLP	2.46923	0.04062	Rechazada
	MOEA/D/RSIM	RSIM vs. RSIM ⁺	2.46923	0.04062	Rechazada
		RSIM vs. MOEA/D	0.51984	0.60318	Aceptada
		RSIM ⁺ vs. RSIM	2.46923	0.04062	Rechazada
	MOEA/D/RSIM ⁺	RSIM ⁺ vs. MOEA/D	1.94939	0.10250	Aceptada
		RSIM ⁺ vs. RSIM/KLP	0.00000	1.00000	Aceptada
ϵ (+)		RSIM/KLP vs. RSIM	2.46923	0.04062	Rechazada
	MOEA/D/RSIM/KLP	RSIM/KLP vs. MOEA/D	1.94939	0.10250	Aceptada
		RSIM/KLP vs. RSIM ⁺	0.00000	1.00000	Aceptada
		MOEA/D vs. RSIM/KLP	1.94939	0.15374	Aceptada
	MOEA/D	MOEA/D vs. RSIM ⁺	1.94939	0.15374	Aceptada
		MOEA/D vs. RSIM	0.51984	0.60318	Aceptada

Indicador	Comparación	Estadístico	<i>p-value</i> ajustado	H_0
	RSIM/KLP vs. MOEA/D	1.49454	0.81021	Aceptada
	RSIM vs. MOEA/D	0.90997	1.00000	Aceptada
	RSIM/KLP vs. RSIM ⁺	0.84474	1.00000	Aceptada
IGD	RSIM ⁺ vs. MOEA/D	0.64980	1.00000	Aceptada
	RSIM vs. RSIM/KLP	0.58482	1.00000	Aceptada
	RSIM vs. RSIM ⁺	0.25992	1.00000	Aceptada
	RSIM vs. RSIM/KLP	2.43674	0.08892	Aceptada
	RSIM vs. RSIM ⁺	1.65699	0.48761	Aceptada
	RSIM/KLP vs. MOEA/D	1.26711	0.82047	Aceptada
IGD^+	RSIM vs. MOEA/D	1.16964	0.82047	Aceptada
	RSIM/KLP vs. RSIM ⁺	0.77976	0.87107	Aceptada
	RSIM ⁺ vs. MOEA/D	0.48735	0.87107	Aceptada
	RSIM/KLP vs. MOEA/D	1.33209	1.00000	Aceptada
	RSIM/KLP vs. RSIM ⁺	1.29960	1.00000	Aceptada
	RSIM vs. RSIM/KLP	0.68229	1.00000	Aceptada
Δ^*	RSIM vs. MOEA/D	0.64980	1.00000	Aceptada
	RSIM vs. RSIM ⁺	0.61731	1.00000	Aceptada
	RSIM ⁺ vs. MOEA/D	0.03249	1.00000	Aceptada
	RSIM vs. MOEA/D	2.63168	0.05098	Aceptada
	RSIM vs. RSIM ⁺	2.59919	0.05098	Aceptada
	RSIM vs. RSIM/KLP	2.56670	0.05098	Aceptada
OS	RSIM/KLP vs. MOEA/D	0.06498	1.00000	Aceptada
	RSIM/KLP vs. RSIM ⁺	0.03249	1.00000	Aceptada
	RSIM ⁺ vs. MOEA/D	0.03249	1.00000	Aceptada
	RSIM vs. RSIM/KLP	2.69666	0.04202	Rechazada
	RSIM vs. RSIM ⁺	2.40425	0.08103	Aceptada
	RSIM vs. MOEA/D	1.46205	0.57491	Aceptada
Hipervolumen	RSIM/KLP vs. MOEA/D	1.23462	0.65092	Aceptada
	RSIM ⁺ vs. MOEA/D	0.94221	0.69217	Aceptada
	RSIM/KLP vs. RSIM ⁺	0.29241	0.76997	Aceptada
	RSIM vs. RSIM/KLP	2.46923	0.08124	Aceptada
	RSIM vs. RSIM ⁺	2.46923	0.08124	Aceptada
	RSIM/KLP vs. MOEA/D	1.94939	0.20499	Aceptada
ε (+)	RSIM ⁺ vs. MOEA/D	1.94939	0.20499	Aceptada
	RSIM vs. MOEA/D	0.51984	1.00000	Aceptada
	RSIM/KLP vs. RSIM ⁺	0.00000	1.00000	Aceptada

Tabla A.2.4. Resultados para 5 objetivos de prueba *post-hoc* Holm sin algoritmo de control.

A.3. Prueba estadística de Friedman de Rangos Alineados y pruebas *post-hoc* para 10 objetivos.

Indicador	Valor	Estadístico	p-value	H_0
IGD	Mediana	7.16288	0.06688	Aceptada
IGD^+	Mediana	6.16332	0.10393	Aceptada
Δ^*	Mediana	6.02576	0.11036	Aceptada
OS	Mediana	0.00000	1.00000	Aceptada
Hipervolumen	Mediana	6.16332	0.10393	Aceptada
ε (+)	Mediana	6.16332	0.10393	Aceptada

Tabla A.3.1. Resultados de prueba de Friedman de Rangos Alineados para 10 objetivos con significancia de 0.05.

Tabla A.3.2. Ranking de prueba Friedman de Rangos Alineados para 10 objetivos.

		IGD		IGD ⁺		Δ^*		OS	Hip	ervolumen		ε (+)
#	Rank	Algoritmo	Rank	Algoritmo	Rank	Algoritmo	Rank	Algoritmo	Rank	Algoritmo	Rank	Algoritmo
1	9.71	RSIM ⁺	10.29	RSIM ⁺	10.29	RSIM ⁺	14.50	RSIM	10.29	RSIM ⁺	8.86	RSIM
2	9.86	RSIM/KLP	10.43	RSIM/KLP	10.43	RSIM/KLP	14.50	RSIM/KLP	10.43	RSIM/KLP	11.86	MOEA/D
3	19.00	MOEA/D	17.14	MOEA/D	17.43	MOEA/D	14.50	$RSIM^+$	17.14	MOEA/D	18.57	RSIM/KLP
4	19.43	RSIM	20.14	RSIM	19.86	RSIM	14.50	MOEA/D	20.14	RSIM	18.71	$RSIM^+$

Tabla A.3.3. Resultados para 10 objetivos de prueba post-hoc Holm con algoritmo de control.

Indicador	Algoritmo de control	Comparación	Estadístico	<i>p-value</i> ajustado	H_0
		RSIM vs. RSIM ⁺	2.20931	0.08146	Aceptada
	MOEA/D/RSIM	RSIM vs. RSIM/KLP	2.17682	0.08146	Aceptada
		RSIM vs. MOEA/D	0.09747	0.92235	Aceptada
		RSIM ⁺ vs. RSIM	2.20931	0.08146	Aceptada
	MOEA/D/RSIM ⁺	RSIM ⁺ vs. MOEA/D	2.11184	0.08146	Aceptada
		RSIM ⁺ vs. RSIM/KLP	0.03249	0.97408	Aceptada
IGD		RSIM/KLP vs. RSIM	2.17682	0.08848	Aceptada
	MOEA/D/RSIM/KLP	RSIM/KLP vs. MOEA/D	2.07935	0.08848	Aceptada
		RSIM/KLP vs. RSIM ⁺	0.03249	0.97408	Aceptada
		MOEA/D vs. RSIM ⁺	2.11184	0.10140	Aceptada
	MOEA/D	MOEA/D vs. RSIM/KLP	2.07935	0.10410	Aceptada
		MOEA/D vs. RSIM	0.09747	0.92235	Aceptada
		RSIM vs. RSIM ⁺	2.24180	0.07492	Aceptada
	MOEA/D/RSIM	RSIM vs. RSIM/KLP	2.20931	0.07492	Aceptada
		RSIM vs. MOEA/D	0.68229	0.49506	Aceptada
		RSIM ⁺ vs. RSIM	2.24180	0.07492	Aceptada
	MOEA/D/RSIM ⁺	RSIM ⁺ vs. MOEA/D	1.55952	0.23775	Aceptada
		RSIM ⁺ vs. RSIM/KLP	0.03249	0.97408	Aceptada
IGD^+		RSIM/KLP vs. RSIM	2.20931	0.08146	Aceptada
	MOEA/D/RSIM/KLP	RSIM/KLP vs. MOEA/D	1.52703	0.25351	Aceptada
		RSIM/KLP vs. RSIM ⁺	0.03249	0.97408	Aceptada
		MOEA/D vs. RSIM ⁺	1.55952	0.35662	Aceptada
	MOEA/D	MOEA/D vs. RSIM/KLP	1.52703	0.35662	Aceptada
		MOEA/D vs. RSIM	0.68229	0.49506	Aceptada
		RSIM vs. RSIM ⁺	2.17682	0.08848	Aceptada
Δ^*	MOEA/D/RSIM	RSIM vs. RSIM/KLP	2.14433	0.08848	Aceptada
		RSIM vs. MOEA/D	0.55233	0.58072	Aceptada

		RSIM ⁺ vs. RSIM	2.17682	0.08848	Aceptada
	MOEA/D/RSIM ⁺	RSIM ⁺ vs. MOEA/D	1.62450	0.20854	Aceptada
		RSIM ⁺ vs. RSIM/KLP	0.03249	0.97408	Aceptada
Δ^*		RSIM/KLP vs. RSIM	2.14433	0.09602	Aceptada
	MOEA/D/RSIM/KLP	RSIM/KLP vs. MOEA/D	1.59201	0.22277	Aceptada
		RSIM/KLP vs. RSIM ⁺	0.03249	0.97408	Aceptada
		MOEA/D vs. RSIM ⁺	1.62450	0.31281	Aceptada
	MOEA/D	MOEA/D vs. RSIM/KLP	1.59201	0.31281	Aceptada
		MOEA/D vs. RSIM	0.55233	0.58072	Aceptada
		RSIM vs. RSIM/KLP	0.00000	1.00000	Aceptada
	MOEA/D/RSIM	RSIM vs. RSIM ⁺	0.00000	1.00000	Aceptada
		RSIM vs. MOEA/D	0.00000	1.00000	Aceptada
		RSIM ⁺ vs. RSIM	0.00000	1.00000	Aceptada
	MOEA/D/RSIM ⁺	RSIM ⁺ vs. RSIM/KLP	0.00000	1.00000	Aceptada
		RSIM ⁺ vs. MOEA/D	0.00000	1.00000	Aceptada
OS		RSIM/KLP vs. RSIM	0.00000	1.00000	Aceptada
	MOEA/D/RSIM/KLP	RSIM/KLP vs. RSIM ⁺	0.00000	1.00000	Aceptada
		RSIM/KLP vs. MOEA/D	0.00000	1.00000	Aceptada
	MOEA/D	MOEA/D vs. RSIM	0.00000	1.00000	Aceptada
		MOEA/D vs. RSIM/KLP	0.00000	1.00000	Aceptada
		MOEA/D vs. RSIM ⁺	0.00000	1.00000	Aceptada
		RSIM vs. RSIM ⁺	2.24180	0.07492	Aceptada
	MOEA/D/RSIM	RSIM vs. RSIM/KLP	2.20931	0.07492	Aceptada
		RSIM vs. MOEA/D	0.68229	0.49506	Aceptada
		RSIM ⁺ vs. RSIM	2.24180	0.07492	Aceptada
	MOEA/D/RSIM ⁺	RSIM ⁺ vs. MOEA/D	1.55952	0.23775	Aceptada
		RSIM ⁺ vs. RSIM/KLP	0.03249	0.97408	Aceptada
Hipervolumen		RSIM/KLP vs. RSIM	2.20931	0.08146	Aceptada
	MOEA/D/RSIM/KLP	RSIM/KLP vs. MOEA/D	1.52703	0.25351	Aceptada
		RSIM/KLP vs. RSIM ⁺	0.03249	0.97408	Aceptada
		MOEA/D vs. RSIM ⁺	1.55952	0.35662	Aceptada
	MOEA/D	MOEA/D vs. RSIM/KLP	1.52703	0.35662	Aceptada
		MOEA/D vs. RSIM	0.68229	0.49506	Aceptada
		RSIM vs. RSIM ⁺	2.24180	0.07492	Aceptada
	MOEA/D/RSIM	RSIM vs. RSIM/KLP	2.20931	0.07492	Aceptada
		RSIM vs. MOEA/D	0.68229	0.07492	Aceptada
		RSIM ⁺ vs. RSIM	2.24180	0.07492	Aceptada
	MOEA/D/RSIM ⁺	RSIM ⁺ vs. MOEA/D	1.55952	0.23775	Aceptada
		RSIM ⁺ vs. RSIM/KLP	0.03249	0.97408	Aceptada
ϵ (+)		RSIM/KLP vs. RSIM	2.20931	0.08146	Aceptada
	MOEA/D/RSIM/KLP	RSIM/KLP vs. MOEA/D	1.52703	0.25351	Aceptada
		RSIM/KLP vs. RSIM ⁺	0.03249	0.97408	Aceptada
		MOEA/D vs. RSIM ⁺	1.55952	0.35662	Aceptada
	MOEA/D	MOEA/D vs. RSIM/KLP	1.52703	0.35662	Aceptada
		MOEA/D vs. RSIM	0.68229	0.49506	Aceptada

Indicador	Comparación	Estadístico	<i>p-value</i> ajustado	H_0
	RSIM vs. RSIM ⁺	2.20931	0.16292	Aceptada
	RSIM vs. RSIM/KLP	2.17682	0.16292	Aceptada
	RSIM ⁺ vs. MOEA/D	2.11184	0.16292	Aceptada
IGD	RSIM/KLP vs. MOEA/D	2.07935	0.16292	Aceptada
	RSIM vs. MOEA/D	0.09747	1.00000	Aceptada
	RSIM/KLP vs. RSIM ⁺	0.03249	1.00000	Aceptada
	RSIM vs. RSIM ⁺	2.24180	0.14984	Aceptada
	RSIM vs. RSIM/KLP	2.20931	0.14984	Aceptada
	RSIM ⁺ vs. MOEA/D	1.55952	0.47550	Aceptada
IGD^+	RSIM/KLP vs. MOEA/D	1.52703	0.47550	Aceptada
	RSIM vs. MOEA/D	0.68229	0.99011	Aceptada
	RSIM/KLP vs. RSIM ⁺	0.03249	0.99011	Aceptada
	RSIM vs. RSIM ⁺	2.17682	0.17696	Aceptada
	RSIM vs. RSIM/KLP	2.14433	0.17696	Aceptada
	RSIM ⁺ vs. MOEA/D	1.62450	0.41708	Aceptada
Δ^*	RSIM/KLP vs. MOEA/D	1.59201	0.41708	Aceptada
	RSIM vs. MOEA/D	0.55233	1.00000	Aceptada
	RSIM/KLP vs. RSIM ⁺	0.03249	1.00000	Aceptada
	RSIM vs. RSIM/KLP	0.00000	1.00000	Aceptada
	RSIM vs. RSIM ⁺	0.00000	1.00000	Aceptada
	RSIM vs. MOEA/D	0.00000	1.00000	Aceptada
OS	RSIM/KLP vs. RSIM ⁺	0.00000	1.00000	Aceptada
	RSIM/KLP vs. MOEA/D	0.00000	1.00000	Aceptada
	RSIM ⁺ vs. MOEA/D	0.00000	1.00000	Aceptada
	RSIM vs. RSIM ⁺	2.24180	0.14984	Aceptada
	RSIM vs. RSIM/KLP	2.20931	0.14984	Aceptada
	RSIM ⁺ vs. MOEA/D	1.55952	0.47550	Aceptada
Hipervolumen	RSIM/KLP vs. MOEA/D	1.52703	0.47550	Aceptada
-	RSIM vs. MOEA/D	0.68229	0.99011	Aceptada
	RSIM/KLP vs. RSIM ⁺	0.03249	0.99011	Aceptada
	RSIM vs. RSIM ⁺	2.24180	0.14984	Aceptada
	RSIM vs. RSIM/KLP	2.20931	0.14984	Aceptada
	RSIM ⁺ vs. MOEA/D	1.55952	0.47550	Aceptada
ε (+)	RSIM/KLP vs. MOEA/D	1.52703	0.47550	Aceptada
	RSIM vs. MOEA/D	0.68229	0.99011	Aceptada
	RSIM/KLP vs. RSIM ⁺	0.03249	0.99011	Aceptada

 Tabla A.3.4. Resultados para 10 objetivos de prueba *post-hoc* Holm sin algoritmo de control.

A.4. Prueba estadística de Friedman de Rangos Alineados y prueba *post-hoc* global

Indicador	Valor	Estadístico	p-value	H_0
IGD	Mediana	8.27808	0.04060	Rechazada
IGD^+	Mediana	17.31695	0.00061	Rechazada
Δ^*	Mediana	8.28369	0.04050	Rechazada
OS	Mediana	11.60542	0.00886	Rechazada
Hipervolumen	Mediana	19.43634	0.00022	Rechazada
ε (+)	Mediana	19.49560	0.00022	Rechazada

Tabla A.4.1. Resultados de prueba de Friedman de Rangos Alineados global con significancia de 0.05.

Tabla A.4.2. Ranking de prueba Friedman de Rangos Alineados global.

	_	IGD]	IGD ⁺		Δ^*		OS	Hiper	volumen		ε (+)
#	Rank	Algoritmo	Rank	Algoritmo	Rank	Algoritmo	Rank	Algoritmo	Rank	Algoritmo	Rank	Algoritmo
1	31.38	RSIM/KLP	28.50	RSIM/KLP	30.71	RSIM/KLP	26.45	RSIM	30.24	RSIM/KLP	26.17	RSIM
2	36.95	$RSIM^+$	34.40	RSIM ⁺	38.52	$RSIM^+$	45.64	$RSIM^+$	30.52	$RSIM^+$	33.40	MOEA/D
3	50.31	RSIM	47.02	MOEA/D	49.40	MOEA/D	48.88	RSIM/KLP	48.02	MOEA/D	54.64	RSIM/KLP
4	51.36	MOEA/D	60.07	RSIM	51.36	RSIM	49.02	MOEA/D	61.21	RSIM	55.79	RSIM ⁺

Tabla A.4.3. Resultados globales de prueba post-hoc Holm con algoritmo de control.

Indicador	Algoritmo de control	Comparación	Estadístico	<i>p-value</i> ajustado	H_0
		RSIM vs. RSIM/KLP	2.51451	0.03576	Rechazada
	MOEA/D/RSIM	RSIM vs. RSIM ⁺	1.77439	0.15200	Aceptada
		RSIM vs. MOEA/D	0.13917	0.88932	Aceptada
		RSIM ⁺ vs. MOEA/D	1.91356	0.16703	Aceptada
	MOEA/D/RSIM ⁺	RSIM ⁺ vs. RSIM	1.77439	0.16703	Aceptada
		RSIM ⁺ vs. RSIM/KLP	0.74012	0.45923	Aceptada
IGD		RSIM/KLP vs. MOEA/D	2.65368	0.02389	Rechazada
	MOEA/D/RSIM/KLP	RSIM/KLP vs. RSIM	2.51451	0.02389	Rechazada
		RSIM/KLP vs. RSIM ⁺	0.74012	0.45923	Aceptada
		MOEA/D vs. RSIM/KLP	2.65368	0.02389	Rechazada
	MOEA/D	MOEA/D vs. RSIM ⁺	1.91356	0.11135	Aceptada
		MOEA/D vs. RSIM	0.13917	0.88932	Aceptada
	MOEA/D/RSIM	RSIM vs. RSIM/KLP	4.19402	0.00008	Rechazada
		RSIM vs. RSIM ⁺	3.40962	0.00130	Rechazada
		RSIM vs. MOEA/D	1.73327	0.08305	Aceptada
	MOEA/D/RSIM ⁺	RSIM ⁺ vs. RSIM	3.40962	0.00195	Rechazada
		RSIM ⁺ vs. MOEA/D	1.67634	0.18734	Aceptada
		RSIM ⁺ vs. RSIM/KLP	0.78440	0.43280	Aceptada
IGD^+		RSIM/KLP vs. RSIM	4.19402	0.00008	Rechazada
	MOEA/D/RSIM/KLP	RSIM/KLP vs. MOEA/D	2.46074	0.02773	Rechazada
		RSIM/KLP vs. RSIM ⁺	0.78440	0.43280	Aceptada
		MOEA/D vs. RSIM/KLP	2.46074	0.04159	Rechazada
	MOEA/D	MOEA/D vs. RSIM	1.73327	0.16609	Aceptada
		MOEA/D vs. RSIM ⁺	1.67634	0.16609	Aceptada
		RSIM vs. RSIM/KLP	2.74224	0.01831	Rechazada
Δ^*	MOEA/D/RSIM	RSIM vs. RSIM ⁺	1.70481	0.17646	Aceptada
		RSIM vs. MOEA/D	0.25936	0.79536	Aceptada

		RSIM ⁺ vs. RSIM	1.70481	0.26469	Aceptada
Δ^*	MOEA/D/RSIM ⁺	RSIM ⁺ vs. MOEA/D	1.44545	0.29666	Aceptada
		RSIM ⁺ vs. RSIM/KLP	1.03743	0.29953	Aceptada
		RSIM/KLP vs. RSIM	2.74224	0.01831	Rechazada
	MOEA/D/RSIM/KLP	RSIM/KLP vs. MOEA/D	2.48288	0.02606	Rechazada
		RSIM/KLP vs. RSIM ⁺	1.03743	0.29953	Aceptada
		MOEA/D vs. RSIM/KLP	2.48288	0.03910	Rechazada
	MOEA/D	MOEA/D vs. RSIM ⁺	1.44545	0.29666	Aceptada
		MOEA/D vs. RSIM	0.25936	0.79536	Aceptada
		RSIM vs. MOEA/D	2.99844	0.00814	Rechazada
	MOEA/D/RSIM	RSIM vs. RSIM/KLP	2.97946	0.00814	Rechazada
		RSIM vs. RSIM ⁺	2.54931	0.01079	Rechazada
		RSIM ⁺ vs. RSIM	2.54931	0.03238	Rechazada
	MOEA/D/RSIM ⁺	RSIM ⁺ vs. MOEA/D	0.44913	1.00000	Aceptada
		RSIM ⁺ vs. RSIM/KLP	0.43016	1.00000	Aceptada
OS		RSIM/KLP vs. RSIM	2.97946	0.00866	Rechazada
	MOEA/D/RSIM/KLP	RSIM/KLP vs. RSIM ⁺	0.43016	1.00000	Aceptada
		RSIM/KLP vs. MOEA/D	0.01898	1.00000	Aceptada
	MOEA/D	MOEA/D vs. RSIM	2.99844	0.00814	Rechazada
		MOEA/D vs. RSIM ⁺	0.44913	1.00000	Aceptada
		MOEA/D vs. RSIM/KLP	0.01898	1.00000	Aceptada
		RSIM vs. RSIM/KLP	4.11495	0.00012	Rechazada
	MOEA/D/RSIM	RSIM vs. RSIM ⁺	4.07699	0.00012	Rechazada
		RSIM vs. MOEA/D	1.75225	0.07973	Aceptada
		RSIM ⁺ vs. RSIM	4.07699	0.00014	Rechazada
	MOEA/D/RSIM ⁺	RSIM ⁺ vs. MOEA/D	2.32474	0.04017	Rechazada
		RSIM ⁺ vs. RSIM/KLP	0.03795	0.96972	Aceptada
Hipervolumen		RSIM/KLP vs. RSIM	4.11495	0.00012	Rechazada
	MOEA/D/RSIM/KLP	RSIM/KLP vs. MOEA/D	2.36269	0.03629	Rechazada
		RSIM/KLP vs. RSIM ⁺	0.03795	0.96972	Aceptada
		MOEA/D vs. RSIM/KLP	2.36269	0.05443	Aceptada
	MOEA/D	MOEA/D vs. RSIM ⁺	2.32474	0.05443	Aceptada
		MOEA/D vs. RSIM	1.75225	0.07973	Aceptada
		RSIM vs. RSIM ⁺	3.93466	0.00025	Rechazada
	MOEA/D/RSIM	RSIM vs. RSIM/KLP	3.78284	0.00031	Rechazada
		RSIM vs. MOEA/D	0.96152	0.33629	Aceptada
		RSIM ⁺ vs. RSIM	3.93466	0.00025	Rechazada
	MOEA/D/RSIM ⁺	RSIM ⁺ vs. MOEA/D	2.97314	0.00590	Rechazada
		RSIM ⁺ vs. RSIM/KLP	0.15182	0.87933	Aceptada
ε (+)		RSIM/KLP vs. RSIM	3.78284	0.00047	Rechazada
	MOEA/D/RSIM/KLP	RSIM/KLP vs. MOEA/D	2.82132	0.00957	Rechazada
		RSIM/KLP vs. RSIM ⁺	0.15182	0.87933	Aceptada
		MOEA/D vs. RSIM ⁺	2.97314	0.00884	Rechazada
	MOEA/D	MOEA/D vs. RSIM/KLP	2.82132	0.00957	Rechazada
		MOEA/D vs. RSIM	0.96152	0.33629	Aceptada

Indicador	Comparación	Estadístico	<i>p-value</i> ajustado	H_0
	RSIM/KLP vs. MOEA/D	2.65368	0.04777	Rechazada
	RSIM vs. RSIM/KLP	2.51451	0.05960	Aceptada
	RSIM ⁺ vs. MOEA/D	1.91356	0.22271	Aceptada
IGD	RSIM vs. RSIM ⁺	1.77439	0.91845	Aceptada
	RSIM/KLP vs. RSIM ⁺	0.74012	0.91845	Aceptada
	RSIM vs. MOEA/D	0.13917	0.91845	Aceptada
	RSIM vs. RSIM/KLP	4.19402	0.00016	Rechazada
	RSIM vs. RSIM ⁺	3.40962	0.00325	Rechazada
	RSIM/KLP vs. MOEA/D	2.46074	0.05546	Aceptada
IGD^+	RSIM vs. MOEA/D	1.73327	0.24914	Aceptada
	RSIM ⁺ vs. MOEA/D	1.67634	0.24914	Aceptada
	RSIM/KLP vs. RSIM ⁺	0.78440	0.43280	Aceptada
	RSIM vs. RSIM/KLP	2.74224	0.03661	Rechazada
	RSIM/KLP vs. MOEA/D	2.48288	0.06516	Aceptada
	RSIM vs. RSIM ⁺	1.70481	0.35292	Aceptada
Δ^*	RSIM ⁺ vs. MOEA/D	1.44545	0.44499	Aceptada
	RSIM/KLP vs. RSIM ⁺	1.03743	0.59907	Aceptada
	RSIM vs. MOEA/D	0.25936	0.79536	Aceptada
	RSIM vs. MOEA/D	2.99844	0.01628	Rechazada
	RSIM vs. RSIM/KLP	2.97946	0.01628	Rechazada
	RSIM vs. RSIM ⁺	2.54931	0.04318	Rechazada
OS	RSIM ⁺ vs. MOEA/D	0.44913	1.00000	Aceptada
	RSIM/KLP vs. RSIM ⁺	0.43016	1.00000	Aceptada
	RSIM/KLP vs. MOEA/D	0.01898	1.00000	Aceptada
	RSIM vs. RSIM/KLP	4.11495	0.00023	Rechazada
	RSIM vs. RSIM ⁺	4.07699	0.00023	Rechazada
	RSIM/KLP vs. MOEA/D	2.36269	0.07257	Aceptada
Hipervolumen	RSIM ⁺ vs. MOEA/D	2.32474	0.07257	Aceptada
-	RSIM vs. MOEA/D	1.75225	0.15946	Aceptada
	RSIM/KLP vs. RSIM ⁺	0.03795	0.96972	Aceptada
	RSIM vs. RSIM ⁺	3.93466	0.00050	Rechazada
	RSIM vs. RSIM/KLP	3.78284	0.00078	Rechazada
	RSIM ⁺ vs. MOEA/D	2.97314	0.01179	Rechazada
ε (+) 3	RSIM/KLP vs. MOEA/D	2.82132	0.01435	Rechazada
	RSIM vs. MOEA/D	0.96152	0.67258	Aceptada
	RSIM/KLP vs. RSIM ⁺	0.15182	0.87933	Aceptada

 Tabla A.4.4. Resultados globales de prueba post-hoc Holm sin algoritmo de control.

A.5. Análisis de Borda para resultados de 3 objetivos*.

El análisis de Borda aplicado se basa en los resultados de las pruebas *post-hoc* realizadas, considerando el *ranking* obtenido en la prueba estadística y encontrando las comparaciones sin diferencias significativas entre algoritmos, asignándolos a un *ranking* final con posicionamiento de acuerdo a las diferencias encontradas. Para el cálculo de Borda se consideran los 6 indicadores utilizados en su conjunto, en donde a cada algoritmo se le asigna una posición de 1 a *n* algoritmos obteniendo un valor igual a la posición dada. En caso de haber varios algoritmos en un mismo nivel, se les asigna el promedio de las posiciones que ocuparían entre todos. Finalmente se suman los valores de las posiciones donde se encuentra cada algoritmo y se obtiene el conteo final y el *ranking* de los algoritmos de acuerdo al análisis de Borda.

Mótrico	Ranking	Post Hoc no paramétrica (sin	Ranking	Docición
Metrica	Original	diferencias significativas)	final	I OSICIOII
	С	C, B, D, A	C, B, D, A	(2.5)
	В	C, B, D, A		(2.5)
IGD	D	C, B, D, A		(2.5)
	А	C, B, D, A		(2.5)
	С	C, B, D, A	C, B, D, A	(2.5)
	В	C, B, D, A		(2.5)
IGD+	D	C, B, D, A		(2.5)
	А	C, B, D, A		(2.5)
	С	C, B, D, A	C, B, D, A	(2.5)
	В	C, B, D, A		(2.5)
Δ^*	D	C, B, D, A		(2.5)
	А	C, B, D, A		(2.5)
	С	C, B, D, A	C, B, D, A	(2.5)
	В	C, B, D, A		(2.5)
OS	D	C, B, D, A		(2.5)
	А	C, B, D, A		(2.5)
	В	B, C, D, A	B, C, D, A	(2.5)
	С	B, C, D, A		(2.5)
Hipervolumen	D	B, C, D, A		(2.5)
	А	B, C, D, A		(2.5)
	Α	A, D, C, B	A, D, C, B	(2.5)
	D	A, D, C, B		(2.5)
ε (+)	С	A, D, C, B		(2.5)
	В	A, D, C, B		(2.5)

Variante	Conteo	Ranking
А	15	1
В	15	1
С	15	1
D	15	1

A.6. Análisis de Borda	para resultados de 5 o	bjetivos*.
------------------------	------------------------	------------

Mátrico	Ranking	Post Hoc no paramétrica (sin	Ranking	Dociaión
Metrica	Original	diferencias significativas)	final	FOSICIOII
	С	C, A, B, D	C, A, B, D	(2.5)
	А	C, A, B, D		(2.5)
IGD	В	C, A, B, D		(2.5)
	D	C, A, B, D		(2.5)
	С	C, B, D, A	C, B, D, A	(2.5)
	В	C, B, D, A		(2.5)
IGD+	D	C, B, D, A		(2.5)
	А	C, B, D, A		(2.5)
	С	C, A, B, D	C, A, B, D	(2.5)
	А	C, A, B, D		(2.5)
Δ^*	В	C, A, B, D		(2.5)
	D	C, A, B, D		(2.5)
	А	A, C, B, D	A, C, B, D	(2.5)
	С	A, C, B, D		(2.5)
OS	В	A, C, B, D		(2.5)
	D	A, C, B, D		(2.5)
	С	C, B, D	С	(1)
	В	C, B, D, A	B, D	(2.5)
Hipervolumen	D	C, B, D, A	А	(2.5)
	А	B, D, A		(4)
	А	A, D, C, B	A, D, C, B	(2.5)
	D	A, D, C, B		(2.5)
ε (+)	С	A, D, C, B		(2.5)
	В	A, D, C, B		(2.5)

Variante	Conteo	Ranking
А	16.5	3
В	15	2
С	13.5	1
D	15	2

A.7. Análisis de Borda par	a resultados de 10 objetivos*.
----------------------------	--------------------------------

Mátrico	Ranking	Post Hoc no paramétrica (sin	Ranking	Dociaión
Wiethica	Original	diferencias significativas)	final	1 USICIOII
	В	B, C, D, A	B, C, D, A	(2.5)
	С	B, C, D, A		(2.5)
IGD	D	B, C, D, A		(2.5)
	А	B, C, D, A		(2.5)
	В	B, C, D, A	B, C, D, A	(2.5)
	С	B, C, D, A		(2.5)
IGD+	D	B, C, D, A		(2.5)
	А	B, C, D, A		(2.5)
	В	B, C, D, A	B, C, D, A	(2.5)
	С	B, C, D, A		(2.5)
Δ^*	D	B, C, D, A		(2.5)
	А	B, C, D, A		(2.5)
	А	A, C, B, D	A, C, B, D	(2.5)
	С	A, C, B, D		(2.5)
OS	В	A, C, B, D		(2.5)
	D	A, C, B, D		(2.5)
	В	B, C, D, A	B, C, D, A	(2.5)
	С	B, C, D, A		(2.5)
Hipervolumen	D	B, C, D, A		(2.5)
	А	B, C, D, A		(2.5)
	A	A, D, C, B	A, D, C, B	(2.5)
	D	A, D, C, B		(2.5)
ε(+)	С	A, D, C, B		(2.5)
	В	A, D, C, B		(2.5)

Variante	Conteo	Ranking
А	15	1
В	15	1
С	15	1
D	15	1

A.6. Análisis de Borda pa	ra resultados globales*.
---------------------------	--------------------------

Métrica	Ranking	Post Hoc no paramétrica (sin	Ranking	Posición
Wieti ica	Original	diferencias significativas)	final	1 USICIOII
	С	С, В, А	С	(1)
	В	C, B, A, D	В, А	(2.5)
IGD	А	C, B, A, D	D	(2.5)
	D	B, A, D		(4)
	С	C, B, D	С, В	(1.5)
	В	C, B, D	D	(1.5)
IGD+	D	C, B, D, A	А	(3)
	А	D, A		(4)
	С	C, B, D	С	(1)
	В	C, B, D, A	B, D	(2.5)
Δ^*	D	C, B, D, A	А	(2.5)
	А	B, D, A		(4)
	А	А	А	(1)
	В	B, C, D	B, C, D	(3)
OS	С	B, C, D		(3)
	D	B, C, D		(3)
	С	C, B, D	С, В	(1.5)
	В	C, B, D	D	(1.5)
Hipervolumen	D	C, B, D, A	А	(3)
	А	D, A		(4)
	Α	A, D	A, D	(1.5)
	D	A, D		(1.5)
ε (+)	С	С, В	С, В	(3.5)
	В	С, В		(3.5)

Variante	Conteo	Ranking
А	17	3
В	14.5	2
С	11.5	1
D	17	3

ANEXO B. EJEMPLO DE FUNCIONAMIENTO DE ALGORITMO 5 (rsim_intervals)

El siguiente ejemplo muestra el funcionamiento del Algoritmo 5, con el cual se generan los intervalos para la generación de soluciones aleatorias en los métodos de reparación propuestos en los capítulos 4, 5 y 6. Se considera como parámetros de entrada $\eta = 5$ variables de decisión y los conjuntos de padres (SS) e hijos (CS) generados aleatoriamente. El dominio de las variables utilizadas es discreto entre [0,9].

4. Límites inferiores in elementos en las clas	4. Límites inferiores individuales. Se obtienen las aproximaciones inferiores de cada uno de los elementos en las clases de <i>rank_info_sys</i> , y de cada una se obtiene el promedio de sus elementos para		
$\frac{1}{2} \frac{1}{2} \frac{1}$			
	$(I \subset I u u u _ u g O _ S y S_i) _ I u u u _ u g O _ S y S_{ij}$		
2 2 6 6	LAprox ₁₁ {2,2} = $\sum LAprox_{11} / LAprox_{11} = 4 / 2 = 2$ LAprox ₁₂ {2,2} = $\sum LAprox_{12} / LAprox_{12} = 4 / 2 = 2$ LAprox ₁₃ {2,2,6,6} = $\sum LAprox_{13} / LAprox_{13} = 20 / 4 = 5$ LAprox ₁₄ {2,2,6,6} = $\sum LAprox_{14} / LAprox_{14} = 20 / 4 = 5$		
4 5 5 5	$\begin{split} LAprox_{21}\{4\} &= \sum LAprox_{21} \ \ LAprox_{21} \ = \ 4 \ / \ 1 = 4 \\ LAprox_{22}\{4,5,5,5\} &= \sum LAprox_{22} \ \ LAprox_{22} \ = \ 19 \ / \ 4 = \ 4.75 \\ LAprox_{23}\{4,5,5,5\} &= \sum LAprox_{23} \ \ LAprox_{23} \ = \ 19 \ / \ 4 = \ 4.75 \\ LAprox_{24}\{4,5,5,5\} &= \sum LAprox_{24} \ \ LAprox_{24} \ = \ 19 \ / \ 4 = \ 4.75 \end{split}$		
3 3 6 7	LAprox ₃₁ {3,3} = $\sum LAprox_{31} / LAprox_{31} = 6 / 2 = 3$ LAprox ₃₂ {3,3} = $\sum LAprox_{32} / LAprox_{32} = 6 / 2 = 3$ LAprox ₃₃ {3,3,6} = $\sum LAprox_{33} / LAprox_{33} = 12 / 3 = 4$ LAprox ₃₄ {3,3,6,7} = $\sum LAprox_{34} / LAprox_{34} = 19 / 4 = 4.75$		
0 4 4 8	$\begin{array}{llllllllllllllllllllllllllllllllllll$		
1 1 9 9	$\begin{array}{ll} LAprox_{51}\{1,1\} &= \sum LA_{51} / LAprox_{51} = 2 / 2 = 1 \\ LAprox_{52}\{1,1\} &= \sum LA_{52} / LAprox_{52} = 2 / 2 = 1 \\ LAprox_{53}\{1,1,9,9\} = \sum LA_{53} / LAprox_{53} = 20 / 4 = 5 \\ LAprox_{54}\{1,1,9,9\} = \sum LA_{54} / LAprox_{54} = 20 / 4 = 5 \end{array}$		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	3 3 4 4.75		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
	η,num_soi		

5. Límites superiores individuales. Se obtienen las aproximaciones superiores de cada uno de los elementos en las clases de <i>rank_info_sys</i> , y de cada una se obtiene el promedio de sus elementos para obtener los limites superiores de manera individual.		
Approximación superior = $\cup \{(r \in rank_info_sys_i) \ge rank_info_sys_{ij}\}$		
2266	$\begin{aligned} UAprox_{11} \{2,2,6,6\} &= \sum UAprox_{11} / UAprox_{11} = 16 / 4 = 4 \\ UAprox_{12} \{2,2,6,6\} &= \sum UAprox_{12} / UAprox_{11} = 16 / 4 = 4 \\ UAprox_{13} \{6,6\} &= \sum UAprox_{13} / UAprox_{11} = 12 / 2 = 6 \\ UAprox_{14} \{6,6\} &= \sum UAprox_{14} / UAprox_{11} = 12 / 2 = 6 \end{aligned}$	
4 5 5 5	$\begin{array}{lll} UAprox_{21}\{4,5,5,5\} &= \sum UAprox_{21} \ \ UAprox_{21} \ = 19 \ / \ 4 = 4.75 \\ UAprox_{22}\{5,5,5\} &= \sum UAprox_{22} \ \ UAprox_{22} \ = 15 \ / \ 3 = 5 \\ UAprox_{23}\{5,5,5\} &= \sum UAprox_{23} \ \ UAprox_{23} \ = 15 \ / \ 3 = 5 \\ UAprox_{24}\{5,5,5\} &= \sum UAprox_{24} \ \ UAprox_{24} \ = 15 \ / \ 3 = 5 \end{array}$	
3 3 6 7	$\begin{array}{ll} UAprox_{31}\{3,3,6,7\} &= \sum UAprox_{31} / UAprox_{31} = 19 / 4 = 4.75 \\ UAprox_{32}\{3,3,6,7\} &= \sum UAprox_{32} / UAprox_{32} = 19 / 4 = 4.75 \\ UAprox_{33}\{6,7\} &= \sum UAprox_{33} / UAprox_{33} = 13 / 2 = 6.5 \\ UAprox_{34}\{7\} &= \sum UAprox_{34} / UAprox_{34} = 7 / 1 = 7 \end{array}$	
0 4 4 8	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
1 1 9 9	$\begin{aligned} UAprox_{51} \{1,1,9,9\} &= \sum UAprox_{51} / UAprox_{51} = 20 / 4 = 5 \\ UAprox_{52} \{1,1,9,9\} &= \sum UAprox_{52} / UAprox_{52} = 20 / 4 = 5 \\ UAprox_{53} \{9,9\} &= \sum UAprox_{53} / UAprox_{53} = 18 / 2 = 9 \\ UAprox_{54} \{9.9\} &= \sum UAprox_{54} / UAprox_{54} = 18 / 2 = 9 \end{aligned}$	
	4 4 6 6	
	4.75 5 5 5	
	4. / 5 4. / 5 0.5 /	
	5 5 9 9	
	UB_{η,mum_sol}	

6. **Obtención de intervalos rugosos unificados.** Con los limites inferiores y superiores individuales se obtiene los intervalos globales, es decir, los intervalos rugosos unificados. Como resultado se obtienen los intervalos de valores producidos en base a la información de entrada procesada mediante la teoría de conjuntos aproximados.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{cases} intervals_{10} = \sum LB_1 / num_sol = 14.00 / 4 = 3.5 = 4 \\ intervals_{20} = \sum LB_2 / num_sol = 18.25 / 4 = 4.6 = 5 \\ intervals_{30} = \sum LB_3 / num_sol = 14.75 / 4 = 3.7 = 4 \\ intervals_{40} = \sum LB_4 / num_sol = 9.34 / 4 = 2.3 = 2 \\ intervals_{50} = \sum LB_4 / num_sol = 12.00 / 4 = 3.0 = 3 \end{cases}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$intervals_{11} = \sum UB_{1} / num_sol = 20.00 / 4 = 5.0 = 5$ $intervals_{21} = \sum UB_{2} / num_sol = 19.75 / 4 = 4.9 = 5$ $intervals_{31} = \sum UB_{3} / num_sol = 23.00 / 4 = 5.8 = 6$ $intervals_{41} = \sum UB_{4} / num_sol = 22.66 / 4 = 5.7 = 6$ $intervals_{51} = \sum UB_{4} / num_sol = 28.00 / 4 = 7.0 = 7$
	L.I. L.S. 4 5 5 5 4 6 2 6 3 7