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Abstract

Artificial Neural Networks (ANNs) have been developed to mimic the dynamical
biological behavior of the brain. ANNs have been implemented to solve different
kinds of problems, in specific to solve classification problems. The study of ANNs
has improved towards new models, even grouping them in three generations. Dur-
ing the last decade, different techniques have been proposed to train ANNs, from
propagating a classification error, tuning learning rules or focus on their plasticity
to using algorithms based on Darwin’s theory to learn their parameters. Therefore,
many options have been developed to improve the ANN’s performance.

In this thesis, Spiking Neural Networks (SNNs) (third generation of ANNs) are
evolved by means of a multi-objective evolutionary approach. Focus on optimizing
SNN’s parameters by aiming to improve its performance in solving pattern clas-
sification problems. Firstly, evolving a single spiking neuron’s parameters is pre-
sented to implement a Leaky Integrate-and-Fire (LIF) model through a comparative
between multi-objective and mono-objective algorithms. These algorithms are Opti-
mized Multi-objective Particle Swarm Optimization (OMOPSO) and Particle Swarm
Optimization (PSO), respectively.

Afterward, Liquid States Machines (LSMs) are introduced since they internally
implement RNNs, which are SNNs with recurrent connections instead of a feed-
forward process. A multi-objective approach is proposed to optimize synaptic con-
nections generated into the RNN formed by Spike Response Model (SRM) neurons
by Multi-objective Evolutionary Algorithm based on Decomposition with Dynam-
ical Resource Allocation (MOEA/D-DRA). Our studies show a perspective to opti-
mize SNNs compared with work in the state of the art. This perspective involves
applying multi-objective algorithms, and objective functions that guide solutions
over the search space towards finding a set of optimal solutions.

These two studies were evaluated on a series of well-known benchmark clas-
sification problems. The multi-objective approach is the study’s object to optimize
SNNs achieving better results than the mono-objective approach, even applying the
reduction of dimensions from input data. Also, compared against work in the state
of the art, our proposal uses lower computational power but cannot improve per-
formance in classification tasks. Nonetheless, our proposal provides an alternative
to optimize an LSM taken a new proposal to make its state vectors utilized by the
multi-objective evolutionary approach.
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Chapter 1

Introduction

The main objective in neurocomputing is to develop mathematical algorithms that
will enable Artificial Neural Networks (ANNs) to learn as from information pro-
cessing and knowledge acquisition in the human brain [1]. They try to simulate the
brain’s behaviour when it generate, stores, processes and transforms information.
An ANN is a system composed of simple processing units, which gives the capacity
and property to mapping input-output. This process is developed in two phases: a
weighted sum and a non-linear function, that it allows doing training with the input
data [2]. Since the 1960s, ANNs have emerged as a novel way to imitate the human
brain. ANNs’ learning capability converts them into a powerful tool in different
approaches, for example, to solve pattern recognition, classification, clustering, vi-
sion, control systems and forecasting tasks [3]. Besides, ANNs have been employed
to trade with complex constraint (non-linear and discontinuous) optimization prob-
lems. ANNs are made up of layers each composed by neurons. Usually, these layers
are categorized as: the input layer, hidden layers and output layer. They are inter-
connected with the previous layer. Neurons interconnected between layers gener-
ate synapses. During ANN’s learning process, synapses change until the acquired
knowledge is enough, i.e., its performance is evaluated, such as an error measure
correlated to the network’s objective. Once the learning process is over, that knowl-
edge is evaluated employing a sample of data from the problem different from those
used in the learning process. With this, it is expected that ANNs will be able to clas-
sify patterns from a particular problem with feasible performance [4]. ANNs models
are separated in three different models according to their computational units. To
begin with the first generation of ANNs which is based on McCulloch-Pitts neurons
to process digital data [5]. Afterwards, the second generation of ANNs, is charac-
terized by topologies of neurons connected between layers, i.e., there are cataloged
as input, intermediate and output layers with computing units (neurons) that apply
activation functions such as sigmoid or hyperbolic tangent [6]. Eventually, Spiking
Neural Networks (SNNs) are known as the third generation of artificial neural net-
works [5]. Neurons within this generation are spiking neurons, which process time
encoded data simulating spikes instead of a threshold firing rate [7]. Learning from
these models, in this generation, works through correlation between neural firing
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rates, which reflects the mean activity of a neuron. That activity is described by ac-
tion potentials or spikes, which are sequences of short electrical pulses [8]. Spiking
neurons can approximate any continuous function of several variables through re-
gard to temporal coding. This gives them the name of "universal approximators,"
which means that these spiking neural networks can approximate temporal coding
any given continuous function of numerous variables [9].

The present research proposes a multi-objective optimization scheme for auto-
matic design of Spiking Neural Networks, which allows solving pattern recognition
problems and whose performance is comparable with other works in the state of the
art. The rest of this thesis is organized as follows: Chapter 2 studies the state of the
art, where ANNs and SNNs concepts related to this thesis are discussed. Chapter
3 introduces the theoretical background, in which the fundamental aspects are ex-
plained. Chapter 4 details the proposed methodology employed during this work.
Design experimentation as well as results are detailed in Chapter 5, where the re-
sults from the methodology are statistically compared. Finally, the conclusions of
this thesis are discussed, and future work is proposed.

1.1 Problem Statement

The development in the investigation of the Artificial Neural Networks (ANNs) in
the middle of the past century was slow-growing, which affected implementation.
After years, the researchers took up the investigations achieving a new paradigm
with ANNs to develop the Backpropagation algorithm to train them. Several years
later, an innovation emerged from training ANNs: the addition of a paradigm about
Evolutionary Algorithms (EAs). This new approach opened new fields of research,
which is known as Neuroevolution.

Neuroevolution has had a great acceptance by the advantage that brings this pro-
cess to find optimal parameters and optimal architectures of an ANN by applying
the evolutionary algorithms, most of them based on Darwin’s theory. Through this
approach, the aim is to reduce the researcher’s total participation at the time to fix
the parameters of the ANNs manually. Many works have adopted this approach
to training neural networks; most of them are in the second generation of Artificial
Neural Networks, and recently with the third generation known as Spiking Neural
Networks (SNNs). The aim is to optimize parameters such as synaptic weights, de-
lays, and the neural network architecture to evaluate its performance through gen-
erations or an evolutionary process employing a mono-objective paradigm, which
weighs only one parameter from the unification of parameters as a weighted sum.

Thus, instead of the mono-objective paradigm, the development of multi-objective
schemes for the evolutionary design of SNNs can be seen as an exciting area in which
it is possible to research with considerable detail and propose design schemes at-
tractive to the scientific community. Through statistical analyses the methodologies
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presented in this work are compared against other works of the area. In addition to
looking for an optimization scheme to solve pattern classification problems.

1.2 Justification

During the previous decade, different Spiking Neural Networks (SNNs) models
have been proposed, which have demonstrated that are more attached to the bio-
logical simulation process of the neural networks of the brain, i.e., there are more
plausible. In the neurocomputing area, the researchers have designed various ways
to train a neural network, such as the Backpropagation algorithm or have imple-
mented evolutionary algorithms based on the theory of Darwin for the resolution of
pattern classification problems. In designing SNNs, it is necessary to optimize sev-
eral parameters in order to achieve an optimal performance of the neural network,
for example, calibration of synaptic weights and delays as well as the architecture
itself.

This work proposal will be carried out to implement evolutionary algorithms
viewed with a multi-objective approach to the design of SNNs, where they will be
sought to optimize it by some objective functions so that their performance will be
comparable against with other works in the state of the art. Therefore, we search to
propose alternatives for the evolutionary design of SNNs.

1.3 Hypothesis

It is possible to determine the design of the topology and the value of the parame-
ters of Spiking Neural Networks through an optimization scheme using the multi-
objective approach to obtain an optimal performance to solve pattern classification
problems comparable to other models of neural networks detailed in state of the art.

1.4 Objectives

1.4.1 General

To develop an optimization framework based on multi-objective evolutionary algo-
rithms applied to the Spiking Neural Network design, seeking that its performance
solving pattern classification problems could be compared with the state of the art.

1.4.2 Specifics

• To carry out documentary research about the state of the art and theoretical
background about Spiking Neural Networks and Multi-objective Evolutionary
Algorithms.
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• Identify architectonic and parametric aspects, spiking neural models, and ob-
jective functions to consider in this work.

• Determine the Multi-objective Evolutionary Algorithms to optimize the pa-
rameters of the Spiking Neural Networks.

• Implement and test the methodology proposed over datasets about pattern
classification problems known in state of the art.

• Make a statistical analysis of the results obtained from the implementation.

• Write a scientific paper about the methodology proposed and its results.

• Write a thesis work to explain the proposed work.

1.5 Scope

While the Artificial Neural Networks are employed in different fields of research,
the Spiking Neural Networks have won popularity in the field of neuroscience with
the development of a variety of spiking neural models which are more plausible, for
example, to resolve problems of pattern classification.

On the other hand, the Multi-objective Evolutionary Algorithm approach has not
been much focused on optimizing the parameters of Spiking Neural Networks to
get the best performance in the resolution of pattern classification problems. An ap-
proach with these topics will be implemented to provide an alternative view to solve
such kinds of problems. Finally, from Reservoir Computing, Liquid State Machines
will be implemented to solve pattern classification problems since they mainly use
spike models.

1.6 Contributions of academic research

Some contributions have been achieved during this thesis along the corresponding
time. These contributions are:

• The research paper entitled Single Spiking Neuron Multi-Objective Optimization
for Pattern Classification presented in the Workshop on Computational Intelligence
(WCI 2019), held in Tijuana city, México on August 26-27, 2019. This work
was published in the Journal of Automation, Mobile Robotics and Intelligent
Systems (14)1, 2020.
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Chapter 2

State of the art

This chapter describes a view about the state of the art related to this thesis. It is
denoted a historical insight of Artificial Neural Networks, their concepts, and gen-
erations in which are classified. A review of the third generation of neural networks
is also covered, and an evolutionary approach to improve its performance. Finally,
the usability of Spiking Neural Networks is detailed in this chapter.

Concepts of the Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational models based on behaviour
of biological neurons from the brain [10]. ANNs consist of simple processing units
of information linked by weighted connections [11]. They try to simulate the be-
havior of the brain when they generate, process, or transform information [2]; in
fact, they have been implemented to solve different kinds of problems such as pat-
tern classification [12, 13], forecasting [14, 15], robotic control [16, 17, 18], cluster-
ing[19, 20], among others. ANNs are formed by organized processing units called
neurons, which are based on the analogy to the connections between dendrites and
axons from realistic biological neurons. Such connections are known as synapses.
In artificial neural networks, that connection is defined by the connection weights
[1]. Internally, neurons compute some operations, and then its result is compared
against a certain threshold to fire a signal. Neurons are distributed in layers; the
most basic topology is organized as the input layer, hidden layer, and output layer
[4], therefore, neurons are interconnected between layers.

Spiking Neural Networks: Definitions, Concepts and Approaches

Artificial Neural Networks (ANNs) consisting of spiking neurons [21], computing
units capable naturally of handling spatio-temporal data, are known as Spiking Neu-
ral Networks (SNNs), and they are considered as the third generation of ANNs [22].
Nowadays, SNNs are increasingly being applied to solve real-life problems from en-
gineering and industry domains [23]. Mainly due to the interesting characteristics
and computational power of spiking neurons [24, 25] such as a temporal coding in
contrast to other generations that cannot encode information continuously resulting



6 Chapter 2. State of the art

in less efficiency since they require computation from whole neurons in previous lay-
ers [26] to obtain a result. SNNs have had several successful implementations; they
require care to define their topology (also referred to as architecture), which can be
defined around the neuron model, connectivity pattern, and data type of messages
[27].

Neuron models have been developed inspiring on the realism of neural activity
in the brain with aiming to the measurement of information transferred among neu-
rons [28]. A wide variety of adaptions have been launched showing that by precise
spike timing, the information is shared between them.

Firstly, Hodgkin–Huxley model [29] which is one of the models with the most
relevance in the neuroscience area since it is related to the models based on conduc-
tance involving sodium, potassium and leak current mainly chloride.

Secondly, Integrate-and-Fire (I&F) model, of which there are many proposals,and
they are compared in [30], details the action potentials as events [31]. A considerable
improvement has arisen from I&F, some of them are Leaky Integrate-and-Fire (LIF)
which is one of the most used models in the area [32], Integrate-and-Fire-or-Burst
(IFB) is proposed an improvement adding the inactivation of the calcium [33]. Spike
Response Model (SRM) [34] is inspired from activity in Integrate-and-Fire. Izhike-
vich model [35] where is a combination of the dynamic of Hodgkin-Huxley and
efficiency of I&F. Thorpe model [36] was derived from the LIF model as a simpler
version. A review of these models is detailed in [37].

Therefore, SNNs have been used in many areas to solve different tasks employ-
ing these spiking neuron models achieving results in real problems. Also, there is
not a unified base spiking neuron model yet. Thence, the choice of a model depends
on biological plausibility, the computational costs that require a particular model,
and the researcher’s choice [38]. To continue some works are presented where the
previous models are used.

To achieve a good learning SNNs are trained through different approaches to
reach and improve biological plausibility and computational potential, these learn-
ing base its algorithms adjusting synaptic weights and delays [39].

Spike-Prop [40] the back-propagation algorithm is adopted to minimize the error
between the output and desired spike times. As said before, in [41, 42] the authors
minimize the error employing an Evolutionary Strategy fitting the synaptic weights
and delays for classification tasks. This approach achieves better results than Spike-
Prop.

SpikeComp is detailed in online learning where it evolves the connection be-
tween neurons in the hidden layer [43] toward output neurons [44] that are added
as they are required with a center represented by the time-to-first-spike to tune the
weights of the synapses or add a new output neuron when a new sample is fed to
the SNN.
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Spike-Driven Synaptic Plasticity (SDSP) employed in a wide variety of learn-
ing algorithms given that synaptic weights are modified according to arrival pre-
synaptic spikes to post-synaptic neuron considering its potential and its most recent
spike [45].

Evolutionary Algorithms (EAs) are used to optimize the neuron’s synapses. These
algorithms need a population of individuals; each of them contains whole param-
eters from the SNNs topology (synaptic weights and delays); besides, these algo-
rithms explore the search space through a single objective function. EAs give the
advantage of automatized evolution of neural networks, i.e. to determine a com-
plete or partial topology employing the number of neurons on each layer and their
synapses [46]. Formerly, a single spiking neuron was trained to adjust its synaptic
weights through Differential Evolution (DE) algorithm, employing LIF and Izhike-
vich neural model, respectively [47, 48]. Both show competitive performance against
a feed-forward neural network of the second generation. Later, SNNs were trained
using EAs. Parallel Differential Evolution (PARDE) algorithm to train spiking neu-
ral networks [49], evolving their synaptic weights having a comparable performance
against multilayer perceptrons trained with Back-prorogation algorithm.

In [48], Differential Evolution (DE) was employed to evolve just synaptic weights
according to Izhikevich model. Whereas in [50] Cooperative Particle Swarm Opti-
mization (CPSO), which is a version of PSO is used, where synaptic weights and de-
lays are adjusted preserving as negative as well as positive weights. Cuckoo Search
(CS), as CPSO are algorithms based on the behaviour of animals, applied [51] to train
SNNs topologies to solve pattern classification tasks.

Evolutionary Strategy (ES) algorithm is used to tune the SNN’s parameters since
SRM model in [7] and compared against CPSO’s performance, being ES better al-
gorithm to tune it. Mussels Wandering Optimization (MWO) is a meta-heuristic
similar to CPSO, which is based on a population and animal behaviour. To achieve
an acceptable performance to solve pattern classification problems, Enhanced-MWO
was proposed in [52] to reduce the SNNs training time using SRM model. Particle
Swarm Optimization (PSO) was used in [53] to learn to generate a target spike se-
quence optimizing an SNN with dynamic synapses of LIF neurons connected from
hidden layer to output layer.

Moreover, instead of just employing a single objective function, for example,
minimize the classification error with EAs. Multi-objective optimization has been
used to find a set of optimal solutions instead of one optimal solution with Mono-
objective optimization; therefore, several objective functions can be used to improve
learning performance and connectivity. [54]. In [55] a Multi-objective hybrid of Dif-
ferential Evolution (MODE) is employed to find better results as accuracy and a net-
work’s topology. SNNs conformed by SRM neurons have their synapses optimized
through Multi-objective Genetic Algorithm (MOGA) [54].
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Evolutionary Approach to evolve SNNs in solving real prob-
lems

Through advantages that evolutionary algorithms offer, it has been combined with
SNNs to learn and optimize their characteristics. Then, its combination has been
used to solve real problems.

In [56], a robot "brain", which is an SNN simulator, is optimized by a genetic
algorithm (GA) to tune its parameters. An SNN was evolved in an imitation learning
way to optimize two sensor modalities from the mobile robot; that is, the potentially
competing objectives of light-seeking and obstacle avoidance.

An SNN in [57] is evolved through three algorithms; some of them are Differ-
ential Evolution. It aims to optimize the SNN’s parameters to produce robust and
reliable responses given some inputs recorded from a DVS camera mounted on an
aerial vehicle to lead fast and robust responses for robotic applications.

A Genetic Algorithm combined with Differential Evolution algorithm was em-
ployed in [58], to optimize synapse weights as well as neuron types (each one de-
scribed as chromosomes) in an SNN with a reduced number of neurons. They seek
to optimize SNN’s parameters to imitate to do the control of non-linear dynamic
systems (the behaviour of DC motor and arm movement control).

SpiNNaker is neuromorphic hardware to simulate a larger quantity of spiking
neurons. Through optimizing a SNN with that hardware. In [46] the authors play
Pac-Man using NEAT (is an evolutionary algorithm to create neural networks) algo-
rithm to evolve SNN’s topology and its synapse weights employing a SpiNNaker.

Some researchers have implemented multi-objective optimization allowing ex-
plore the trade-off among all objectives.

Automatic tuning of a retina model is optimized by means of NSGA-II algorithm
[59, 60], where a retina is a neural circuit formed by spiking neurons (the aim is
tuning a set of parameters from an ample search space appropriately). In that way,
they generate retinal models in an effort to approximate real biological behaviour.

Neuromorphic computing architectures model SNNs in silicon so, it is neces-
sary to train an SNN in order to have small neuromorphic architectures, low power
chips with the ability to perform machine learning tasks. Therefore in [61] a genetic
algorithm-based training approach called Evolutionary Optimization for Neuromor-
phic Systems (EONS) is used to evolve the synaptic weights and thresholds of the
neurons, and the objective functions minimize the SNN size and maximize its per-
formance.

A multi-objective Immune Genetic Algorithm is proposed to optimize SNN hard-
ware systems to map solutions, whose aim is to reduce energy consumption and
communication delays[62].

These are some works in the state of the art where the SNN’s topology or its
parameters are evolved through Evolutionary Algorithms aiming to solve real prob-
lems. Most of them involve learning parameters from SNNs and reduce the error of
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classification.

SNNs applied in complex models such as the Liquid State Ma-
chines

Reservoir Computing is a general term to cover the following models: Liquid State
Machines (LSM) and Echo State Networks. Both models have in common that its
structure is formed by Recurrent Neural Networks (RNNs) (liquid or reservoir) and
developed independently [63, 64, 37]. Liquid State Machines was introduced in [65],
in which the author tries to understand the diversity of how are computed and learnt
tasks solved by the brain represented as complex neural circuits or cortical columns.
Use of RNNs has a big difference compared to SNNs with feed-forward topology.
In RNNs, their connections can be cycles and this gives some advantages: Formerly,
it is a dynamical system, i.e., can develop a self-sustained temporal activation dy-
namics, and more recently it has a dynamical memory which preserves a non-linear
transformation of the input history in its internal state [64]. As RNNs and SNNs
project the input onto a high-dimensional space (viewed as the internal state) allow-
ing that the readout function to learn in a simple way [66]. The internal states (or
liquid states) result from the post-synaptic activity of the neurons in the liquid [67]
at a certain time. These are projected to a readout function to compute the desired
output from an input [68]. Hence, liquids can be implemented as RNNs, and the
readout functions (simple linear functions) can be trained to solve tasks [65, 68, 69].

In the first works developed, liquids are not trained; instead, their topology is
defined a priori just creating the internal connections randomly so only the read-
out was adjusted. In that way, LSMs solve pattern classification problems [70]. In
[65], the readout is formed by LIF neurons, and the training phase consists in ad-
justing the strengths of synapses generated from neurons in the liquid and neurons
in readout using a perceptron (also in [71]) to evaluate the liquid’s performance. In
contrast in [72], an ANN of Hodgkin-Huxley neurons is implemented to analyze
the readout responses. Long-term synaptic plasticity is suggested [69] to modify
the synaptic synapses within the liquid to achieve separation between input data.
Linear least-squares regression is the algorithm used to train the readout function
in [66] where the authors prove different parameters configuration related to the
synapses between neurons, one of the most interesting configuration is the connec-
tion probability between input neurons and liquid neurons where all input neurons
are connected into the liquid neurons. Most of the previous works solve artificial
pattern classification tasks.

Through an LSM it has been proposed to predict real-world time series. In [73] it
is proposed to predict ball trajectories from input data since a video recorded with a
robot, and output neurons’ connections are trained by linear regression.

A study in [74] shows that there exists a deficiency in the approximation property
in an LSM (readout function), producing a poor performance in TIMIT dataset, so in
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that work, the authors propose a metric using the separability property of an LSM
that can be used as a fitness function in an evolutionary process; also a multi-layer
perceptron is proposed as readout function.

A reservoir-based evolving Spiking Neural Network (reSNN) is proposed in [75]
where an evolving Spiking Neural Network (eSNN) is used as readout function be-
ing the learning process to create a repository of output neurons trained by training
dataset.

Another approach to train the readout function is presented in[76], where it is
combined from liquid’s neurons as the firing rate of each as their membrane poten-
tials. It results in an enhancement of spatiotemporal data recognition.

In contrast, where traditional liquids are not trained, some works propose to
train to enhance the ability of LMS’s separability. Therefore, different approaches to
ameliorate the LSM’s performance to solve problems are reviewed. Liquids formed
by different spiking neurons are detailed in [77] to observe the effect of connection
density on the separability ability with these models. "Liquid" is the term used to
name a simple model which represents the mammalian visual system, and the en-
tropy is measured to evaluate the capability of the liquid to suitable represent the
information coming from inputs.

A work detailed in [78] looks to improve the separability property changing LIF
neurons to Hodgkin-Huxley neurons into the liquid. A goal is to investigate if the
liquid’s separability is sensitive to employing this kind of neurons modifying their
parameters such as soma capacitance and time constants.

Another work [79] employs a different kind of neurons in the liquid; in this case,
the liquid is formed by SRM neurons. The readout function is trained with a learning
rule based on polychronization [80], which affects the delays to readout neurons and
adjusts the synaptic weights in the liquid.

Hebbian learning is investigated to see the effects in the liquid [81] evaluating its
performance in a real-world speech problem. Separation Driven Synaptic Modifica-
tion (SDSM) in [82, 83] is used to optimize the synaptic weights as from separation
metric that evaluates the liquid’s state vectors.

A dynamic firing threshold is employed [84] in order that the liquid controls its
entire internal activity concerning inputs, thus achieving increases in the classifica-
tion performance by affecting the separability property.

A Genetic Algorithm (GA) is used in [85, 86] to evolve the liquid’s synapses. A
gene represents a synapse and is formed by its synaptic weight and indexes of pre-
synaptic and post-synaptic neurons it connects. The fitness function involves the
mean of each state vector class, and the covariance of each class, besides the within-
class and between-class scatter are computed. Then, a Fisher discrimination ratio is
maximized. It results from maximizing the distance between the means of classes
and minimize the variance of each class. In that way a fitness value for each gene
is assigned during evolution. Through a Covariance Matrix Adaption Evolution
Strategy (CMA-ES) it is proposed in [87, 88] to optimize the topology and parameters
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of an LSM. Three parameters are evolved, a parameter λ to control the density of
connections in the liquid, f to distribute the synaptic strength, and τn the membrane
time constant of the neuron.

There is a review of works where some characteristics of SNNs and RNNs are
taken into LSMs to explain how they are trained, and how to improve their perfor-
mance in pattern classification problems with spatio-temporal data inputs.

Once the state of art has been studied, this thesis proposes a methodology to
optimize the parameters of Spiking Neural Networks through Multi-objective algo-
rithms. In the interest of checking if there exists an improvement in training SNNs
by means of Multi-objective approach, it is compared against a Mono-objective al-
gorithm as Evolutionary Spiking Neural Networks (ESNNs). Both are designed
to solve a specific problem. The methodology considers two phases. In the first
phase, a comparative performance between a Single Spiking Neuron optimized by
Mono-objective and Multi-objective approaches, including a synapses reduction is
explored. In the second phase, a comparison between a recurrent spiking neural
network performance trained by a Multi-objective algorithm and a work in the state
of art evolved by Mono-objective algorithm is carried out. Both phases aim to au-
tomatically find the optimal parameters of an SNN to solve pattern classification
tasks.
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Chapter 3

Theoretical Background

The topics in this chapter detail theoretical aspects based on which this thesis is
developed. Firstly, the main aspects about Artificial Neural Networks (ANNs) are
covered. Secondly, the characteristics about Third Generation of ANNs and two
well-known spike models are reviewed. Next, Liquid State Machines and a ran-
domly structure for them are described. Finally, a mono-objective algorithm (Par-
ticle Swarm Optimization) and two multi-objective algorithms (Optimized Particle
Swarm Optimization and Multi-objective Evolutionary Algorithm based on Decom-
position by Dynamical Resource Allocation) are described.

3.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are inspired by the neural network’s biologi-
cal concept from the human brain. ANNs are designed, as mathematical models of
human recognition or biological neurology [89]. ANNs are systems motivated by
the distributed, densely parallel computation in the human brain that enables them
to resolve successfully complex control and recognition or classification problems.
The biological neural network can be mathematically modeled by a weighted graph
of immensely linked artificial nodes (neurons) to resolve these problems. Neurons
are almost always functions where arguments are conformed by a weighted sum of
inputs that arrive at the node [90]. The way that ANNs are connected is by connec-
tions between pairs of nodes. Each connection dispatches a signal from one node to
another, labeled by a number called "weight," hinting the extent to which signal is
amplified or dwindled by a connection [91].

Some characteristics are desirable in these artificial models, chiefly: a) Non-linearity
allows a better fit to the data; b) Noise-insensitivity provides accurate predictions over
uncertain data and measurement errors; c) High Parallelism entails fast processing; d)
Learning and Adaptivity, allows the system to update (modify) its internal structure
(architecture) in response to changing the environment; and e) Generalization enables
the application of the model to unlearned data [1].

ANNs can be distinguished in three different generations [5]:

• First Generation: based on McCulloch-Pitts [92] neuron as computational units
that can handle digital data, and known as perceptrons or threshold gates, and
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each boolean function can be computed by linked some perceptrons to build a
multilayer perceptron with a single hidden layer.

• Second Generation: principally characterized by a multilayer architecture, con-
nectivity separating input, intermediate, and output units. These ANNs are
trained by an iterative process with input data to fix synaptic weights to op-
timal values [6]. Usual examples of networks are feedforward networks, re-
current sigmoidal nets, and networks of radial basis function units, and they
are universal for analog computations because any continuous function can be
estimated arbitrary well by a network with a single hidden layer [5].

• Third Generation: Spiking neurons are models based on computational units in
biological neural systems where information to be encoded mainly in temporal
patterns of their activity [22]. The spiking neuron has an inherent dynamic
nature, mostly defined by an internal state with the characteristic that changes
with time. Each postsynaptic neuron fires an action potential or "spike" when
its internal state (potential membrane) exceeds a certain threshold [25]. This
generation is known as Spiking Neural Networks (SNNs).

3.2 Spiking Neuron Models

Spiking neurons emulate biological neurons closely by transmitting signals in spike
trains where each spike has constant amplitude [81]. An ideal spiking neuron can be
separated into three functionally distinct parts: a) dendrites, b) soma and c) axon, as
seen in Figure 3.1. The dendrites work as a collector of signals from other neurons
and carry them on to the soma. The soma has the functionality of a central process-
ing unit of the arriving information. In this unit, an important fact is that if the total
arriving input explodes at a certain threshold, then the output signal is generated.
The output signal generated is driven across the axon as an output device, which
transports it to other neurons. The synapse is called the junction between a pair of
neurons. Many axonal branches of this neuron end in the nearby neighborhood, but
the axon can be wired over several centimeters to reach neurons in other areas of
the brain to make a synapse. The action potential or spike is a short voltage pulse
of 1-2 ms duration and an amplitude of about 100 mV. This neural signal consists of
short electrical pulses and it is represented as a fine electrode too close to the soma
or axon. A sequence of action potentials produced by a single neuron is known as a
spike train, it means a series of events that happens at regular or irregular intervals,
and usually, the action potentials are well separated between them. Therefore, the
signal into a spike train is well separated [21].
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FIGURE 3.1: Drawing of a single biological neuron. Taken from [21]

The successful work by Hodgkin and Huxley in 1952, which describes action
potential in a giant axon, leads a whole series of investigations about modeling that
try to describe in detail the central aspect of the dynamics of various channels on the
soma and dendrites during spike reception and spike emission [93].

Spiking neuron models concern a spectrum from complex and biologically plau-
sible models based on biophysical cortical network architecture to simpler, less real-
istic models [94], [95]. Some of these models are Integrate-and-Fire Model (I&F) [96],
Leaky Integrate-and-Fire Model (LIF) [47], [32], Spike Response Model (SRM) [21], [30],
Hodgkin-Huxley Model [29], Izhikevich Model [35].

Aiming to build a phenomenological model of neural dynamics, it describes the
critical voltage for spike initiation by a formal threshold ϑ. Then if ui(t) exceeds a
certain ϑ, the neuron i fires a spike. The action of threshold crossing indicates the
firing time t( f )

i [21].

3.2.1 Leaky Integrate and Fire Model

Leaky Integrate-and-Fire model (LIF) is one of the most used in computational neu-
roscience, given that this model has a more straightforward implementation and a
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lower computational cost compared with other spiking neuron models [47]. The
mathematical representation for LIF is adapted from [47], [97] and the potential dy-
namic of the membrane is given by equation 3.1.

τ
dvi

dt
= −gleak(vi − Eleak) + I(t) (3.1)

Where gleak and Eleak are the conductance and the reversal potential of the leak cur-
rent, τ is the membrane time constant, and I(t) is a current injected into the neuron.

Particularly, the representation of the Leaky Integrate-and-Fire Model (LIF) taken
from [32, 47] is of interest in this work, and it is described in equation 3.2.

v′ = I + a− bv

if v ≥ vthreshold, then v← c
(3.2)

where I is the input current of the neuron, v denotes the membrane potential, a and
b are parameters to configure the behavior of the neuron, c is the rest state voltage
and vthreshold is the threshold for the spike (firing) of the neuron. Besides, an initial
condition v0 is necessary to solve the differential equation by numerical methods.

Since the LIF neuron cannot directly process the input patterns, they must be
transformed to input currents through equation 3.3.

I = x̄ · w̄ · θ (3.3)

where x̄ ∈ Rn is the input pattern vector, w̄ ∈ Rn is the set of synaptic weights, and
θ is a gain factor. Figure 3.2 shows the representation of a LIF neuron. When I is
computed, it solves equation 3.2 to obtain the output spike train belonging to the
input pattern.

FIGURE 3.2: Representation of a LIF neuron
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3.2.2 Spike Response Model

Spike Response Model (SRM) is an approximation of the dynamics of the I&F neu-
ron, in contrast with the idea of Integrate-and-Fire models, which are usually written
in differential equations. The idea behind SRM is described by the integrated effect
of spike reception or spike emission on the membrane potential [30]. In this the-
sis, the spiking neurons use the time-to-first-spike as a coding scheme to describe a
spike’s effect on the emitting and the receiving neuron [30, 98]. Therefore, a reduced
version of SRM [19, 50, 98, 99] is of specific interest in this work and is described in
equation 3.4.

xj(t) = ∑
i∈Γj

wjiyi(t) (3.4)

Where a neuron j has a set of Γj of immediate pre-synaptic neurons that receives a
set of spikes with firing time ti, i ∈ Γj. An SRM neuron fires when its membrane
potential xj(t) reaches a certain threshold θ. Besides, wji is the synaptic weight to
modulate yi(t), which is the unweighted post-synaptic potential of a spike from a
pre-synaptic neuron i to post-synaptic neuron j shown in Figure 3.3.

The unweighted postsynaptic potential yi(t) denoted in equation 3.5, which de-
scribes the strength acting on neuron j at a time t. The input parameters of the
neuron j are given by t as the current time, ti is the firing time if the pre-synaptic
neuron i and dji represents its associated delay.

yi(t) = ε(t− ti − dji) (3.5)

The form of a standard post-synaptic potential is described by ε in equation 3.6, τ

models the membrane potential decay time constant, that defines the rise and decay
time of the post-synaptic potential.

ε(t) =

 t
τ e1−t/τ if t ≥ 0

0 otherwise
(3.6)

Figure 3.3 shows an SRM neuron firing spike when the membrane potential xj(t)
exceeds a threshold θ. Point I illustrates how each pre-synaptic neuron i sends spikes
to a post-synaptic neuron j inside is the membrane potential xj and evokes a spike.
In point II the neural dynamics are shown, in which if xj reaches the threshold θ,
an action potential or post-synaptic spike is fired at that precise time. It is possible
because the spike trains ti are formed to evoke the neural behavior [21].
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FIGURE 3.3: Representation of an SRM neuron firing spike

3.3 Liquid State Machines

Liquid State Machine (LSM) is based on a rigorous mathematical design that guar-
antees universal computation power under idealized conditions. The most common
approach to design computing in recurrent neural circuits had been used to take con-
trol of their high-dimensional dynamics [65]. As a neural microcircuit, the spiking
recurrent neural networks are used since they have mighty representational power
due to the network’s complex time dimension [81]. Neural microcircuits appear to
be very good liquids for computing perturbations due to the large diversity of their
elements, neurons and synapses [72].

An approach to real-computing for LSM considers a series of transient pertur-
bations induced in an excitable environment, such as a liquid, by a contentiousness
of external disturbances called inputs, such as sound, wind, or sequentially drop-
ping some object like rocks into the liquid. Notwithstanding, the perturbed state of
the liquid, at any moment over the time represents present and past inputs. This per-
turbed state gives the information to study or analyze many dynamic aspects of a
given environment [65].

Different analogies are used to describe an LSM; for example, electroencephalog-
raphy as a device, measures the brain activity to see the information about the state
of the brain [81]. Dropping objects into a liquid container and subsequently read-
ing the ripples created, allows one to know the form of this environment [82]. LSM
is compared with Support Vector Machines in [82]. Besides, when a spoon hits the
surface of the coffee or sugar cubes that drop into the cup, making perturbances [68].

LSM has a universal computational power for real-time computing with fading
memory over analog functions in continuous time. In figure 3.4 the input function
u(·) that can be a sequence of disturbances, is injected as input into the liquid filter
LM. A machine M maps the input functions of time u(·) generating, at every time t,
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an internal liquid state xM(t) as in equation 3.7.

xM(t) = (LMu)(t) (3.7)

This function corresponds to its current response to preceding perturbations to be
transformed by a memory-less readout map f M which transforms, at every time t,
the current liquid state xM(t) into an output function y(t) (see equation 3.8) of time,
which gives a real-time analysis of the u(·) [65].

y(t) = f M(xM(t)) (3.8)

Figure 3.4 shows the architecture of an LSM where an input function of time u(·)
is injected into the liquid filter LM (represented by a column [72]), subsequently at a
time t the representation of that input as liquid state xM(t) is formed. Afterward, the
liquid state is transformed by a memory-less readout f M to create an output y(t).

FIGURE 3.4: Architecture of an LSM. Adapted from [65]

Liquid State Machines (LSMs) are a model that can take advantage of recurrent
SNNs without training the network. Instead, a randomly reservoir (or liquid) is gen-
erated to be used as filter for a simple learning algorithm, for example a perceptron.
However many researchers have proposed some works where a liquid is trained be-
sides the output to solve the problem in which many random liquids are generated
until a useful liquid is found [83]. Some of these proposals involve unsupervised
learning, modifying the structure of the LSM, training the readout layer or evolving
some parameters of the LSM [72, 79, 81, 77, 84, 100, 87, 88].

LSMs are composed by two main components:
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• Liquid or reservoir, which is formed by a large recurrent SNN.

• Readout function that is distinguished because it can be designed by a simple
learning algorithm.

As is shown in Figure 3.5, an input signal is transformed into a function of time or
a series of spikes by means of some function. The spike train is introduced into the
liquid acting as filter. Thereafter, the state of the liquid (or state vector) at time t is
employed to feed the readout function, in other words, is used as input to train a
learning algorithm [81, 82].

FIGURE 3.5: Flow of a LSM. Taken from [81]

From the LSM study, emerge as necessary and sufficient conditions for powerful
real-time computing on perturbations: a separation property (SP) and approximation
property (AP).

• SP: addresses the amount of separation between the trajectories of internal
states of the liquid caused by two different input streams, i.e., the ability of
the liquid to discern different patterns when given different classes of inputs
[81].

• AP: addresses the resolution and recording capabilities of the readout layer, in
other words, the ability to classify the state vectors acquired from the liquid
[81].

3.3.1 Lambda Model Synaptic Connection

In [65], Maass proposed to use a randomly connected circuit or liquid, which is
formed by 135 I&F neurons, 20% of them are inhibitory. The liquid is structured
as a single column, similar as in Figure 3.4, locating them on integer points of a
15× 3× 3 column in space, and the connectivity structure is defined by means of the
probability of a synaptic connection from neuron i to neuron j (as well as a synaptic
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connection from neuron j to neuron i) by equation 3.9.

Pij = C · e−
(

D(i,j)
λ

)2

(3.9)

where the parameter λ controls the average number of connections and the average
distance between neurons that are synaptically connected, therefore λ can control
the density of the connection , D(i, j) is the Euclidean distance between neuron i and
neuron j, influenced independently by the type of neurons i and j, that is, whether
they are excitatory (E) or inhibitory (I).

A column with high λ, which means high internal connectivity, achieves higher
separation, in contrast a low λ, with lower internal connectivity, tends to chaotic
behavior.

3.4 Mono-objective Algorithms

Optimization is the task in which one or more solutions are found with the character-
istic that corresponds to minimizing or maximizing one or more specified objectives
and can satisfy all constraints if these exist. A mono-objective (or single-objective)
optimization problem involves a single objective function that usually gives a single
solution, called an optimal solution [101].

To solve the mono-objective optimization problems, the use of Evolutionary Op-
timization (EO) can be a tool that helps us because it involves a population of so-
lutions that upgrades over generations (at first this seems like overkill but helps to
provide implicit parallel search-ability making EO computationally efficient) [102].

EO has some principles [102] that provide a better understanding:

1. EO does not usually involv the use of gradient information during the search-
ing process, therefore EO approaches are direct search procedures, allowing
them to be applied to a wide variety of optimization problems.

2. EO procedure uses more than a single solution, forming a population approach
over an iteration. In addition, the population approach has certain advantages:
a) it provides a parallel processing power achieving a general computationally
quick search; b) it allows to find multiple optimal solutions; c) it provides the
ability to normalize decision variables as well as objective functions and con-
straint functions within a population during the evolving process using maxi-
mum and minimum values from the best population.

3. EO procedure employs stochastic operators, which tend to achieve a desired
effect by using biased probability distributions to reach desirable outcomes.
This provides to EO algorithm the ability to find multiple optima and other
complexities, better achieving a global perspective over the search process.

An Evolutionary Optimization algorithm starts its search with a population of so-
lutions usually randomly initialized within a certain lower and upper bound on
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each variable. Subsequently, the algorithm enters into an iterative operation (or
generations), which updates the current population to create a new population by
means of the use of four principal operators: selection, crossover, mutation, and
elite-preservation [102]. This procedure ends when one or more specific termination
criteria are met.

3.4.1 Particle Swarm Optimization

Particle Swarm Optimization [103] (PSO) is part of the family of swarm intelligence
algorithms, which are inspired from the collective behavior of species such as ants,
bees, wasps, fishes, etc. Swarm intelligence is based on the social behaviour of those
species that compete for food. The main characteristics of these inspired algorithms
are particles, which are simple, and non-sophisticated agents. These particles coop-
erate by an indirect communication medium, and perform movements in the de-
cision space [104]. PSO has as characteristic that each solution is called a particle
that moves through multidimensional space which represents the search space. The
search space depends on the dimension of the variables used to represent the prob-
lem to be solved [105, 106]. The position of each particle within the search space is
updated through its current location and its velocity vector (this vector tells how fast
the particle will move over each dimension).

Algorithm 1 details the template employed for PSO algorithm. In this thesis,
PSO algorithm was configured from OMOPSO algorithm (see section 3.5.1) as mono-
objective version.

Algorithm 1 PSO Algorithm
Require: Randomly initialization of the whole swarm
1: while stopping criteria is not met do
2: Evaluate each particle in the swarm
3: for each particle do
4: Fly
5: Mutation
6: Evaluate
7: Update pbest
8: end for
9: Update swarm

10: Store swarm optimized
11: crowding swarm, g = g + 1
12: end while

3.5 Multi-objective Algorithms

Multi-objective Optimization Problem (MOP) deals with more than one objective
function (usually these are in conflict with each other [107]), in other words, consists
in finding an optimal solution set such as to improve a solution does not worsen
other solution, then, this result forms a Pareto set. Two important goals of multi-
objective problems are defined in [108]:
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• 1) Convergence to the optimal Pareto set.

• 2) Maintenance of diversity of optimal Pareto set.

Both goals are independent of each other.
Many real search and optimization problems are naturally present as non-linear

programming problems with multiple objectives. Due to lack of adequate solution
techniques, such problems were artificially transformed into single-objective prob-
lems. A difficulty emerges because these problems give rise to a set of trade-off
optimal solutions known as Pareto-optimal solutions, instance of a single optimal so-
lution. Pareto-optimal solutions arises from the multi-objective optimization problem
with conflicting objectives, unlike the usual notion of only one optimal solution as-
sociated with a single-objective optimization task. Henceforth, it is important to find
as many Pareto-optimal solutions as possible [108].

In MOP, the objective functions form a multi-dimensional space, in addition to
the usual decision variable space common to all optimization problems. This addi-
tional space is known as the objective space Z [108], Ω in [109], S in [110]; Equation
3.10 is derived from [109, 111].

minimize F(~x) = ( f1(~x), f2(~x), ..., fk(~x))T

subject to gi(~x) ≤ 0, i = 1, ...m ∈ Ω
(3.10)

where Ω is the solution space, F : Ω → Rm constituted by the k objective functions,
and k ≥ 2. A MOP solution minimizes the components of a vector F(~x), where ~x
is an n-dimensional decision variable vector (~x = x1, ..., xn) ∈ Ω, and there are m
constraints. The MOP evaluation function F : Ω→ Rm maps decision variables ~x to
vectors (~y = a1, ..., ak). This scenario is shown and adopted from [111] in figure 3.6
which illustrates a particular case where n = 2, m = 0, and k = 3.
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FIGURE 3.6: MOP evaluation mapping

In a minimization problem, a vector x1 is partially less than another vector x2,
(x1 ≤ x2), when no value of x2 is less than x1 and at least one value of x2 is precisely
greater than x1. If x1 is partially less than x2, then the solution x1 dominates x2 or
the solution x2 is in f erior to x1. Any value of the solution that is not dominated by
any other value, it said to be non-dominated. In the same way if the objective is to
maximize a function, a dominated point is defined if the corresponding component
is not greater than that of a non-dominated point. The optimal solutions to a MOP
are non-dominated solutions, and there are know as Pareto-optimal solutions [107].
Some important concepts [112] of MOP are Pareto Concepts, such as Pareto Domi-
nance, Pareto Optimality, the Pareto Optimal Set and the Pareto Front are detailed
as follows:

• Pareto Dominance: A vector ~u = u1, ..., uk is said to dominate ~v = (v1, ..., vk),
denoted by ~u ≤ ~v iff: u is partially less than v, i.e., ∀i ∈

{
1, ..., k}, ui ≤ vi ∧ ∃i ∈{

1, ..., k} : ui ≤ vi.

• Pareto Optimality: A solution x ∈ Ω is said to be Pareto optimal with respect
to Ω if only if there is no x′ ∈ Ω for which ~v = F(x′) = ( f1(x′), ..., fk(x′))
dominates ~u = F(x′) = ( f1(x′), ..., fk(x′)). The term "Pareto optimal" is used to
refer to the whole decision variable space unless otherwise specified.

• Pareto Optimal Set: For a given MOP F(x), the Pareto optimal set (P∗) contains
the non-dominated solutions with respect to Ω.

P∗ :=
{

x ∈ Ω|¬∃x′ ∈ Ω F(x′) ≤ F(x)} (3.11)
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(P∗) has the non-dominated solutions or Pareto optimal solutions also known
as non-solutions, admissible or efficient solutions; their corresponding vectors are
called non-dominated.

• Pareto Front: For a given MOP F(x) and Pareto optimal set (P∗), the Pareto
front (PF∗) or PF contains the non-dominated solutions with respect to Ω.

PF∗ :=
{
~u = F(x) = ( f1(x), ..., fk(x))|x ∈ P∗} (3.12)

FIGURE 3.7: Pareto Front PF
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FIGURE 3.8: Pareto Optimal Solutions

Figure 3.7 shows the Pareto front formed by means of successively spread points
that represent the non-dominated solutions through the evaluation by two objec-
tives functions, and Figure 3.8 is a view of the representation of the concept for non-
dominated solutions (Pareto optimal solutions) and dominated solutions.

3.5.1 Optimized Multi-objective Particle Swarm Optimization

Optimized Multi-objective Particle Swarm Optimization (OMOPSO) was proposed
in [113] as an amelioration from [114]. OMOPSO is based on Pareto dominance and
elitism selection by means of a crowding factor, and also incorporated two mutation
operators: uniform mutation and non-uniform mutation. The first one, refers to vari-
ability range allowed for each decision variable, which is kept constant over gener-
ations. The second one, has a variability range allowed for each decision variable,
which decreases over time. Finally, the ε-dominance concept that is the final size
of the external file that stores the non-dominated solutions. Algorithm 2 shows the
OMOPSO algorithm.
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Algorithm 2 Optimized Multi-objective Particle Swarm Optimization
Require: Initialize Swarm Pi, Initialize Leaders Li

1: Send Li to ε- f ile
2: crowding(Li), g = 0
3: while g ≤ gmax do
4: for each particle do
5: Select Leader
6: Fly
7: Mutation
8: Evaluate
9: Update pbest

10: end for
11: Update Li

12: Send Li to ε- f ile
13: crowding(Li), g = g + 1
14: end while
15: Report results in ε- f ile

Algorithm 2 starts with a initial population Pi for i = 0 to n where n is the number
of particles. Then, it computes the non-dominated particles of Pi and stores them as
Li, which is saved in a ε- f ile. The maximum size of Li = Pi. When it is obtained Li,
the crowding factor is applied to each leader in Li and after, gmax is initialized.

Once gmax is defined, At each generation, for each particle a leader is selected
through a binary tournament, which is based on the crowding value of Li. Afterwards,
the algorithm compute the fly operator, i.e., the flight of each particle, the changes to
the velocity vector are solved by equation 3.13.

vi(t) = Wvi(t− 1) + C1r1(xpbesti − xi(t)) + C2r2(xgbest − xi(t)) (3.13)

where W = random(0.1, 0.5), C1,C2 = random(1.5, 2.0) and r1,r2 = random(0.0, 1.0).
Thereupon, the mutation operator is applied based on the subdivision of Pi. This
process divides Pi into three equal subsets, for each one a different mutation is ap-
plied. To the first subset the any mutation is applied, the uniform mutation is ap-
plied to the second subset, and to the last subset the non-mutation is used. In order
to avoid the definition of extra parameters for the mutation operators, the mutation
rate is define as 1/number of variables.

As next step is to evaluate the particle and update its personal best value (pbest).
A new particle replaces its pbest value if such value is dominated by the new particle
or if both are non-dominated with respect to each other. Once the particles have
been updated, Li is updated too, so to update the values in Li, only happens with
the particles that outperform their pbest value will try to enter to Li, and with this,
the ε- f ile is updated.

Finally, update the crowding values of Li, and eliminate as many leaders as nec-
essary in order to avoid exceeding the size of Li and follow the ε-dominance concept
to fix the maximum size of non-dominated solutions.
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A decision vector x1 is said to ε-dominate a decision vector x2 when ε ≤ 0 if only
if: fi(x1)/(1 + ε), ∀i = 1, ..., m and fi(x1)/(1 + ε) ≤ fi(x2) for at least one i = 1, ..., m.
It is worth nothing that, when ε-dominance is used, the size of the ε-file depends on
the ε-value, which is usually a parameter defined by a user [115]. In this algorithm,
the same value of ε is considered for all the objective functions of a given problem.
For each problem, ε is based on the desired amount of points in the final Pareto-front.

3.5.2 Multi-objective Evolutionary Algorithm based on Decomposition
with Dynamical Resource Allocation

Multi-objective Evolutionary Algorithm based on Decomposition with Dynamical
Resource Allocation (MOEA/D-DRA) developed in [116] is an improvement from
the algorithm MOEA/D detailed in [117]. This algorithm arises because last ver-
sions of MOEA/D propose to treat all subproblems as equal, in other words, each of
them gives similar or roughly the same amount of computational effort, and these
subproblems can have different computational difficulties, therefore is rational to as-
sign different amounts of computational effort to different problems. Consequently,
the aim with MOEA/D-DRA is to define and compute an utility πi for each sub-
problem i and thus, the computational efforts are distributed to the subproblems in
function of their utilities.

MOEA/D requires a decomposition approach for converting the problem of ap-
proximation of the PF into a number of scalar optimization problems. One of them
is the Tchebycheff (equation 3.14) [117] approach, which is employed in MOEA/D-
DRA as a method of decomposition.

minimize gte(x|λ, z∗) = max
1≤i≤m

{
λi| fi(x)− z∗i |}

subject to equation 3.10
(3.14)

where z∗ = (z∗1 , ..., z∗m)T is the reference point, i.e., z∗ = max
{

fi(x)|x ∈ Ω} (in case
the aim of MOP is minimization: z∗ = min

{
fi(x)|x ∈ Ω}) for each Pareto optimal

point x∗ there exists a weight vector λ (see Algorithm 3) such that x∗ is the optimal
solution of equation 3.14 and each solution is a Pareto optimal solution. Next, the
Algorithm 3 explains the MOEA/D-DRA algorithm.
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Algorithm 3 Multi-objective Evolutionary Algorithm based on Decomposition with
Dynamical Resource Allocation
Require: At each generation t, MOEA/D-DRA with Tchebycheff approach keeps:

• a population of N points x1, ..., xN ∈ Ω where xi is the current solution to the i-th subproblem.

• FV1, ..., FVN where FVi is the F-value of xi, i.e. FVi = F(xi) for each i = 1, ...N.

• z = (z1, ..., zm)T where zi is the best value found so far for objective fi.

• π1, ..., πN where πi utility of subproblem i.

• gen the current generation number.

Input

− Determinate the multi-objective problem to solve it.

− Set a stopping criteria.

− N is the number of the subproblems considered in MOEA/D-DRA.

− A uniform spread of N weight vectors: λ1, ..., λN .

− T is the number of weight vectors in the neighborhood of each vector.

Output
{

x1, ..., xN} and
{

F(x1), ..., F(xN)}.

Step 1 Initialization

Step 1.1 Compute the Euclidean distances between any two weight vectors and the find
the T closest weight vectors to each weight vector.

Step 1.2 Generate an initial population x1, ..., xN .

Step 1.3 Initialize z = (z1, ..., zm)T .

Step 1.4 Set gen = 0 and πi = 1 for all i = 1, ..., N.

Step 2 Selection of Subproblems for Search

Step 3 For each i ∈ I where I is formed in the previous step, do:

Step 3.1 - Selection of Mating/Update Range

Step 3.2 - Reproduction

Step 3.3 - Repair

Step 3.4 - Update of z

Step 3.5 - Update of Solutions

Step 4 Stopping Criteria

Step 5 gen=gen+1

End

Algorithm 3 requires, at each generation during the evaluation, a population of
N points, the F-value of xi, the best value zi found so far for each objective fi, the
utility πi of subproblem i and the current generation gen. In the beginning of the
algorithm, firstly it has to determinate the MOP, an stopping criteria, the number
N of the subproblems in MOEA/D-DRA, a uniform spread of N weight vectors (as
in [116]) λ1, ..., λN and T is the parameter that indicates the number of weighted
vectors in the neighborhood of each vector. At the end of the optimization, there are
expected

{
x1, ..., xN} and

{
F(x1), ..., F(xN)}.

Into the Step 1, four different steps are needed. Firstly, in Step 1.1 the Euclidean
distances are computed between any two weight vectors and the T closest weight
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vectors to each weight vector are found. For each i = 1, ...N, set B(i) =
{

i1, ..., iT}
where λi1 , ..., λiT are the T closest weight vectors to λi. Secondly, Step 1.2 Gen-
erates an initial population x1, ..., xN by uniformly randomly sampling from the
search space. Thirdly, Step 1.3 indicates to initialize z = (z1, ..., zm)T by setting
zi = min

{
fi(x1), fi(x2), ..., fi(xN)}. Finally, Step 1.4, set gen = 0 and πi = 1 for

all i = 1, ..., N.
Step 2, the selection of subproblems for search is given by the indexes of the

subproblems whose objectives are MOP individual objectives fi are selected to form
initial I. By using 10-tournament selections based on πi, select other [N

5 ]−m indexes
and add them to I. In 10-tournament selection, the index with the highest πi value
from 10 uniformly randomly selected indexes are chosen to enter I. This selection
should be done [N

5 ]−m times.
Step 3 indicates that into loop i ∈ I some steps are necessary to continue the

optimization. Step 3.1 is about the selection of mating/update range, given by gen-
eration of a number rand U ∼ (0, 1), then set

P =

B(i) if rand ≤ δ{
1, ..., N} otherwise

(3.15)

Reproduction is made in Step 3.2, where r1 = i is set and two indexes r2 and r3 are
randomly select from P (generated in equation 3.15), and then generate a solution
ȳ from xr1 , xr2 and xr3 by a DE operator, and then perform a mutation operator on
ȳ with probability pm to produce a new solution y. DE operator for each element
ȳk in ȳ = (ȳ1, ..., ȳn)T is given in equation 3.16 and the mutation operator generates
y = (y1, ..., yn)T detailed in equations 3.17 and 3.18 from ȳ.

ȳk =

xr1
k + F× (xr2

k − xr3
k ) with probability CR,

xr1
k , with probability 1− CR

(3.16)

where F and CR are two control parameters.

yk =

ȳk + σk × (bk − ak) with probability pm,

ȳk with probability 1− pm

(3.17)

with
σk =

{
(2× rand)

1
η+1 − 1 if rand ≤ 0.5 (3.18)

where rand is a uniformly random number from [0, 1]. The distribution index η and
the mutation rate pm are two control parameters. ak is the lower and bk is the upper
bound of the k-th decision variable, respectively.
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Chapter 4

Methodology

This section covers two proposal methodologies applied in this thesis. Firstly, it is
described a single spiking neuron, which is implemented as a LIF neuron and its
synaptic weights are optimized by the OMOPSO algorithm and the PSO algorithm.
Finally, an implementation of the concept of LSM with a liquid connected by proba-
bilities is optimized with the MOEA/D-DRA algorithm to find the optimal synaptic
weights and delays belonging to the linked neurons into the liquid.

4.1 Single Spiking Neuron with Multi-objective Optimiza-
tion

Two kinds of experiments were proposed:

1. A neuron trained by maximizing the inter distance of mean firing rates among
classes and minimizing the standard deviation of the intra firing rate of each
class.

2. In addition to the previous experiment, the dimension reduction of input vec-
tor besides of neuron training is proposed.

The LIF neuron model was implemented into jMetal [118, 119] where the OMOPSO
algorithm is available, which was used for training the LIF neuron. Furthermore,
the OMOPSO algorithm was configured as a mono-objective algorithm (PSO).

The design of this methodology is shown in figure 4.1. Initially, we set up the pa-
rameters of the OMOPSO algorithm and the LIF neuron model. Next, it is necessary
to initialize the particles and Leaders (Li) with uniformly random numbers to create
a swarm.

Each particle represents a synaptic weight vector (w̄) with the same size as the
feature input vector (x̄). Then, whole particles are evaluated into the LIF neuron
model, by means of the objective functions. The non-dominated particles in the
swarm will be Li, which are sent to ε- f ile. Besides this, a crowding factor for each Li

is calculated as a second discrimination criterion.
After, an Internal Loop is initialized into an External Loop, and each particle

into the Internal Loop is modified, updating the position and applying the mutation
operators. Then, each particle is evaluated and its personal best value (pbest) is
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updated. A new particle replaces the pbest if such value is dominated by the new
particle or if both are non-dominated concerning each other.

When all particles have been updated, the Li are modified in the External Loop.
Only the particles that overcome their pbest will try to enter into the Li set. Once the
Li have been updated, they are sent to ε- f ile.

Finally, the crowding values of the Li set are updated and we eliminate as many
leaders as necessary to avoid overflow the size of the Li set. The process is repeated
until finalizing all iterations.

FIGURE 4.1: Methodology scheme for LIF neuron optimization

4.1.1 Search Engine

A vector (w̄) is formed by the synaptic weights of the LIF neuron. This
vector is used to create a swarm into the PSO and OMOPSO algorithms described
in sections 3.4.1 and 3.5.1 respectively. The aim of applying these algorithms is to
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optimize the synaptic weights to find an optimal solution to be able to solve classifi-
cation problems.

4.1.2 Objective Functions

Three different objective functions were considered to guide the search
solution to measure the performance of each one (particles).

A. The Euclidean distance between the combination of AFRi and AFRj where
AFR is the average firing rate of each class and i 6= j. For this objective func-
tion, we look to maximize the separability between the classes.

MAX dist(AFRi, AFRj) (4.1)

B. The Standard Deviation of the firing rate for each pattern class SDFRk,
where k = 1, ..., K and K is the total of pattern classes. In this objective function,
we look to minimize the dispersion of each pattern class.

MIN(SDFRk) (4.2)

C. The dimension of the input feature vector (x̄). To avoid redundancies in
information, we desire to reduce the dimensionality of the feature vectors, by
minimizing the total of 1s of a binary mask (r̄) with the same size of the input
feature vector.

In our proposal, the number of objective functions is related to the number of
classes of the dataset employed to evaluate the methodology.

4.2 Liquid State Machine with Multi-objective Optimization

The structure layers of LSM are detailed in figure 4.2, where an input signal x is
transformed into spike trains through a 1D Coding layer of excitatory neurons, each
of them is randomly connected to 20% of neurons (just with excitatory neurons)
in the liquid. The liquid’s connectivity structure (see section 3.3.1) considers 4:1
ratio between excitatory and inhibitory SRM neurons. Once the liquid has been
simulated, a readout layer receives the signal from the neurons belonging to it. Then,
the way that the state of the liquid is described is driven by the time-to-first-spike
coding scheme allowing that the input spike trains are fed into a spatio-temporal
filter which accumulates the temporal information of all input signals into a single
high-dimensional intermediate liquid state [120, 75]. Hence, the high-dimensional
liquid states are provided to the readout layer aiming to train a linear classifier. In
this thesis, as a linear classifier, the Stochastic Gradient Descent (SGD) classifier (in
sci-kit learn [121]) was used.



34 Chapter 4. Methodology

FIGURE 4.2: LSM structure layers.

4.2.1 Data Temporal Encoding

For the sake of preserving the original dimensionality of the input patterns, we seek
the liquid to transform the pattern into high-dimensional states that describe it, in
this work the encoding scheme “1-D coding" [42, 99] is used in order to generate one
temporal value or firing time from a real value, allowing the original data dimension
to be retained the equation 4.3.

y( f ) =
[

b− a
range

× f
]
+

[
(a×M)− (b×m)

range

]
(4.3)

where y( f ) is the firing time value, f is the original feature value, a and b represent
the temporal coding lower and upper interval limits respectively, range = M−m is
the range of the original data, whereas M and m hold the maximum and minimum
bounds of the original data that f takes.

4.2.2 Search Engine

Once the structure of the liquid has been created by probability connections with
Lambda model (defined in section 3.3.1), a solution is formed into two parts: the
synaptic weights and the delays of each pair of neuron connections. In the first part,
all synaptic weights are located, then the delays. Figure 4.3 shows the design of a
solution since the synaptic weights and delays from the interconnected neurons into
the liquid, where wji and dji are denoted for the synaptic weight and delay respec-
tively. The pre-synaptic neuron into liquid is denoted by i and the post-synaptic
neuron by j.

In this work, the liquid structure is first mapped to a solution (vector) of real
values, which consists of the synaptic weights and delays of the whole synapses in
the liquid. A set of such solutions will form the population to be evolved by the
MOEA/D-DRA algorithm. The liquid was implemented into jMetalPy [122] to be
trained.
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FIGURE 4.3: Representation of a solution formed by two key parts:
synaptic weights and delays.

4.2.3 Objective Functions

Following the separation metric proposed in [74] and used in [81, 82] to determine the
effectiveness of a liquid, i.e., it refers to the ability of the liquid to produce discernibly
different patterns when given different classes of inputs [81]. Given that metric, we
propose an objective functions approach to address searching in the objective space,
which is considered to explore a Pareto set.

It is described as follows from two essential aspects: inter-class distance Cd, and
intra-class variance ρ(Om) defined by equations 4.4 and 4.6, respectively.

Firstly, it requires us to divide the whole of state vectors O generated through
the time-to-first-spike of each neuron belonging to the liquid into N subsets, Om,
one for each class, where N is the total number of classes. Individual state vectors
are represented by o.

MAX Cd = ||µ(Om)− µ(On)||2, m 6= n (4.4)

In equation 4.4, the L2-norm is computed, || · ||2, between the combination of the
center mass (equation 4.5) for every pair of classes where m 6= n. The objective
function aims to maximize the separability between the set of pattern classes.

µ(Om) =
∑on∈Om

on

|Om|
(4.5)

For clarity in equation 4.5, | · | refers to the cardinality of a set.
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In equation 4.6, ρ(Om) refers to computing the average amount of variance for
each state vector within the class m from the center of mass for that class. Concerning
to this objective function, it wants to minimize the spread of state vectors belonging
to each pattern class.

MIN ρ(Om) =
∑on∈Om

||µ(Om)− on||2
|Om|

(4.6)

In this thesis, the number of objective functions is related to the dataset’s number of
classes.
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Chapter 5

Experiments and Results

This chapter covers the results obtained from the methodology described in chap-
ter 4. Once the Theoretical Background and Methodology have been studied, two
experimentations are proposed. For the sake of evaluating the performance of each
experimentation, the results are carefully analysed and explained.

5.1 Experimental Design

First experimentation details the results from the comparison between the optimiza-
tion of a single spiking neuron with mono-objective and multi-objective approaches.

5.1.1 Design of Experimentation

Four datasets from the UCI Machine Learning Repository [123] were employed for
the experimentation: Glass, Iris Plant, SPECT and Wine. Table 5.1 shows the details
of the datasets used.

Each dataset was randomly divided in two subsets with approximately the same
size. The first one was employed as training set and the second one as testing set.

TABLE 5.1: Datasets employed for experimentation

Dataset Instances Classes Features

Glass 214 6 9
Iris Plant 150 3 4
SPECT 267 2 22
Wine 178 3 13

With the aim to observer the performance of this proposal, four experiments
were configured according to the objective functions seen in section 4.1.2. The char-
acteristics of each experiment are defined below and summarized in table 5.2.

• Experiment #1 (Exp #1) was defined as multi-objective problem, focusing on
the A and B objective functions. The OMOPSO algorithm was used to optimize
the synaptic weight vector of the LIF neuron.
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• Experiment #2 (Exp #2) employs the multi-objective approach, considering the
A, B and C objective functions. The OMOPSO algorithm was taken to optimize
the synaptic weight vector and the dimension of the input vector. Concerning
the optimization of the last parameter, a binary mask (r̄) was used in equation
3.3 to calculate a modified input current given by equation 5.1.

I = x̄ · w̄ · r̄ · θ (5.1)

• Experiment #3 (Exp #3) was designed as a mono-objective problem. The objec-
tive function (equation 5.2) was formed by the weighted sum of two objective
functions. The first one is the inverse of the summation of the Euclidean dis-
tances among all combinations of AFRi and AFRj, and the second objective
is the sum of the standard deviation of the firing rate for all classes [47]. PSO
algorithm was used to design the synaptic weight vectors.

MIN( f ) =
1

dist(AFR)
+

K

∑
k=1

SDFRk (5.2)

• Experiment #4 (Exp #4) is a mono-objective approach that seeks to optimize
the synaptic weight vector and the dimension of the input vector by means
of the PSO algorithm. The objective function (equation 5.3) is formed by the
weighted sum in equation 5.2 and the rate of T and D, where T is the total of
1s in the binary mask r̄ and D is the dimension of the input feature vector.

MIN( f ) =
1

dist(AFR)
+

K

∑
k=1

SDFRk +
T
D

(5.3)

TABLE 5.2: Configuration for experimentation

Algorithm
Optimized
Parameters

Objective
Function

Exp #1 OMOPSO
synaptic weight

vector
A, B

Exp #2 OMOPSO

synaptic weight
vector and

dimension of input
vectors

A, B, C

Exp #3 PSO
synaptic weight

vector
A, B

Exp #4 PSO

synaptic weight
vector and

dimension of input
vectors

A, B, C
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Table 5.3 shows a compendium of the number of objective functions by experi-
ment for each dataset.

TABLE 5.3: Total of Objective Functions by experiment

Dataset Classes Exp #1 Exp #2 Exp #3 Exp #4

Glass 6 21 22 1 1
Iris Plant 3 6 7 1 1
SPECT 2 3 4 1 1
Wine 3 6 7 1 1

Each experiment consisted of 40 independently executions per dataset, to guar-
antee statistical significance. The parameters values used in the OMOPSO algorithm
and the LIF neuron model [47] are detailed in tables 5.4 and 5.5 respectively.

TABLE 5.4: Configuration OMOPSO Parameters

Max particle size: 100
Max iterations: 1000

ε-file size: 100

Uniform Mutation
Mutation probability: 1.0

Number o f problem variables

Perturbation index: 0.5

Non-uniform Mutation
Mutation probability: 1.0

Number o f problem variables

Perturbation index: 0.5
Max iterations: 1000

TABLE 5.5: Configuration LIF Parameters

a 0.5
b -0.001
c -50 mV
vi -60 mV

vthreshold 50 mV
Time 1000 ms

h 1
θ 0.1

The initial synaptic weights were generated randomly ∈ [0, 1].

5.1.2 Experimental Results

For each execution, at the end of the training phase, the total of particles are evalu-
ated in the LIF neuron model using the training set, and the classification accuracy
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is calculated for each particle. Finally, the particle with the best performance is used
in the testing phase to obtain the accuracy in the testing set.

Tables 5.6 and 5.7 show the results obtained, where the accuracy values along
with the standard deviations grade the performance in the experiments. The accu-
racy of the training phase corresponds to the average of the performance of the best
particles obtained in each experiment, whereas the accuracy of the testing phase is
obtained from the average of the performance of these particles applied to the testing
set. The highest accuracy values are marked in bold font.

TABLE 5.6: Accuracy of training phase over each experiment

Dataset Exp #1 Exp #2 Exp #3 Exp #4

Glass 0.5050 ± 0.0441 0.5031 ± 0.0405 0.39 ± 0.0030 0.3638 ± 0.0726
Iris Plant 0.9817 ± 0.0131 0.9793 ± 0.0157 0.9 ± 0.0232 0.8987 ± 0.0219
SPECT 0.8592 ± 0.0243 0.8286 ± 0.0227 0.7276 ± 0.0325 0.7273 ± 0.0344
Wine 0.7858 ± 0.0358 0.8048 ± 0.0336 0.6849 ± 0.0432 0.6986 ± 0.0301

TABLE 5.7: Accuracy of testing phase over each experiment

Dataset Exp #1 Exp #2 Exp #3 Exp #4

Glass 0.3516 ± 0.1141 0.3695 ± 0.1163 0.3472 ± 0.0947 0.3594 ± 0.0960
Iris Plant 0.94 ± 0.0383 0.9543 ± 0.0220 0.9003 ± 0.0355 0.8883 ± 0.0303
SPECT 0.7043 ± 0.1051 0.7019 ± 0.1006 0.7157 ± 0.0545 0.7073 ± 0.0523
Wine 0.7322 ± 0.0604 0.7397 ± 0.0610 0.6706 ± 0.0505 0.6858 ± 0.0451

Table 5.8 shows the average amount of input features employed by the LIF neu-
ron model and its corresponding ratio concerning the total size of the original input
feature vector.

TABLE 5.8: Analysis of reduction of features of input vector

Exp #2 Exp #4

Dataset
Average number of
features employed

Ratio of features
used

Average number of
features employed

Ratio of features
used

Glass 5.550 ± 1.999 0.617 6.00 ± 1.377 0.667
Iris Plant 2.575 ± 0.747 0.640 3.050 ± 0.221 0.760
SPECT 10.325 ± 5.677 0.469 21.675 ± 0.562 0.985
Wine 8.475 ± 3.266 0.652 5.850 ± 1.902 0.450

5.1.3 Statistical Analysis

Several statistic tests were applied to the results shown in the previous section.
Firstly, Shapiro-Wilk test was executed to identify the normality of our data, this
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will define the kind of parametric or non-parametric tests to be used along with our
data, it means to check if the data follows a normal distribution. Shapiro-Wilk is a
normality test published in 1965 by Samuel Sanford Shapiro and Martin Wilk [124]
where they focus to find if a data set follows a normal distribution. Shapiro-Wilk test
has proven to be able to detect a dimension anomaly for an wide variety of statistical
distributions, besides those with Gaussian kurtosis values, which has been recom-
mended as a stronger normality general test. This test is based on a correlation of
sample "order statistic" with those of a normal distribution [125].

Statistical Analysis was divided into two sections; the results from statistic tests
for the Training phase are shown and discussed. Subsequently, the results of statistic
tests computed in the Testing phase are analyzed.

Training phase statistical analysis

In Shapiro-Wilk test, the null-hypothesis (H0) states the samples come from a normal
distribution. In Table 5.9, for a significance level α = 0.05, the p-values obtained
show that approximately half of the results do not reject H0, but the rest of the results
reject H0. Therefore, non-parametric statistic tests were applied.

TABLE 5.9: Shapiro-Wilk test in Training phase

OMOPSO PSO
Experiments Experiments

Dataset #1 #2 #3 #4

Iris Plant
0.0002868

H0 is
rejected

0.000761
H0 is

rejected

0.1257
H0 is not
rejected

0.189
H0 is not
rejected

Wine
0.6275

H0 is not
rejected

0.0407
H0 is

rejected

0.08713
H0 is not
rejected

0.3317
H0 is not
rejected

Glass
0.0002413

H0 is
rejected

0.001126
H0 is

rejected

6.64E-14
H0 is

rejected

1.09E-11
H0 is

rejected

SPECT
0.06032

H0 is not
rejected

0.07665
H0 is not
rejected

0.3015
H0 is not
rejected

0.09427
H0 is not
rejected

Non-parametric statistical tests

Non-parametric tests to be used along with our data. These tests were applied by
means of CONTROLTEST [126] package tool for comparison between experiments.
Specifically, three non-parametric tests were applied: Friedman, Friedman Aligned
Ranks, and Quade. In these tests, the null-hypothesis (H0) states that the data of
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the experiments follow the same distribution [126] (there is no difference in their
performance).

Table 5.10 reports the average ranks obtained from these statistical tests on all the
experiments. The smaller values in bold font, indicate that Experiment #1 obtained
the best performance consistently.

TABLE 5.10: Average rankings of the experiments for the Training
phase

Experiment Friedman
Friedman Aligned

Ranks Quade

#1 1.25 4.0 1.2
#2 1.75 5.0 1.80
#3 3.25 12.25 3.199
#4 3.75 12.75 3.8

Table 5.11 shows the p-value for each statistical test and the sentence correspond-
ing to the status of H0 for a significance level α = 0.05. If the p-value is greater than
α indicates that there does not exist evidence to reject H0. Therefore, the tests Fried-
man and Quade rejected H0. However, these results do not give enough information
to select the best experiment, and it was necessary to perform a post-hoc procedure.
From Table 10, Experiment #1 was taken as the control experiment.

TABLE 5.11: Contrast the null-hypothesis in Training phase

Statistical Test p-value Hypothesis Testing

Friedman 0.01694
H0 is

rejected

Friedman Aligned
Ranks

0.3806
H0 is not
rejected

Quade 1.04E-04
H0 is

rejected

Table 5.12 shows the results of the post-hoc procedure, where the p-values were
adjusted by Holm′s correction. For α = 0.05, the adjusted p-values for the compar-
ison between the control experiment and the Experiments #3 and #4 show that the
Experiment #1 obtained better performance.

TABLE 5.12: Adjusted p-values by Holm’s correction for Training
phase

Friedman Quade
Experiment Holm Holm

#1 vs #4 0.01667 0.01667
#1 vs #3 0.025 0.025
#1 vs #2 0.05 0.05
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Testing phase statistical analysis

In Shapiro-Wilk test, the null-hypothesis (H0) states the samples come from a normal
distribution. Table 5.13 shows the results where the p-values were contrasted with
a significance level of α = 0.05. The p-values obtained show that five results reject
H0, and eleven results do not reject H0. Then, non-parametric statistic tests were
applied.

TABLE 5.13: Shapiro-Wilk test in Testing phase

OMOPSO PSO
Experiments Experiments

Dataset #1 #2 #3 #4

Iris Plant
0.05354

H0 is not
rejected

0.02317
H0 is

rejected

0.4062
H0 is not
rejected

0.2015
H0 is not
rejected

Wine
0.4185

H0 is not
rejected

0.4515
H0 is not
rejected

0.4542
H0 is not
rejected

0.2932
H0 is not
rejected

Glass
0.06616

H0 is not
rejected

0.00249
H0 is

rejected

4.17E-08
H0 is

rejected

4.71E-07
H0 is

rejected

SPECT
0.002891

H0 is
rejected

0.08466
H0 is not
rejected

0.7195
H0 is not
rejected

0.07491
H0 is not
rejected

Non-parametric statistical tests

Non-parametric tests to be used along with our data. These tests were applied by
means of CONTROLTEST [126] package tool for comparison between experiments.
Specifically, three non-parametric tests were applied: Friedman, Friedman Aligned
Ranks, and Quade. In these tests, the null-hypothesis (H0) states that the data of the
experiments follow the same distribution [126].

Table 5.14 shows the average ranks obtained from Friedman, Friedman Aligned
Ranks and Quade tests for all the results. In the three tests, the smaller average
ranks, in bold font, specify that Experiment #2 had the best performance.

TABLE 5.14: Average rankings of the experiments for the Testing
phase

Experiment Friedman
Friedman Aligned

Ranks Quade

#1 2.5 6.5 2.3
#2 1.75 4.75 1.2999
#3 3.0 11.75 3.4
#4 2.75 11.0 3.0
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Table 5.15 shows the p-value for each statistical test The significance level was set
to α = 0.05. Quade test rejects H0. Nonetheless, this result does not present enough
information to choose the best experiment. So, a post-hoc procedure was carried
out. From Table 14, Experiment #2 was used as the control experiment.

TABLE 5.15: Contrast the null-hypothesis in Testing phase

Statistical Test p-value Hypothesis Testing

Friedman 0.5519
H0 is not
rejected

Friedman Aligned
Ranks

0.3632
H0 is not
rejected

Quade 0.0381
H0 is

rejected

Table 5.16 shows the results of the post-hoc procedure for Quade test, where p-
values were adjusted by Holm′s correction. The p-values were compared against a
significance level of α = 0.05. The p-values for the comparison between the control
experiment and the Experiment #3 and #4 show that the Experiment #2 had better
performance.

TABLE 5.16: Adjusted p-values by Holm’s correction for Testing
phase

Quade
Experiment Holm

#2 vs #4 0.01667
#2 vs #3 0.025
#2 vs #1 0.05

5.1.4 Discussion

In this first experimentation, a methodology for training full and partially connected
LIF spiking neurons is shown, using the OMOPSO algorithm and PSO algorithm
for solving pattern recognition problems. The experiments were designed under
a multi-objective approach and their results were compared statistically with the
results of mono-objective experiments. Each experiment was tested on four well-
known benchmark datasets by performing 40 independent executions for each dataset.
The results have shown that the Experiments #1 and #2 obtained the best perfor-
mances in the Training and Testing phases, respectively. Therefore, the multi-objective
approach provides an adequate alternative to optimize LIF spiking neurons. One
interesting characteristic of this experimentation consists on the reduction of dimen-
sionality of the input feature vectors to avoid redundancies in the input information.
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5.2 Second Experimentation

This section details the results obtained from the optimization of LSM’s parameters
and these are compared with an SNN-based classifier in the state of art.

5.2.1 Design of Experimentation

Twelve supervised classification datasets which can be obtained from the UCI Ma-
chine Learning Repository [123] were employed in this experimentation: Balance
Scale, Blood Transfusion Service Center (Blood), Breast Cancer Wisconsin (Breast
Cancer), Japanese Credit Screening (Card), Pima Indians Diabetes (Diabetes), Fertil-
ity, Glass, Ionosphere, Iris Plant, Liver, Parkinson, and Wine. Table 5.17 shows the
details of each dataset employed.

TABLE 5.17: Datasets description

Dataset Instances Classes Features

Balance Scale 625 3 4
Blood 748 2 4
Breast Cancer 683 2 9
Card 653 2 15
Diabetes 768 2 8
Fertility 100 2 9
Glass 214 6 9
Ionosphere 351 2 33
Iris Plant 150 3 4
Liver 345 2 6
Parkinson 195 2 22
Wine 178 3 13

Each dataset was randomly divided into two subsets with approximately the
same size and similar quantity of samples into each. The first one was used as train-
ing set to optimize the liquid through evolutionary optimization and the second one
as testing set to prove the performance of the best solution found by the evolutionary
optimization.

With the aim to observe the performance of our proposal, an experimental design
was conducted to compare our proposal’s performance against a previous method
developed in [99] for deploying SNN-based classifiers.

Experimental design with Multi-objective approach and SNN-based classifiers: In this
experiment we compared our multi-objective approach through the MOEA/D-DRA
algorithm, optimizing the synaptic weights and delays generated by the intercon-
nected neurons in the liquids and the configurations’ SNN-based classifiers: Gamma
1 (γ1) and Gamma 2 (γ2), detailed in [99].

Table 5.18 shows our configurations for this experimental design.
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TABLE 5.18: Configurations of the experimental design with Multi-
objective approach and SNN-based classifiers.

Configuration Liquid Algorithm
Objective
Functions

MOEA/D-DRA Lambda Lambda model MOEA/D-DRA
MAX Cd

MIN ρ(Om)

Gamma 1 -
Differential
Evolution

MIN Squared error

Gamma 2 -
Differential
Evolution

MIN Accuracy error

In order to achieve statistical significance we executed 33 independent runs in
our experimental design.

Table 5.19 reports the number of objective functions implemented to be opti-
mized by the MOEA/D-DRA algorithm in the experiments.

TABLE 5.19: Total of objective functions to optimize with MOEA/D-
DRA by each dataset.

Dataset Classes
Total of

Objective Functions

Balance Scale 3 6
Blood 2 4
Breast Cancer 2 4
Card 2 4
Diabetes 2 4
Fertility 2 4
Glass 6 21
Ionosphere 2 4
Iris Plant 3 6
Liver 2 4
Parkinson 2 4
Wine 3 6

Specific parameters used in our experiments are described as follows:

• Temporal Encoding: a = 0.01, and b = 10.

• SRM model: threshold θ = 1 mV, τ = 9, synaptic weight range ∈ [0.0001, 10],
and delay range ∈ [0.0001, 10]ms.

• Liquid with Lambda model: liquid size=50 neurons, excitatory neurons= 80%
and inhibitory neurons= 20%, simulation time= 15 ms, λ = 2, value of C for
each type of synapses are set as CEE = 0.3, CEI = 0.2, CIE = 0.4, CI I = 0.1, and
the probability that neurons from the 1D Coding Layer connect towards the
liquid’s excitatory neurons is 20% with synaptic weight range ∈ [0.00001, 1.0],
and column size 5× 5× 2.
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• MOEA/D-DRA: population size= 100, call functions= 10000, F = 0.5, Cr =

1.0, K = 0.5, neighbor size= 20, neighbor selection probability= 0.9, variables
range∈ [0.0001, 10.0], mutation operator= Polynomial Mutation, mutation dis-
tribution index= 20, and aggregative function= Tschebyche f f .

SGD classifier parameters are used by defaults configuration in sci-kit learn.

5.2.2 Experimental Results

To measure our configuration’s accuracy performance, every solution from the opti-
mal Pareto set is tested using the training set. Once the liquid is simulated with each
solution over that dataset, the state vectors are obtained. Then these feed SGD, and
finally, the training performance accuracy is calculated for each solution. The test-
ing set is used to find the best performance in the liquid obtained from the previous
step. Liquid’s state vectors are computed and fed into the SGD classifier to calculate
the testing performance accuracy.

A multi-objective approach is taken to compare against a grammatical evolution
(GE)-based methodology (see [99] for more details) to automatically design spik-
ing neural networks (SNNs) (referred in this work as SNN-based classifiers). Both
methodologies are used to solve pattern classification problems. The comparison
can be seen in Table 5.20 and 5.21, both tables show the performance accuracy and
standard deviation in the training and testing phase for the same classification prob-
lems.
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TABLE 5.20: Accuracy (Mean±Std.Dev) of Training and Testing
phase for Balance Scale, Blood, Breast Cancer, Card, Diabetes and Fer-

tility datasets.

Dataset Configuration Training accuracy Testing accuracy

Balance
MOEA/D-DRA Lambda 0.9509±0.0080 0.8916±0.0187

Gamma 1 0.8528±0.0197 0.8346±0.0261
Gamma 2 0.8960±0.0062 0.8647±0.0134

Blood
MOEA/D-DRA Lambda 0.8134±0.0132 0.7739±0.0214

Gamma 1 0.776±0.0076 0.7618±0.0088
Gamma 2 0.7957±0.0145 0.7685±0.0155

Breast Cancer
MOEA/D-DRA Lambda 0.9858±0.0055 0.9607±0.0114

Gamma 1 0.9574±0.0111 0.9384±0.0140
Gamma 2 0.9749±0.0062 0.9478±0.0117

Card
MOEA/D-DRA Lambda 0.8861±0.0127 0.8439±0.0166

Gamma 1 0.8740±0.0134 0.8596±0.0197
Gamma 2 0.8879±0.0120 0.8535±0.0166

Diabetes
MOEA/D-DRA Lambda 0.7824±0.0180 0.7232±0.0263

Gamma 1 0.7810±0.0153 0.7370±0.0152
Gamma 2 0.7902±0.0134 0.7389±0.0205

Fertility
MOEA/D-DRA Lambda 0.9758±0.0240 0.8236±0.0463

Gamma 1 0.9455±0.0199 0.8479±0.0462
Gamma 2 0.9370±0.0131 0.8236±0.0484
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TABLE 5.21: Accuracy (Mean±Std.Dev) of Training and Testing
phase for Glass, Ionosphere, Iris Plant, Liver, Parkinson and Wine

datasets.

Dataset Configuration Training accuracy Testing accuracy

Glass
MOEA/D-DRA Lambda 0.7567±0.0324 0.5715±0.0483

Gamma 1 0.4895±0.0574 0.4351±0.0476
Gamma 2 0.7126±0.0190 0.6186±0.0413

Ionosphere
MOEA/D-DRA Lambda 0.9491±0.0147 0.8783±0.0236

Gamma 1 0.9351±0.0182 0.8907±0.0240
Gamma 2 0.9616±0.0113 0.9015±0.0201

Iris Plant
MOEA/D-DRA Lambda 0.9943±0.0093 0.9398±0.0237

Gamma 1 0.9794±0.0123 0.9325±0.0164
Gamma 2 0.9923±0.0074 0.9358±0.0261

Liver
MOEA/D-DRA Lambda 0.7717±0.0239 0.6385±0.0420

Gamma 1 0.7472±0.0183 0.6723±0.0302
Gamma 2 0.7636±0.0196 0.6612±0.0295

Parkinson
MOEA/D-DRA Lambda 0.9032±0.0196 0.8089±0.0402

Gamma 1 0.9025±0.0266 0.8380±0.0387
Gamma 2 0.9200±0.0172 0.8494±0.0377

Wine
MOEA/D-DRA Lambda 1±0 0.9326±0.0326

Gamma 1 0.9318±0.0285 0.862±0.0491
Gamma 2 0.9638±0.0164 0.8684±0.0458

Tables 5.20 and 5.21 suggest our multi-objective approach achieved better perfor-
mance when learning the data. MOEAD/D-DRA Lambda was better in 8 datasets,
and Gamma 2 configuration was better in the rest of the datasets. For the testing
phase in 5 times MOEA/D-DRA Lambda was better, it was followed by Gamma 2 in
four occasions and Gamma 1 in the rest of datasets. Figures 5.1 and 5.2 show the per-
formance (shown as boxplots) in the testing phase of our multi-objective approach,
which shows that it has similar performance to that of the SNN-based classifiers
configurations, even the standard deviations are similar too.

The heat-maps in figures 5.3 and 5.4 show the state vectors from the best solu-
tion obtained by our MOEA/D-DRA Lambda configuration with the patterns of the
training set and testing set, respectively. It can be observed that the liquid has great
separability between classes from the Breast Cancer dataset. In the x-axis, the state
vector obtained for each pattern is located, and each neuron from the liquid con-
forms the y-axis. Then, the time-to-first-spike of each neuron by each pattern class
is illustrated. An intense red colour represents the value of -1; it means that the neu-
ron did not generate a spike. The variation of colour is composed of the time spike
evoked during the simulation as is indicated in the right side of the heat-map, being
purple the colour corresponding to the farthest time to generate a spike.
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FIGURE 5.1: Boxplots of the performance in Testing phase for the
Multi-objective approach and SNN-based classifiers on the Balance

Scale dataset, MOEA/D-DRA Lambda (MOEA/D-DRA-L).
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FIGURE 5.2: Boxplots of the performance in Testing phase for the
Multi-objective approach and SNN-based classifiers on the Breast
Cancer dataset: To refers MOEA/D-DRA Lambda (MOEA/D-DRA-

L).

A statistical analysis of this behaviour is presented in the next section.
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FIGURE 5.3: State Vectors for Breast Cancer dataset with MOEA/D-
DRA Lambda configuration in Training phase

FIGURE 5.4: State Vectors for Breast Cancer dataset with MOEA/D-
DRA Lambda configuration in Testing phase
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5.2.3 Statistical Analysis

Non-parametric tests

Parametric statistical tests are commonly used to measure and contrast the perfor-
mance of heuristic methods. However, these tests assume independence, normality
and homoscedasticity of the gather data, which are not guaranteed in the case of
meta-heuristic algorithms. Shapiro-Wilk test is used to check if the data follows a
normal distribution [124, 125]. Non-parametric statistical test deals with this limi-
tation and can be used for comparing heuristic approaches. In this thesis, we used
CONTROLTEST [126] which is a tool specially designed for non-parametric compar-
ison among heuristic algorithms to apply several rank tests to our data, these non-
parametric tests are analogue to a two-way analysis of variance or ANOVA. The first
one; Friedman test is used to identify if at least 2 samples from a bigger set represent
populations with different median values. Therefore, it is a multiple-comparisons
tests which objective is to detect significant differences between the performance of
two or more heuristic algorithms. In addition to the Friedman test and to corrobo-
rate our findings, we use the Alignment Friedman test which uses a value of location
computed as the average performance achieved by all algorithms in each problem.
Finally; a Quade test is applied. This test considers that some problems might be
more difficult than others. Accordingly this difficulty, the Quade test assigns a re-
ward value to the winner algorithm of an instance where other algorithms exhibit a
wide dispersion in their results. All these tests consider ranks, therefore, the lower
the reported value, the better the performance achieved. The null-hypothesis H0 for
each tests states equality of medians between the populations [127, 128].

Multi-objective approach and SNN-based classifier

To contrast our work and a previous relevant paper in the state of the art (SNN-
based classifier), we conducted a statistical analysis to determine if there exists an
improvement between our proposal and published work. Following the same exper-
imental design (explained in the previous section), we conducted a Shapiro-Wilk test
to assess the normality of the data. Table 5.22 shows that for some configurations,
the null-hypothesis (H0) is rejected (with a significance level α = 0.05). Therefore we
cannot assume that all the results follow a normal distribution; three non-parametric
statistical tests were applied to deal with this limitation.
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TABLE 5.22: Shapiro-Wilk test in Testing phase for comparison be-
tween multi-objective configurations and SNN-based classifier over

each dataset.

Dataset MOEA/D-DRA Lambda Gamma 1 Gamma 2

Balance Scale
0.3298

H0 is not rejected
0.09717

H0 is not rejected
0.008865

H0 is rejected

Blood
0.4477

H0 is not rejected
1.71E-06

H0 is rejected
0.3235

H0 is not rejected

Breast Cancer
0.08371

H0 is not rejected
0.101

H0 is not rejected
0.4931

H0 is not rejected

Card
0.09307

H0 is not rejected
0.0006931

H0 is rejected
0.7892

H0 is not rejected

Diabetes
0.05583

H0 is not rejected
0.08288

H0 is not rejected
0.2633

H0 is not rejected

Fertility
0.002926

H0 is rejected
0.0002584

H0 is rejected
0.1889

H0 is not rejected

Glass
0.2422

H0 is not rejected
0.6466

H0 is not rejected
0.3063

H0 is not rejected

Ionosphere
0.4081

H0 is not rejected
0.06188

H0 is not rejected
0.2823

H0 is not rejected

Iris Plant
1.99E-05

H0 is rejected
0.04726

H0 is rejected
0.1523

H0 is not rejected

Liver
0.04725

H0 is rejected
0.7064

H0 is not rejected
0.4467

H0 is not rejected

Parkinson
0.32

H0 is not rejected
0.008275

H0 is rejected
0.0005978

H0 is rejected

Wine
0.006471

H0 is rejected
0.3396

H0 is not rejected
0.6751

H0 is not rejected

Table 5.23 details the ranks computed for Friedman, Aligned Friedman and Quade
tests. These tests are commonly employed when the assumption of normality in the
data cannot be guaranteed. The lower ranks, in bold font, specify that Gamma 2 con-
figuration achieved the best performance. The MOEA/D-DRA Lambda is located in
the second place with respect to the performance.

TABLE 5.23: Ranks of experiments according to Friedman, Aligned
Friedman and Quade Tests for Testing phase.

Experiment Friedman Aligned Friedman Quade

MOEA/D-DRA Lambda 2.0416 18.3750 2.0576
Gamma 1 2.25 20.6666 2.2884
Gamma 2 1.7083 16.4583 1.6538

The p-value for each test is shown in Table 5.24. The significance level α was set
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to 0.05. Aligned Friedman test rejects the null-hypothesis (H0) which dictates that
all the data samples follow the same distributions.

TABLE 5.24: p-values of non-parametric tests.

Statistical Test p-value Hypothesis Testing

Friedman 0.4259
H0 is not
rejected

Aligned Friedman 0.0098
H0 is

rejected

Quade 0.3973
H0 is not
rejected

Then, this statistical evidence suggests that Gamma 2 achieved better results in
the ranks than the rest of configurations, but the comparison of p − values against
the significance level α indicates that Friedman and Quade tests states the all the
data samples follow the same distribution. It means that our proposal had less per-
formance than SNN-based classifiers.

5.2.4 Discussion

This experimental design was compared through a rigorous statistical analysis, which
indicates that the multi-objective approach does not show statistically significant dif-
ferences in contrast with SNN-based classifiers to solve pattern classification prob-
lems. But it can be underlined that an initial proposal, during the training phase has
had better performance than two Gamma configurations. Nevertheless, in testing
phase our proposal has failed at generalizing performance. In addition, we propose
another method to extract the state of the liquid, employing the time-to-first-spike
of each neuron after liquid’s simulation. With this way to draw a high-dimensional
vector, it can be observed that the liquid produces great separability between classes.

Our results just employ 1% of the call functions required by the SNN-based clas-
sifiers, it means less computation power than SNN-based classifiers, which used
one million of call functions in the evolutionary procedure. In this work, using just
a small quantity of the computation power required by SNN-based classifiers, we
have obtained interesting results given a fascinating property of MOEAs, which is
the capability to explore the solution space given a Pareto set approximation in a
single run without much effort [129]. MOEA/D-DRA explores a wider area of the
solution space giving as result an optimal Pareto Front instead of finding a single
optimal solution.
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Chapter 6

Conclusions & future work

In this work, Spiking Neural Networks parameter’s are optimized through a Multi-
objective Optimization approach to solve pattern classification problems.

The evolutionary multi-objective approach has been used as an option to opti-
mize a large number of parameters belonging to the third generation of neural net-
works. Initially, to prove the efficiency of this approach, a single spiking neuron (LIF
neuron) was optimized by means of a swarm multi-objective algorithm (OMOPSO),
showing better results than a swarm mono-objective algorithm (PSO). In addition, a
proposal to reduce the input connections to this neuron was presented. The reduc-
tion of the input vector was employed in the two approaches.

By analyzing statistically the obtained results, the multi-objective approach shows
that by itself achieves better classification performances than mono-objective ap-
proach, improving when we apply reduction of the input vector, which means better
performance with less computation power required. Then, with OMOPSO, better
solutions are found due to it explore more efficiently the search space than PSO.

Three characteristics are important about our proposed objective functions that
are in favour of using the LIF neuronal model: Firstly, neuron’s average firing rate
by each class and the dispersion of firing rates within each class. By maximizing
Euclidean distance between the averages of the firing rate, the separability between
each class is sought, the greater the distance between each average firing rate, the
greater the separability between classes. Secondly, by minimizing the dispersion of
firing rates within each class, the patterns belonging to one class are sought to be
close to each other. By means of these two observations, we seek to guide neuron’s
synaptic weight vector through the search space. Finally, the minimization of the
amount of input data received by the neuron through the design of a binary mask,
it look to reduce the computational cost from the training process and avoiding re-
dundancy in the data injected into the spiking neuron. In this way, a set of optimal
solutions is obtained, formally known as the Pareto-optimal Front.

Since the previous experimentation, favorable results were obtained using the
multi-objective approach to optimize a SNN, in this thesis we proposed to optimize
all synapses from a liquid, which is a recurrent SNN as a fundamental piece of a
LSM.
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By employing the MOEA/D-DRA algorithm, we sought to optimize the synapses
into the liquid. Based on the objective functions proposed from optimizing a single
spiking neuron and an objective function of the state-of-art to optimize a liquid, two
objective functions (extending to the number of classes in the dataset) were pro-
posed to evaluate the liquid’s separability property using the state vector generated
by each input pattern. The first objective function seeks to maximize the L2-norm
between each pair of average state vectors of each class. Moreover, the second objec-
tive function pursues to minimize the dispersion between the state vectors for each
class. These objective functions were used to guide the search for non-dominated
solutions uniformly spread in the objective space.

Once it was observed that the liquid, with its optimized parameters, has separa-
bility, a series of experiments were carried out, contrasted with the state-of-the-art
SNN-based classifiers. The statistical results of the experiments showed us that our
proposal has statistically significant differences against the Gamma1 configuration.
In contrast, our proposal does not improve against the Gamma2 configuration. This
behavior may be because SNN-based classifiers have some advantages. They are
optimized by more evaluations (1,000,000) than our proposal (10,000). Our proposal
obtained higher performance in the training phase but did not generalize correctly,
in contrast with the Gamma1 and Gamma2 configurations. Furthermore, they are
designed with a partially connected architecture; therefore, their performance does
not show overfitting in the training process and, in turn, show better generalization.

As future work, we propose to review the proposed objective functions to find
some modifications to improve the exploration in the search space to optimize LSM
parameters. Another objective function that could be considered is to minimize the
accuracy error (as proposed in the Gamma2 configuration) adapted with the other
objective functions to evaluate if non-dominated solutions found during the evolu-
tionary process have good classification performance. Also, we propose to increase
the number of neurons in the liquid, including the optimization of the parameter λ

(from Lambda Model Synaptic Connection) to control the density of connections in
the liquid to a greater number of neurons, thus aiming to avoid the liquid’s chaotic
behaviour.
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Abstract: As neuron models become more plausible, 
fewer computing units may be required to solve 
some problems; such as static pattern classification. 
Herein, this problem is solved by using a single spiking 
neuron with rate coding scheme. The spiking neuron is 
trained by a variant of Multi-objective Particle Swarm 
Optimization algorithm known as OMOPSO. There were 
carried out two kind of experiments: the first one deals 
with neuron trained by maximizing the inter distance 
of mean firing rates among classes and minimizing 
standard deviation of the intra firing rate of each class; 
the second one deals with dimension reduction of 
input vector besides of neuron training. The results of 
two kind of experiments are statistically analyzed and 
compared again a Mono-objective optimization version 
which uses a fitness function as a weighted sum of 
objectives.

Keywords: Multi-objective Optimization, Spiking Neu-
ron, Pattern Classification

1. Introduction 
Artificial Neural Networks (ANNs) try to simulate 

the behavior of the brain when they generate, process 
or transform information. An ANN is a system formed 
of simple processing units, which offers the property, 
and capability of input-output mapping. ANNs learn 
to solve complex problems in a reasonable amount 
of time [1]. The ability of learning of ANNs become 
a powerful tool for wide applications, for instance: 
pattern recognition works, classifying, clustering, vi-
sion tasks and forecasting [2]. 

ANNs can be distinguished in three generations ac-
cording to their computational units [3]. The first one 
is based on McCulloch-Pitts neuron as computational 
units that can handle digital data [3]. The second one 
is characterized by a multilayer architecture, connec-
tivity separating input, intermediate, and output units 
and applying activation functions with a continuous 
set of possible output values to a weighted sum of the 
inputs [4]. The third generation has been developed 
with the purpose of design neural models more plau-

sible to the biological neurons. These are known as 
Spiking Neural Networks (SNNs) [5], [6].

ANNs are conformed by neurons organized in in-
put, hidden and output layers, which are inter-con-
nected by synaptic weights. These simulate the neu-
ron synapsis of the human brain. During the training 
process of an ANN, a set of synaptic weights con-
stantly is changing until the knowledge acquired is 
enough. Once the knowledge process has finished, 
it is necessary to evaluate the performance of the 
ANN. It is expected that the ANN can classify with 
acceptable accuracy the patterns from a particular 
problem during the testing phase [7]. The training 
process is an optimization task since it is desired 
to find the optimal weight set of the ANN. Methods 
based on gradient-descent have been applied to 
the training phase [8], but these techniques can be 
trapped at local minima. Then to overcome this situ-
ation, the researchers have proposed different glob-
al optimization methods [9] to optimize the ANNs 
by Evolutionary Algorithms (EAs). These EAs can be 
used to calibrate the connection weights, optimize 
the architecture and selecting the input features of 
ANNs [10]. 

The present research proposes a method for train-
ing full and partially connected SNNs based on the 
Leaky Integrate and Fire (LIF) model, by using a var-
iant of Multi-objective Particle Swarm Optimization 
known as OMOPSO. This methodology is designed to 
solve pattern recognition problems. The results are 
statistically analyzed and compared with a version 
of mono-objective optimization using the Particle 
Swarm Optimization algorithm (PSO). 

This paper is organized as follows: Section 2 pre-
sents the theoretical fundamentals used in this work. 
Section 3 explains the implemented methodology. 
Section 4 shows the results and statistical analysis. 
Finally, in section 5 are presented the conclusions and 
future work.

2. Background
This section describes the LIF model and the Op-

timized Multi-objective Particle Swarm Optimization 
(OMOPSO), which were used in this work.
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this work, we used the OMOPSO algorithm described 
in [15], which is based on Pareto dominance and an 
elitist selection through crowding factor. Beside this, 
the authors incorporated two mutation operators 
(uniform mutation and non-uniform mutation). The 
uniform mutation refers to variability range allowed 
for each decision variable, which is kept constant 
over generations and the non-uniform mutation has 
a characteristic variability range allowed for each de-
cision variable, which decreases over time. Finally, it 
was added the e-dominance concept which is the final 
size of the external file where stores the non-dominat-
ed solutions. Algorithm 1 shows the OMOPSO. 

Algorithm 1. OMOPSO
Require: Initialize Swarm Pi, Initialize Leaders Li

1:    Send Li to e-file

2:    crowding(Li), g = 0

3:    while g < gmax do

4:       for each particle

5:          Select leader

6:          Fly

7:         Mutation

8:         Evaluate

9:         Update pbest

10:     end for

11:     Update Li

12:     Send Li to e-file

13:     crowding(Li), g = g + 1

14:  end while

15:  Report results in e-file

3. Methodology
This section shows the methodology used in our 

work. There were proposed two kinds of experi-
ments: the first one treats with neuron trained by 
maximizing the inter distance of mean firing rates 
among classes and minimizing the standard deviation 
of the intra firing rate of each class; the second one 
deals with dimension reduction of input vector be-
sides of neuron training. 

The LIF neuron model was implemented into 
jMetal [16], [17] where is available the OMOPSO al-
gorithm, which was used for training the LIF neuron. 
Furthermore, the OMOPSO algorithm was configured 
as a mono-objective algorithm (PSO). 

The design of the methodology is shown in Fig. 2. 
Initially, we set up the parameters of the OMOPSO algo-
rithm and the LIF neuron model. Next, it is necessary to 
initialize the particles and Leaders (Li) with uniformly 
random numbers to make a swarm. Each particle rep-
resents a synaptic weight vector ( )w  with the same size 
as the feature input vector ( )x . Then, whole particles 

2.1. Leaky Integrate and Fire Model
The LIF neuron model is one of the most used in 

the field of computational neuroscience given this 
model has an easier implementation and a lower 
computational cost in comparison with other spiking 
neuron models [11].

The mathematical representation for this model 
is shown in [11], [12] and it is given by the potential 
dynamic of the membrane:

 
τ
dv
dt

g v E I ti
leak i leak= − −( ) + ( )

 
(1)

where gleak and Eleak are the conductance and the re-
versal potential of the leak current, t is the membrane 
time constant and I(t) is a current injected into the 
neuron.

In this work, it was used the representation pro-
posed in [11],[13] defined as: 

 

′ = + −

≥ ←

v I a bv

v v v cthreshold

,

,if then  (2)

where I is the input current of the neuron, v denotes 
the membrane potential, a and b are parameters to 
configure the behavior of the neuron, c is the rest 
state voltage and vthreshold is the threshold for the spike 
(firing) of the neuron. Besides, an initial condition v0 
is necessary to solve the differential equation by nu-
merical methods.

Since the input patterns cannot be directly pro-
cessed by the LIF neuron, they must be transformed 
to input currents by means of the equation:

 I x w= ⋅ ⋅θ  (3)

where x n∈  is the input pattern vector, w n∈  is 
the set of synaptic weights and θ is a gain factor.

Fig. 1 shows the representation of a LIF neuron. 
When I is computed, it continues to solve the equa-
tion (2) to obtain the output spike train belonging to 
the input pattern.

Fig. 1. Representation of a LIF neuron

2.2. Optimized Multi-Objective Particle Swarm 
Optimization (OMOPSO)

Regarding multi-objective optimization, a con-
siderable number of algorithms can be found in the 
literature. For instance, the Multi-objective Particle 
Swarm (MOPSO) was proposed by Coello in [14]. In 
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are evaluated into the LIF neuron model, by means of 
the objective functions. The non-dominated particles 
in the swarm will be Li, which are sent to e-file. Besides 
this, it is calculated a crowding factor for each Li as 
a second discrimination criterion. 

Start 

After it is initialized an Internal Loop into an External 
Loop, and each particle is modified into the Internal 
Loop, updating the position and applying the 
mutation operators. Then, each particle is evaluated 
and updated its personal best value (     ). A new 
particle replaces the       if such value is dominated 
by the new particle or if both are non-dominated 
concerning each other.   
When all particles have been updated, the    are 
modified in the External Loop. Only the particles that 
overcome their       will try to enter to    set. Once 
the    have been updated, they are sent to  -    . 
Finally, the crowding values of the set of    is updated 
and we eliminate as many leaders as necessary to 
avoid overflow of the size of the    set. The process is 
repeated until finalizing all iterations.  
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 2. Methodology schema 
 
3.1. Objective Functions 
Three different objective functions were considered 
to measure the performance of the solutions 
(particles): 

A. The Euclidean distance between the 
combination of      and     , where     is 
the average firing rate of each class and     . 
For this objective function, we looking for 
maximize the separability between the 
classes: 

        (         ) (eq.4) 

B. The Standard Deviation of the firing rate for 
each pattern class      , where         
and   is the total of pattern classes. In this 

objective function, we looking for minimize 
the dispersion of each pattern class: 

   (     ) (eq.5) 

C. The dimension of the input feature vector ( ̅). 
To avoid redundancies in information, we 
desire to reduce the dimensionality of the 
feature vectors, by minimizing the total of     
of a binary mask ( ̅) with the same size of the 
input feature vector. 
 

In our proposal, the number of objective functions is 
related to the number of classes of the dataset. 
 
3.2. Experiments 
Four supervised classification datasets from the UCI 
Machine Learning Repository [18] were employed for 
experimentation: Iris Plant, Wine, Glass, and SPECT. 
Table 1 shows the details of the datasets used. 
Each dataset was randomly divided in two subsets 
with approximately the same size. The first one was 
employed as training set and the second one as 
testing set.  
 

Dataset Instances Classes Features 
Iris Plant 150 3 4 

Wine 178 3 13 
Glass 214 6 9 

SPECT 267 2 22 
Table. 1. Datasets employed for experimentation  

 
With the aim to observe the performance of our 
proposal, four experiments were configurated 
according to the objective functions seen in section 
3.1. The characteristics of each experiment are 
defined below and summarized in Table 2.  

i. Experiment #1 was defined as a multi-
objective problem, focusing on the A and B 
objective functions. The OMOPSO algorithm 
was used to optimize the synaptic weight 
vector of the LIF neuron. 

ii. Experiment #2 employs the multi-objective 
approach, considering the A, B and C 
objective functions. The OMOPSO algorithm 
was taken to optimize the synaptic weight 
vector and the dimension of the input vector. 
Concerning the optimization of the last 
parameter, a binary mask ( ̅) was used in 
equation (3) to calculate a modified input 
current given by equation (6).  

   ̅   ̅   ̅    (eq.6) 
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results 
in 𝜀𝜀-𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

Send 𝐿𝐿𝑖𝑖  
to 𝜀𝜀-𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

Calculate a 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐 
for 𝐿𝐿𝑖𝑖  

For each 
particle 

Initialize 
OMOPSO 
and LIF 
parameters 

Update 
position 
(Fly) 

Initialize 
particles 
and 𝐿𝐿𝑖𝑖  

Evaluate 
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into LIF 
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Update 
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 for 𝐿𝐿𝑖𝑖  
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Update 
𝐿𝐿𝑖𝑖  
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Reports 
results 
in 𝜀𝜀-𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

False 

End 

𝑐𝑐  𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 True 

Fig. 2. Methodology schema

After it is initialized an Internal Loop into an Exter-
nal Loop, and each particle is modified into the Internal 
Loop, updating the position and applying the mutation 
operators. Then, each particle is evaluated and updated 
its personal best value (pbest). A new particle replaces 
the pbest if such value is dominated by the new particle 
or if both are non-dominated concerning each other. 

When all particles have been updated, the Li are 
modified in the External Loop. Only the particles that 
overcome their pbest will try to enter to Li set. Once the 
Li have been updated, they are sent to e-file. Finally, 
the crowding values of the set of Li is updated and we 
eliminate as many leaders as necessary to avoid over-
flow of the size of the Li set. The process is repeated 
until finalizing all iterations. 

3.1. Objective Functions
Three different objective functions were consid-

ered to measure the performance of the solutions 
(particles):

A. The Euclidean distance between the combina-
tion of AFRi and AFRj, where AFR is the average firing 
rate of each class and i ≠ j. For this objective function, 
we looking for maximize the separability between the 
classes:

 MAXdist AFR AFRi j,( )  (4)

B. The Standard Deviation of the firing rate for each 
pattern class SDFRk, where k = 1, ..., K and K is the total 
of pattern classes. In this objective function, we looking 
for minimize the dispersion of each pattern class:

 MIN SDFRk( )  (5)

C. The dimension of the input feature vector ( )x . 
To avoid redundancies in information, we desire to 
reduce the dimensionality of the feature vectors, by 
minimizing the total of 1's of a binary mask a bina-
ry mask ( )r  with the same size of the input feature 
vector.

In our proposal, the number of objective functions is 
related to the number of classes of the dataset.

3.2. Experiments
Four supervised classification datasets from the 

UCI Machine Learning Repository [18] were em-
ployed for experimentation: Iris Plant, Wine, Glass, 
and SPECT. Table 1 shows the details of the datasets 
used.

Each dataset was randomly divided in two subsets 
with approximately the same size. The first one was 
employed as training set and the second one as test-
ing set. 

Tab. 1. Datasets employed for experimentation 
Dataset Instances Classes Features

Iris Plant 150 3 4

Wine 178 3 13

Glass 214 6 9

SPECT 267 2 22

With the aim to observe the performance of our 
proposal, four experiments were configurated ac-
cording to the objective functions seen in section 3.1. 
The characteristics of each experiment are defined 
below and summarized in Table 2. 
i. Experiment #1 was defined as a multi-objective 

problem, focusing on the A and B objective 
functions. The OMOPSO algorithm was used to 
optimize the synaptic weight vector of the LIF 
neuron.

ii. Experiment #2 employs the multi-objective 
approach, considering the A, B and C objective 
functions. The OMOPSO algorithm was taken 
to optimize the synaptic weight vector and the 
dimension of the input vector. Concerning the 
optimization of the last parameter, a binary 
mask ( )r  was used in equation (3) to calculate 
a modified input current given by equation (6). 

 I x w r= ⋅ ⋅ ⋅θ  (6)

iii. Experiment #3 was designed as a mono-objective 
problem. The objective function (eq. 7) was formed 
by the weighted sum of two objective functions. 
The first one is the inverse of the summation of 
the Euclidean distances among all combinations 
of AFRi and AFRj and the second objective is the 
sum of the standard deviation of the firing rate 
for all classes as shown in equation 7 [11]. PSO 
algorithm was used to design the synaptic weight 
vectors.
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MIN f

dist
SDFR

k

K

k( ) = ( )
+

=
∑1

1AFR  
(7)

iv. Experiment #4 is a mono-objective approach that 
seeks to optimize the synaptic weight vector and 
the dimension of the input vector with the PSO 
algorithm. The objective function (eq. 8) is formed 
by the weighted sum of the equation (7) and the 
rate of T and D, where T is total of 1's in the binary 
mask ( )r  and D is the dimension of the input 
feature vector.

 
MIN f

dist AFR
SDFR

k

K

k( ) = ( )
+ +

=
∑1

1

T
D  

(8)

Tab. 2. Configuration for experimentation 

Algorithm Optimized Parameters
Objective  
Functions

Exp 
#1

OMOPSO
synaptic weight  

vector
A, B

Exp 
#2

OMOPSO
synaptic weight  

vector and dimension of 
input vectors

A, B, C

Exp 
#3

PSO
synaptic weight  

vector
A, B

Exp 
#4

PSO
synaptic weight  

vector and dimension of 
input vectors

A, B, C

Table 3 shows a compendium of the number of ob-
jective functions by experiment for each dataset. 

Tab. 3. Total of Objective Functions by experiment 

Objective Functions in

Dataset Classes Exp #1 Exp #2 Exp #3 Exp #4

Iris Plant 3 6 7 1 1

Wine 3 6 7 1 1

Glass 6 21 22 1 1

SPECT 2 3 4 1 1

Each experiment consisted of 40 independently 
executions per each dataset to guarantee statistical 
significance. The parameter values used in the OMOP-
SO algorithm and the LIF neuron model [11] are de-
tailed in Table 4 and 5 respectively.

The initial synaptic weights were generated ran-
domly θ ∈ [0,1].

4. Results and Statistical Analysis
This section describes the results obtained from 

the experimentation proposed in section 3. The re-
sults are statistically analyzed and discussed below.

Tab. 4. Configuration OMOPSO Parameters
Max particle size: 100

Max iterations: 1000

e-file size: 100

Uniform Mutation

Mutation probability:
1 0.

Number of
problem variables

 
 

Perturbation index: 0.5

Non-uniform Mutation

Mutation probability:
1 0.

Number of
problem variables

 
 

Perturbation index: 0.5

Max iterations: 1000

Tab. 5. Configuration LIF Parameters 
a 0.5

b -0.001

c -50 mV

vi -60 mV

vthreshold 50 mV

Time 1000 ms

h 1

θ 0.1

For each execution, at the end of the training phase, 
the total of particles is evaluated in the LIF neuron 
model using the training set, and the classification ac-
curacy is calculated for each particle. Finally, the par-
ticle with the best performance is used in the testing 
phase for obtaining the accuracy in the testing set.

Tab. 6. Accuracy of training phase over each experiment
OMOPSO PSO

Experiments Experiments

Dataset #1 #2 #3 #4

Iris Plant
0.9817 

±
0.0131

0.9793
±

0.0157

0.9
±

 0.0232

0.8987 ±
0.0219

Wine
0.7858

±
0.0358

0.8048 
±

0.0336

0.6849 
±

0.0432

0.6986
±

0.0301

Glass
0.5050 

±
0.0441

0.5031
±

0.0405

0.39
±

 0.0030

0.3638 ±
0.0726

SPECT
0.8592

±
0.0243

0.8286
±

0.0227

0.7276 
±

0.0325

0.7273 ±
0.0344

Tables 6 and 7 show the results obtained from the 
methodology proposed. The accuracy values along 
with the standard deviations grade the performance 
of the experiments. The accuracy of the training phase 
corresponds to the average of the performance of the 
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best particles obtained in each experiment, whereas 
that the accuracy of the testing phase is obtained from 
the average of the performance of these particles ap-
plied to the testing set. The highest accuracy values 
are remarked in bold font.

Tab. 7. Accuracy of testing phase over each experiment

OMOPSO PSO

Experiments Experiments

Dataset #1 #2 #3 #4

Iris Plant
0.94

±
 0.0383

0.9543 
±

0.0220

0.9003
±

 0.0355

0.8883 
±

0.0303

Wine
0.7322 

±
0.0604

0.7397 
±

0.0610

0.6706 
±

0.0505

0.6858 
±

0.0451

Glass
0.3516 

±
0.1141

0.3695 
±

0.1163

0.3472
±

 0.0947

0.3594 
±

0.0960

SPECT
0.7043 

±
0.1051

0.7019 
±

0.1006

0.7157 
±

0.0545

0.7073 
±

0.0523

Tab. 8. Analysis of reduction of features of input vector

Experiments

#2 #4

Dataset

Average 
number of 

features 
employed

Rate of 
features 

used

Average 
number of 

features 
employed

Rate of 
features 

used

Iris 
Plant

2.575
±

0.747
0.640

3.050
±

0.221
0.760

Wine
8.475

±
3.266

0.652
5.850

±
1.902

0.450

Glass
5.550

±
1.999

0.617
6.00

±
1.377

0.667

SPECT
10.325

±
5.677

0.469
21.675

±
0.526

0.985

Table 8 shows the average amount of input fea-
tures employed by the LIF neuron model and its cor-
responding rate concerning the total size of the origi-
nal input feature vector.

Several statistic tests were applied to the obtained 
results. Firstly, Shapiro-Wilk test was executed to 
identify the kind of parametric or non-parametric 
tests to be used along with our data. Our tests were 
implemented using R programming language, and 
the CONTROLTEST package tool (available at http://
sci2s.ugr.es/sicidm/) was used for non-parametric 
comparison between experiments. Specifically, three 

non-parametric tests were applied: Friedman, Fried-
man Aligned Ranks, and Quade.

Firstly, the results from statistic tests for the Train-
ing phase are shown and discussed. Subsequently, the 
results of statistic tests computed in the Testing phase 
are analyzed.

In the Shapiro-Wilk test, the null-hypothesis (H0)
states the samples come from a normal distribution. 
In Table 9, for a significance level of a = 0.05, the 
P-values obtained show that approximately half of the 
results do not reject H0, but the rest of the results re-
ject H0. Therefore, non-parametric statistics were ap-
plied since such tests include both cases. 

Tab. 9. Shapiro-Wilk test in Training phase
OMOPSO PSO

Experiments Experiments

Dataset #1 #2 #3 #4

Iris 
Plant

0.0002868 0.000761 0.1257 0.189

H0 is 
rejected

H0 is 
rejected

H0 is not 
rejected

H0 is not 
rejected

Wine
0.6275 0.0407 0.08713 0.3317

H0 is not 
rejected

H0 is 
rejected

H0 is not 
rejected

H0 is not 
rejected

Glass
0.0002413 0.001126 6.64E-14 1.09E-11

H0 is 
rejected

H0 is 
rejected

H0 is 
rejected

H0 is 
rejected

SPECT
0.06032 0.07665 0.3015 0.09427

H0 is not 
rejected

H0 is not 
rejected

H0 is not 
rejected

H0 is not 
rejected

Friedman, Friedman Aligned Ranks, and Quade 
tests were applied to the obtained results. In these 
tests, the null-hypothesis (H0) states that the data of 
the experiments follow the same distribution [19]  
(there is no difference in their performance).

Table 10 reports the average ranks obtained from 
these tests on the whole experiments. The smaller 
values, in bold font, indicate that Experiment #1 had 
consistently the best performance. 

Tab. 10. Average rankings of the experiments for the 
Training phase

Experiment Friedman
Friedman Aligned 

Ranks
Quade

#1 1.25 4.0 1.2

#2 1.75 5.0 1.80

#3 3.25 12.25 3.199

#4 3.75 12.75 3.8

Table 11 shows the P-value for each statistical test 
and the sentence corresponding to the status of H0 for 
a significance level a = 0.05. If the P-value is greater than 
a then indicates that not exist evidence to reject H0. 
Therefore, the tests Friedman and Quade rejected H0. 
However, these results do not give enough information 
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to select the best experiment, so that, a post-hoc proce-
dure was necessary to do. From Table 10, Experiment 
#1 was taken as the control experiment. 

Tab. 11. Contrast the null-hypothesis in Training phase

Friedman
Friedman 

Aligned 
Ranks

Quade

P-values 0.01694 0.3806 1.04E-04

H0 is rejected
H0 is not 
rejected

H0 is rejected

Table 12 shows the results of the post-hoc pro-
cedure, where the P-values were adjusted by Holm’s 
correction. For a = 0.05, the adjusted P-values for the 
comparison between the control experiment and the 
Experiments #3 and #4 show that the Experiment #1 
had better performance.

Then, it is presented the results for the Testing 
phase.

Table 13 shows the results of the Shapiro-Wilk test 
where the P-values were contrasted with a significance 
level of a = 0.05. The P-values obtained show that five 
results reject H0, and eleven results do not reject H0. 
Next, non-parametric statistic tests were applied.

 
Tab. 12. Adjusted P-values for Training phase

Friedman Quade

Experiment Holm Holm

#1 vs #4 0.01667 0.01667

#1 vs #3 0.025 0.025

#1 vs #2 0.05 0.05

Tab. 13. Shapiro-Wilk test in Testing phase
OMOPSO PSO

Experiments Experiments

Dataset #1 #2 #3 #4

Iris Plant
0.05354 0.02317 0.4062 0.2015

H0 is not 
rejected

H0 is 
rejected

H0 is not 
rejected

H0 is not 
rejected

Wine
0.4185 0.4515 0.4542 0.2932

H0 is not 
rejected

H0 is not 
rejected

H0 is not 
rejected

H0 is not 
rejected

Glass
0.06616 0.00249 4.17E-08 4.71E-07

H0 is not 
rejected

H0 is 
rejected

H0 is 
rejected

H0 is 
rejected

SPECT
0.002891 0.08466 0.7195 0.07491

H0 is 
rejected

H0 is not 
rejected

H0 is not 
rejected

H0 is not 
rejected

Table 14 shows the average ranks obtained from 
Friedman, Friedman Aligned Ranks and Quade tests 
for whole results. In the three tests, the smaller av-
erage ranks, in bold font, specify that Experiment #2 
had the best performance. 

Tab. 14. Average rankings of the experiments for the 
Testing phase 

Experiment Friedman
Friedman 

Aligned 
Ranks

Quade

#1 2.5 6.5 2.3

#2 1.75 4.75 1.2999

#3 3.0 11.75 3.4

#4 2.75 11.0 3.0

Tab. 15. Contrast the null-hypothesis in Testing phase

Friedman
Friedman 

Aligned 
Ranks

Quade

P-values 0.5519 0.3632 0.0381

H0 is not 
rejected

H0 is not 
rejected

H0 is rejected

Table 15 shows the P-value for each statisti-
cal test. The significance level was set up a = 0.05. 
Quade test rejects H0. Nonetheless, this result does 
not present enough information to choose of the 
best experiment. So, a post-hoc procedure was 
made. From Table 14, Experiment #2 was used as 
the control experiment. 

Tab. 16. Adjusted P-values for Testing phase

Quade

Experiment Holm

#2 vs #4 0.01667

#2 vs #3 0.025

#2 vs #1 0.05

Table 16 shows the results of the post-hoc pro-
cedure for Quade test, where P-values were adjusted 
by Holm’s correction. The P-values were compared 
against a significance level of a = 0.05. The P-values 
for the comparison between the control experiment 
and the Experiment #3 and #4 show that the Experi-
ment #2 had better performance. 

5. Conclusion
This paper presents a methodology for training 

full and partially connected LIF spiking neurons using 
the OMOPSO algorithm for solving pattern recogni-
tion problems. The experiments were designed with 
a multi-objective approach and their results were 
compared statistically with the results of mono-ob-
jective experiments. Each experiment was tested on 
four well-known benchmark datasets by performing 
40 independently executions for each dataset.

The results have shown that the Experiments #1 
and #2 had the best performances in the Training and 
Testing phases respectively. Therefore, the multi-ob-
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jective approach provides an adequate alternative to 
optimize LIF spiking neurons. 

One interesting characteristic of our methodology 
consists on the reduction of dimensionality of the in-
put feature vectors to avoid redundancies in the input 
information. 

As future work, we propose to include the LIF pa-
rameters into the OMOPSO algorithm to explore bet-
ter non-dominated solutions and to implement more 
multi-objective algorithms from state of the art for 
training LIF spiking neurons.
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