
 

 

 

 

Instituto Tecnológico de Pabellón de Arteaga 

 

 

 

 

“Design and Characterization of an Advanced pH Instrument 

Using Artificial Intelligence Algorithms For Vertical Farming 

Applications” 
 

TESIS 

Para Obtener el Grado de: 

Maestro en Ciencias en Ingeniería Mecatrónica 

  

PRESENTA: 

Ing. Rolando Moisés Hinojosa Meza 

 

TUTORES: 

Dr. Paulino Vacas Jacques 

Dra. Nivia Iracemi Escalante García 

Dr. Martín Montes Rivera 

 

Pabellón de Arteaga, Ags., mayo del 2023 



 

           

 

INSTITUTO TECNOLÓGICO DE PABELLÓN DE ARTEAGA 

SUBDIRECCIÓN ACADÉMICA 

MAESTRÍA EN CIENCIAS EN INGENIERÍA MECATRÓNICA 

 

 

Tesis: 

“Design and Characterization of an Advanced pH Instrument Using 

Artificial Intelligence Algorithms For Vertical Farming Applications” 

 

 

Presenta: 

Ing. Rolando Moisés Hinojosa Meza 

 

 

Dirigida por: 

Dr. Paulino Vacas Jacques 

Dra. Nivia Iracemi Escalante García 

Dr. Martín Montes Rivera 

 

 

Sinodales: 

Dr. José Ernesto Olvera González 

M. en C. José Guillermo Batista Ortiz 

 

 

Pabellón de Arteaga, Ags., mayo del 2023 



 

AGRADECIMIENTOS 

 

Agradezco a mi director de tesis, Dr. Paulino Vacas Jacques y a mis codirectores de Tesis, 

Dra. Nivia Iracemi Escalante García y Dr. Martín Montes Rivera por su guía, apoyo y 

orientación durante todo el proceso de investigación. Sus conocimientos y experiencia han 

sido fundamentales para el éxito de este trabajo. 

 

Agradezco a mi familia y amigos por su incondicional apoyo emocional durante esta etapa. 

Sus palabras de aliento y motivación me han impulsado a seguir adelante y superar los 

obstáculos. 

 

Agradezco al Dr. José Ernesto Olvera González por creer en mí y darme la oportunidad de 

realizar mis estudios en el Laboratorio de Iluminación Artificial.  

 

Agradezco a mis profesores por sus valiosos aportes y consejos durante mi formación. Sus 

conocimientos y sugerencias han enriquecido el trabajo y me han ayudado a mejorar como 

investigador. 

 

Finalmente, agradezco a todos aquellos que, de una forma u otra, han contribuido a que este 

proyecto se haya llevado a cabo. Este logro es también suyo y espero poder seguir contando 

con su apoyo en el futuro. 

 

 

 

 

 

 

 

 



                                                 

 

 

  

 

  

 

 

 
Pabellón de Arteaga, Ags., 14/abril/2023 
  

 
 
 
MES. EDGAR ZACARÍAS MORENO 
SUBDIRECTOR ACADÉMICO 
 
PRESENTE  
 
 
Por medio del presente doy el visto bueno a la Tesis de Maestría titulada “DESIGN AND 
CHARACTERIZATION OF AN ADVANCED PH INSTRUMENT USING ARTIFICIAL INTELLIGENCE 
ALGORITHMS FOR VERTICAL FARMING APPLICATIONS” del estudiante ROLANDO MOISÉS 
HINOJOSA MEZA con numero de control M151050126 de la Maestría en Ciencias en Ingeniería 
Mecatrónica. Dicho trabajo ya fue revisado por cada uno de los miembros del comité tutorial y el 
estudiante ya realizo los cambios sugeridos, por lo que autorizamos su impresión. 
 
 
Sin otro particular, aprovecho la ocasión para enviarle un cordial saludo, quedo de Usted. 
 
 
 
 
A T E N T A M E N T E  
Excelencia en Educación Tecnológica® 
Tierra Siempre fértil 
 
 
 
 
 
 

DR. PAULINO VACAS JACQUES 
MIEMBRO DE COMITÉ TUTORIAL 

DRA. NIVIA IRACEMI ESCALANTE GARCÍA  
MIEMBRO DE COMITÉ TUTORIAL 

 
 
 
 
 
 

DR. MARTÍN MONTES RIVERA 
MIEMBRO DE COMITÉ TUTORIAL 

 
 
 



                                                 

 

 

  

 

  

 

 

 
Pabellón de Arteaga, Ags., 2/mayo/2023 
  

 
 
 
 
ING. ROLANDO MOISÉS HINOJOSA MEZA 
ESTUDIANTE DE LA MAESTRÍA EN CIENCIAS EN INGENIERÍA MECATRÓNICA 
NO. DE CONTROL M151050126 
 
 
PRESENTE  
 
 
Por medio de este conducto me permito comunicar a Usted que habiendo recibido los votos 
aprobatorios de los revisores de su trabajo de Tesis titulado: “DESIGN AND CHARACTERIZATION OF 
AN ADVANCED PH INSTRUMENT USING ARTIFICIAL INTELLIGENCE ALGORITHMS FOR VERTICAL 
FARMING APPLICATIONS”, hago de su conocimiento que puede imprimir dicho documento y 
continuar con los trámites para la presentación de su examen de grado.  
 
 
 
 
Sin otro particular, aprovecho la ocasión para enviarle un cordial saludo, quedo de Usted. 
 
 
 
 
 
 
 
 
A T E N T A M E N T E  
Excelencia en Educación Tecnológica® 
Tierra Siempre fértil 
 
 
 
 
 
 
MES. EDGAR ZACARÍAS MORENO 
SUBDIRECTOR ACADÉMICO 



 
 

Maestría en Ciencias en Ingeniería Mecatrónica 
Design and characterization of an advanced pH instrument using Artificial Intelligence algorithms for  

Vertical Farming applications 

__________________________________________________________________________________ 

___________________________________________________________________________________ 
Instituto Tecnológico de Pabellón de Arteaga i 

 

ABSTRACT 

“Design and Characterization of an Advanced pH Instrument using Artificial Intelligence 

Algorithms for Vertical Farming Applications” 

By: Ing. Rolando Moises Hinojosa Meza 

Global Vertical Farming (VF) applications with characteristic Industry 4.0 connectivity will become more and 

more relevant as the challenges of food supply continue to increase worldwide. A cost-effective and portable 

instrument that enables accurate pH measurements for VF applications is presented. We demonstrate that by 

performing a well-designed calibration of the sensor, a near Nernstian response, 57.56 [mV/pH], ensues. The 

system is compared to a ten-fold more expensive laboratory gold standard, and is shown to be accurate in 

determining the pH of substances in the 2–14 range. The instrument yields precise pH results with an average 

absolute deviation of 0.06 pH units and a standard deviation of 0.03 pH units. The performance of the instrument 

is ADC-limited, with a minimum detectable value of 0.028 pH units, and a typical absolute accuracy of ±0.062 pH 

units. By meticulously designing bias and amplification circuitry of the signal conditioning stage, and by optimizing 

the signal acquisition section of the instrument, a (minimum) four-fold improvement in performance is expected. 

In addition, we proposed an advanced filtering scheme based on Recurrent Neural Networks (RNNs) and Deep 

Learning to enable efficient control strategies for Vertical Farming (VF) applications. We demonstrate that the best 

RNN model incorporates five neuron layers, with the first and second containing ninety Long Short-Term Memory 

neurons. The third layer implements one Gated Recurrent Units neuron. The fourth segment incorporates one RNN 

network, while the output layer is designed by using a single neuron exhibiting a rectified linear activation function. 

The RNN models are contrasted with conventional digital Butterworth, Chebyshev I, Chebyshev II, and Elliptic 

Infinite Impulse Response (IIR) configurations. The RNN digital filtering schemes avoid introducing unwanted 

oscillations, which makes them more suitable for VF than their IIR counterparts. Finally, by utilizing the advanced 

features of scaling of the RNN model, we demonstrate that the RNN digital filter can be pH selective, as opposed 

to conventional IIR filters. Temperature affects pH measurement, producing inaccurate readings. More complex 

sensors integrate Automatic Temperature Compensation (ATC) because they accurately adjust the electrode 

calibration for pH when the temperature changes. However, ATC cannot correct for the pH/temperature effects of 

unknown samples. For this reason, a fuzzy interference system is also proposed to compensate for the temperature 

effects on pH measurements through a Mamdani interference system, in addition to genetic algorithms to adjust 

the vertices in the output matrices. 

Directed by: 

Dr. Paulino Vacas Jacques 

Dra. Nivia Iracemi Escalante García 

Dr. Martín Montes Rivera 
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I. INTRODUCTION 

 

Agriculture has been one of the greatest advancements for humanity, providing the ability to have access to food 

and resources when needed, which had a significant impact, changing the life of nomads to a sedentary one. Over 

the years, new elements were introduced; iron tools appeared to facilitate tasks, civilizations emerged - a group of 

people with a common goal to survive, trade was invented and products could now be shared. Later in 1760, the 

industrial revolution brought the introduction of machines for planting, harvesting, and spraying. Fertilizers were 

invented for pests, modified foods and pesticides emerged. In 1960, the green revolution began, bringing 

mechanization to the field and with it, many improvements for increased agricultural production. Advances in 

genetics allowed for the creation of improved foods, which began to spread across most of the world. All these 

technological advancements created new opportunities and allowed for a better quality of life and satisfaction of 

basic human needs. 

Currently, traditional agriculture is no longer capable of fully meeting the demand for food, due to population 

growth, high demand for resources, city growth, migration of farm workers, adverse crop conditions due to climate 

change, etc. 

Recent predictions reveal that the world will not have the capacity to meet the requirements of food production and 

other alimentation products to ensure adequate nutrition for the entire population. Precision Agriculture (PA) is the 

set of technological tools implemented to optimize crop-yield and -quality in plant production. Also, an essential 

resource for sustainable agriculture is water. Today, water use is inefficient: 65-70% of the freshwater is utilized 

for non-essential human activity. Our research group focuses on developing novel PA techniques to maximize 

natural resources through Vertical Farming (VF). Furthermore, the effective use of this production style allows 

optimizing the space in which different crops, such as fruits, vegetables, fine herbs, and flowering plants, can be 

grown in the same area by locating them in different production levels. Hydroponic VF is the most common method 

to cultivate plants. The salient features of hydroponic VF systems reside in their capacity to enable crop growth 

whilst minimizing water, CO2, energy, and fertilizer consumption. This is enabled by virtue of quantifying key 

growth parameters, such as conductivity, temperature, light exposure, and especially pH. 

Several studies have reported where hydroponic systems are automated and make use of IoT technology that 

provides the system with a wide variety of new functions compared to traditional hydroponic systems, making it 

increasingly less dependent on human intervention. To build these systems, it is necessary to have reliable 

instrumentation that allows for proper control of all variables involved in crop growth. An essential aspect of any 

instrument intended for PA or VF use, is that such instrumentation must meet availability, portability, and cost-

effectiveness constraints to enable global adoption.  Furthermore, the global food supply chain, which by 2050 will 

have to increase its capacity by 60-70% due to the growth of the world population, would benefit greatly if 

connected (characteristic of Industry 4.0 solutions) pH sensors were available.  In this work, we describe the 
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implementation of a portable, cost-effective, and connected instrument that enables accurate pH measurements for 

PA/VF and, more generally, Industry 4.0 applications.    

 

1.1 STATE OF THE ART 

Globally, numerous industries employ the pH level for multiple purposes. For instance, the pH is recurrently used 

as a central metric to determine the alkalinity. Furthermore, by controlling the pH, an efficient coagulation of sludge 

in wastewater can be guaranteed [1–3]. Similarly, pH serves as a reference to monitor and prevent corrosion in 

pipes and boilers [4,5]. In fermentation processes, continuous quantification of the pH is relevant to avoid the 

generation of unwanted and harmful by-products [6–8]. In the brewing industry, the pH serves to determine aging, 

increments in hop hardness, and bittering concentrations [9–11]. For perishable products, such as meat and fish, 

the pH level reveals shelf life and freshness [12–15]. Finally, the pH is central to determine ripening stage, as a 

function of ethylene concentration, of fruits and vegetables [16–18]. 

In the past, several groups have reported the construction of instrumentation to enable pH measurements. For 

example, Jin et al. [19] developed a pH potentiometer applicable to teaching in a chemistry laboratory setting. 

Moreover, a pH sensor to assess the changes in cementitious materials, through a sol-gel process with an alizarin 

yellow as meter, has been developed [20]. Addition ally, portable chemical sensors, requiring specialized processes 

for manufacturing, have been reported for non-invasive real-time monitoring of parameters for medical care and 

disease diagnosis [21,22]. Manjakkal et al. [23] integrated an electrochemical pH sensor, applicable to several 

industries, with a screen printed on flexible substrates through CuO nanostructures exhibiting nanorods 

morphology. The measurement range was established to be 5–8.5 pH units. Dang et al. [24] developed a wireless 

system for monitoring pH of sweat, integrated by a pair of serpentine-shaped stretchable interconnects. The authors 

constructed a reference electrode using graphite-polyurethane composites for biological applications. Cordoba et 

al. [25] reported the development of an optical sensor, which requires a high-cost external instrument to determine 

the pH level. Rasheed et al. [26] designed a multilayer (ZnO/Ag/ZnO) film pH sensor, which was tested as an 

extended gate field effect transistor. The pH detection range was demonstrated to be 2–12 pH units. 

Lastly, solutions using ISFET (Sensitive Field Effect Transistors) sensors, which have the advantage of being small, 

have been proposed. Nonetheless, with ISFET sensors, samples under study must be small, and the measuring 

range is limited to 10 pH units (1.5 to 11.5 pH) [27].  An essential aspect of any instrument intended for use in PA 

is that such instrumentation must meet the constraints of availability, portability, and cost-effectiveness to enable 

global adoption. 

On the other hand, this instrumentation must ensure optimal crop yields. As a starting point for controlling pH in 

PV applications, an efficient and simple to implement on-off control scheme can be used. 

However, to implement a good control system, it is essential to have properly conditioned signals of the parameter 

of interest. Predictable filtering can be achieved, on the one hand, using traditional techniques such as Butterworth, 
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Chebyshev and Elliptic filters (analog or digital) [28-31]. On the other hand, when unpredictable disturbances are 

present, it is challenging to design an electronic circuit that can handle these unpredictable and random behaviors. 

However, Artificial Intelligence (AI) has shown that it can cope with imprecise and unexpected conditions. 

Recurrent Neural Networks (RNNs) are ANNs utilized when behaviors depend on time sequences, which allows 

the resolution of problems with unexpected behaviors, like detecting malware affecting cloud systems [32].  Natural 

language processing also employs RNNs for translation because these solutions must consider time sequences to 

maintain context [33]. Forecasting of power demand also uses RNNs to predict energy consumption depending on 

time sequences [34]. Finally, RNNs serve to predict concrete dam deformation based on previous deformation or 

time sequences [35]. 

 

1.2 PROBLEM DEFINITION 

In particular, a VF hydroponic system is being constructed in our laboratory, which consists of three distinct vertical 

racks where various plants can be grown. Each variety is exposed to a specific light recipe depending on the plant 

characteristics. Ambient humidity and temperature sensors are distributed along the racks to monitor plant 

parameters. The nutrients come from a reservoir that incorporates a pump, as well as water level, temperature, total 

dissolved solids, and pH sensors. As a starting point to control pH for VF applications, an efficient and simple-to-

implement on-off control scheme can be utilized. Nonetheless, in order to implement such a control system, it is 

indispensable to have appropriately conditioned signals of the parameter of interest. Because the pH level is critical 

to VF as it influences the chemical, physical and biological properties of the soil, affecting factors such as plant 

growth, denitrification, plant toxicity, bacterial activity and soil nutrients, it is necessary to have a portable, accurate 

and disturbance-immune pH measurement instrument to ensure optimal crop performance. Additionally, generally 

speaking, plants are more vulnerable whenever alkalinity conditions are present. For example, crops are more 

susceptible to being attacked by insects when the alkalinity increases. Meanwhile, whenever an acid behavior is 

present, plants tend to more frequently suffer diseases. Furthermore, alkaline environments are correlated with 

deficiencies of nitrogen, phosphorus, and sulfur; whereas calcium, magnesium, potassium, and sodium deficiencies 

ensue in acidic conditions. This implies that latent risks exist with respect to deficient ion distributions, 

vulnerability, and crop disease, which need to be detected and controlled. Therefore, depending on the plant or crop 

of interest, the pH must be controlled (normally in the range of 4 to 8 units [8,10–12]), in order to ensure optimal 

environments for growing and, thus, yield. However, the pH measurement is no longer linear in behavior when the 

temperature changes. Automatic temperature compensation (ATC) is built into some sensors, allowing precise 

calibration adjustments of the pH electrode when the temperature changes. However, ATC cannot correct for 

unknown sample pH/temperature effects. When the behavior of a sensor is known, the ATC works adequately to 

perform the calibration of some sensors. 
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1.3 OBJECTIVES 

1.3.1 General  

Design and characterize of a portable, cost-effective, and connected instrument that enables accurate pH 

measurements for VF and, more generally, Industry 4.0 applications. As well as to design and evaluate the 

performance of an advanced signal conditioning and filtering stage, utilizing RNN and Deep Learning, to account 

for intrinsic and extrinsic temporal perturbations that ensue in real-world VF settings. To propose a fuzzy system 

tuned by genetic algorithms to compensate for the effect of temperature on pH measurements. 

 

1.3.2 Specific 

• Design and implementation of a portable, cost-effective, and connected instrument that enables accurate pH 

measurements for PF/VF and, more generally, Industry 4.0 applications.    

• Evaluate the effect of temporal intrinsic and extrinsic (mechanical) perturbations, as applicable to the sensing 

and controlling of pH values, by using conventional digital filtering, and comparing it to a more resilient 

solution based on RNN.   

• Apply fuzzy inference system to compensate for the temperature changes in pH measurements, using a genetic 

algorithm to tune the best vertices of the membership functions to obtain the desired behavior, specially 

adapted for the sensor used. 

 

1.4 JUSTIFICATION 

An essential aspect of any instrumentation intended for use in PV is that such instrumentation must meet the 

constraints of availability, portability, and cost-effectiveness to enable global adoption. Furthermore, the global 

food supply chain, which by 2050 will need to increase its capacity by 60-70% due to global population growth, 

would benefit greatly from the availability of connected pH sensors capable of filtering unpredictable disturbances, 

which are difficult to design with electronic circuitry. Through the application of Artificial Intelligence (AI) it is 

possible to cope with imprecise and unexpected conditions by solving complex problems without deterministic 

solution, especially when using Artificial Neural Networks (ANN) and Deep Learning.  

 

II. METHODOLOGY 

2.1 Design and Characterization of the Instrument 

Internet of Things (IoT) is a key enabling technology for Industry 4.0 applications. No unified or standardized 

agreement has been reached with respect to IoT architectures. Nonetheless, every IoT architecture should 

implement at least three layers. More complex architectures, including four- or five-layered ones, have also been 
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proposed. The instrument described in this work is unique, compared to other pH sensing devices, because it 

incorporates a three-layer IoT architecture with Perception, Network, and Application Layers. 

 

2.1.1 Materials 

In Figure 1, we depict the block diagram of the cost-effective and portable instrument to enable accurate pH 

measurements for global VF and, more generally, Industry 4.0 applications, as proposed and implemented by our 

group. The instrument described in this work is unique, compared to other pH sensing devices, because it 

incorporates a three-layer IoT architecture with Perception, Network, and Application Layers. 

 

 

Figure 1. The cost-effective and portable pH instrument has been implemented in a three-layer IoT architecture, 

consisting of (a) Perception, (b) Network, and (c) Application Layers. The Perception Layer is further divided into: 

(a.1) Sensing, (a.2) Signal Conditioning, and (a.3) Signal Acquisition stages. The Network Layer has been enabled 

by means of a Bluetooth (BLE) Communications stage. The Application Layer utilizes a gateway, in the form of a 

Smartphone or a Personal Computer, for user interaction. 

 

As illustrated in Figure 1, the three-layer architecture of the instrument incorporates: (a) Perception Layer, (b) 

Network Layer, and (c) Application Layer. The Perception or Physical Sensor Layer is further divided into: (a.1) 

Sensing, (a.2) Signal Conditioning, and (a.3) Signal Acquisition stages. Meanwhile, the Network Layer, used to 

connect the pH sensor to other sensors, network devices, or servers, is implemented through a Wireless Bluetooth 

(BLE) Communications stage. Finally, the Instrument Application Layer, which is in charge of providing useful 

information to the user, is enabled by means of a smartphone or a personal computer. Hereafter, we describe the 

materials necessary to implement the sections of the accurate, cost-effective, and portable instrumentation for pH 

measurements. 
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2.1.1.1 Perception Layer—Sensing Stage  

We employ a silver|silver-chloride, Ag|AgCl, glass electrode in a potentiometric arrangement, which is readily 

available and cost-effective. The implemented sensor (Hinotek, Ningbo, China, E201-BNC) consists of a working 

electrode in the form of a glass ball, filled with a well-known buffer solution, which is in contact with the sample 

under study. The reference electrode also interacts with the solution of unknown pH. The sensor is protected by a 

cover and maintained in a storage solution, which is central to ensure sensor performance over time. A schematic 

of the pH sensor is depicted in Figure 2. 

 

Figure 2. The implemented sensor consists of: a. Working electrode in contact with sample under study; b. 

Reference electrode interacting with solution of unknown pH; c. Protective cover; d. Storage solution; and e. 

Standard BNC connector for interoperability. 

 

Any other pH detector (including those implementing novel materials) in a potentiometric arrangement would, 

despite accessibility and/or availability constraints, be compatible with the instrument described in this work, 

provided it has a standard BNC connector. Such a connector was selected to ensure interoperability and to facilitate 

signal conditioning interfacing. 

 

2.1.1.2. Perception Layer—Signal Conditioning and Signal Acquisition Stages  

Alkaline solutions tend to generate negative potential differences. Meanwhile, acidic solutions will have a positive 

trend, in terms of the voltage generated by the sensor. Therefore, in order to ensure that the electrical waveform is 

adequate for analog to digital conversion (ADC), an offset voltage must be implemented in the signal conditioning 

stage. As illustrated in Figure 3, a divider network with a stable voltage input (Texas Instruments, Dallas, TX, 

USA, TL431) of 2.5 V defines the bias voltage. This offset voltage can be varied by means of a potentiometer 

(RV1). In this work, we present key modifications to the passive components of this bias stage of the signal 

conditioning circuitry, which serve to optimize pH detection. 
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Figure 3. The signal conditioning stage is constructed by implementing an offset section, followed by a 

detection/amplification stage. The sensor is coupled using an array of precision op-amps in buffer and non-

inverting amplifier configurations to ensure adequate performance. 

 

Considering that a potentiometric system is in place, pH measurements should be ideally performed in equilibrium. 

Therefore, the electrical current generated between working and reference electrodes should be as negligible as 

possible. This implies that the impedance of offset and detection stages should be various orders of magnitude 

greater compared to the pH sensor impedance.  

The instrument employs an array of precision operational amplifiers, op-amps (Texas Instruments, TLC4502), with 

an input impedance of 1 × 1012 [Ω] and a typical bias current of 1 [pA]. Such a configuration ensures that negligible 

current flows through the sensor as required by the potentiometric design. Finally, the amplification section is 

configured as a conventional non-inverting amplifier with the gain determined by resistors R6 and R7, as depicted 

in Figure 3. In order to facilitate global VF applications, the complete signal conditioning stage can be implemented 

in a single electronic module (DIY More, Hong Kong, China PH-4502C). A thorough revision of such integrated 

modules is suggested, in order to determine expected offset, detection, and amplification performance. Finally, 

breadboard implementations can be constructed by following the schematic of Figure 3.  

The electrical signal generated by the instrument proposed in this work is the sum of the bias voltage plus the 

potential difference generated by the pH sensor, as seen in Figure 3. This signal is amplified and acquired by the 

ADC of a microcontroller. In our case, an ATmega328P (Atmel Corporation, San Jose, CA, USA) microcontroller 

built into an Arduino UNO board (Smart projects, Ivrea, Italy, Arduino UNO) was used. It is important to note that, 

in order to enable global adoption, practically any standard microcontroller, such as those of the STM32 Family 

(STMicroelectronics, Grenoble, Auvergne-Rhône-Alpes, France), the nRF52 series (Nordic VLSI, Trondheim, 

Trondheim Fjord, Norway), or other member of the ATmega series (Atmel Corporation, San Jose, CA, USA), can 

be equally employed. Similarly, other integrated modules can be utilized to replicate this instrumentation locally. 



 
 

Maestría en Ciencias en Ingeniería Mecatrónica 
Design and characterization of an advanced pH instrument using Artificial Intelligence algorithms for 

Vertical Farming applications 

___________________________________________________________________________________ 
 

___________________________________________________________________________________ 
Instituto Tecnológico de Pabellón de Arteaga 8 

 

 

2.1.1.3. Network Layer—Bluetooth Wireless Communications Stage  

The Network Layer enables the pH sensor to connect to other devices such as gateways (e.g., in the form of 

smartphones or personal computers) or even other sensors. Such connectivity is characteristic of Industry 4.0 

applications. In the instrument described in this work, a Bluetooth radio version 2.0 (Linvor, Jinan city, Shandong, 

China, LV-BC-2.0) enables wireless transmission of pH data, and serves as the Network Layer. The radio, 

implemented in a breadboard (Olimex, Plovdiv, Bulgaria, BLE HC-06) for ease of integration, is a Class 2 device, 

and exhibits a maximum communication range of 10 m. This range is sufficient for isolated VF applications. 

However, for distributed VF applications or, more generally, other Industry 4.0 applications, a Class 1 Bluetooth 

device can be employed to yield a range of 100 m. In fact, for conventional farming, the Bluetooth technology 

enables a very desirable feature: Mesh Networks. In such a topology, a rather large area (e.g., 1000 m2) can be 

covered with a handful of Bluetooth radios. Any gateway, functioning as part of the Application Layer, which 

supports Bluetooth communications, as specified in this section, can interface with the instrumentation, potentially 

minimizing deployment challenges encountered in global Industry 4.0 applications. 

 

2.1.1.4. Integration of the Portable pH Instrument  

Figure 4 displays the layout and a representative picture of our portable pH instrument, as well as the integration 

required to enable accurate pH measurements for global VF applications. To integrate the overall solution six main 

components are needed: 1. Glass electrode for pH sensing with standard BNC connector; 2. Signal conditioning 

module; 3. Bluetooth communications module; 4. Integration breadboard; 5. Signal acquisition and processing 

module; and 6. Power supply. 

 

Figure 4. (a) The pH instrumentation for global VF applications consists of six main components: (1) Glass 

electrode; (2) Signal conditioning module; (3) Bluetooth communications module; (4) Integration breadboard; (5) 

Signal acquisition and processing module; and (6) Power supply. (b) Representative photo. 
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Figure 4a provides a detailed integration (i.e., wiring) diagram to ensure adequate signal processing, as well as the 

intermediate breadboard needed to assemble the components that constitute the instrument. Finally, Figure 4b 

presents a representative picture of the portable instrument for pH measurements. 

 

2.1.2 Methods 

2.1.2.1 pH Sensor Characterization  

The pH of a solution under study can be determined after a meticulous calibration. In order to characterize the pH 

sensor, the potential difference over the two electrodes must be measured, and related to the hydrogen-ion activity 

of reference solutions.  

Three pH buffer solutions (Mallinckrodt Baker, Hampton, NJ, USA, manufacture date 31 August 2020) with a 2-

year validity certification (at 25 °C) and traceable to NIST standards were used. The standard buffer solutions 

employed in the calibration of our instrument were: 1. Biphthalate; 2. Phosphate; and 3. Borate. Correspondingly, 

the pH and certified range values for the buffer solutions were 4 [3.96, 4.04]; 7 [6.96, 7.04]; and 10 [9.99, 10.01]. 

Utilizing the batch information of our buffer solutions, the pH reference values for our calibration procedure were: 

3.99, 6.98, and 10.00.  

The characterization method is divided into two phases. In phase one, the sensitivity of the pH sensor is determined 

with a conventional voltage meter, such as a multimeter. It is important to note that the instrument input impedance 

should be high, and the noise performance optimally below the mV range for accurate calibration. In phase two, 

the signal conditioning stage, as described in this work is employed, in order to quantify the modified (i.e., including 

bias and amplification effects) sensitivity of the pH sensor. Hereafter, the methods for both phases are described. 

Phase I does not include the signal conditioning stage. First, the pH sensor is attached to the measuring device 

using the BNC connector. For this phase, a multimeter (Steren, Ciudad de México, Mexico, MUL-605) is employed 

to determine the voltage, irrespective of polarity, as a function of buffer solution. Next, the calibration curve that 

describes the linear behavior of the sensor is calculated by using regression techniques. The derived slope will 

serve to relate pH as a function of (sensor) voltage. In Phase II, the signal conditioning stage is included. 

Nonetheless, the above methodology remains practically the same. One of the differences is that in the first step, 

the pH sensor is attached to the signal conditioning module using the BNC connector. Then, the circuitry of Figure 

3 is employed to measure the voltage as a function of buffer solution. Next, the calibration curve that describes the 

linear behavior of the sensor is obtained by employing regression techniques. Here another difference is in place. 

The pH is still related to a modified potential difference, which includes the effects of the signal conditioning stage: 

bias and amplification. The modified potential difference is obtained by dividing the output voltage by the gain and 

subtracting the bias voltage. The derived slope will serve to relate pH as a function of (instrument) voltage. Finally, 

it is important to note that, irrespective of the calibration method, the overall cleanliness and mechanical stability, 

while measuring, of the working electrode are key factors to obtain accurate calibration results.  
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2.1.2.2 Preparation of Signal Conditioning, Acquisition, and Transmission  

The procedure implemented to utilize the signal conditioning, acquisition, and transmission stages is as follows. 

First, the wiring of the instrument is performed, as shown in Figure 4a. It is relevant to note that this step defines 

the performance of the signal acquisition stage, if an external voltage is used. In our case, this parameter was set to 

5 V using the microcontroller code. Then, the offset voltage of the instrument is tuned by cautiously adjusting the 

potentiometer, RV1 in Figure 3, thus accounting for the ADC configuration previously mentioned. Finally, BLE 

transmission of sensed data is facilitated by means of the microcontroller code, which implements two modalities: 

Calibration and Measurement. In calibration mode, the user is enabled to characterize the sensor (refer to Section 

2.1.2.1) by employing the three buffer solutions. The resulting parameters are stored in the instrument memory for 

future use. In measurement mode, the instrument acquires arbitrary voltage values, and converts such information 

to pH values. pH information is then sent serially to the Bluetooth radio, which transmits wirelessly the data to a 

gateway (i.e., personal computer or smartphone) for further processing.  

 

2.1.2.3. Methodology to Assess the pH of Arbitrary Solutions  

The first step to measure the pH of a selected sample is to perform the calibration of the probe, refer to Section 

2.1.2.1. Here, sensor cleanliness is crucial. Second, the sensor is connected to the instrument, and the signal 

conditioning, acquisition, and transmission stages are prepared as mentioned in Section 2.1.2.2. Once this has been 

performed, the instrument is ready for measurements. Nevertheless, the sample must be prepared and the chemical 

integrity of the same must be ensured. In order to perform pH evaluation, mechanical stability must be guaranteed. 

In this work, we elaborate further on the implications of unstable systems, which are likely to occur in global VF 

settings. A simple-to-use interface was implemented, by means of a push-button (S2), to select the operation 

modality. A light emitting diode (LED2) is used to indicate operation mode, and for general user interaction. Once 

instrument and sample are ready, the user selects an operation mode, by means of S2, and performs the pH 

measurement. Such measurement is then transmitted to the gateway of interest. Furthermore, calibration code may 

be found in the Supplementary Materials section of this work, go to Annex 1. 

2.2 Comparative Analysis of RNN versus IIR Digital Filtering to Optimize Resilience to 

Dynamic Perturbations. 

2.2.1 Materials 

2.2.1.1 Instrumentation 

For the purpose of generating reference and output datasets (r and y in Figure 5), we utilized the designed pH 

instrumentation.  Once the data is obtained, the computing entity performs the IIR and RNN digital filtering. For 

IIR digital filtering, we employed the Signal Processing Toolbox of MATLAB (MathWorks, Natick, United States, 



 
 

Maestría en Ciencias en Ingeniería Mecatrónica 
Design and characterization of an advanced pH instrument using Artificial Intelligence algorithms for 

Vertical Farming applications 

___________________________________________________________________________________ 
 

___________________________________________________________________________________ 
Instituto Tecnológico de Pabellón de Arteaga 11 

 

MATLAB) running on a Windows 10 Dell G3 3500 computer with a 4-core Intel i5-10300H 2.50GHz processor 

with 16GB of RAM. The RNN analysis was performed with the TensorFlow, Sklearn, and other conventional 

python libraries of JupyterLab (NumFOCUS, Austin, United States, Jupyter) running on a Windows 10 Desktop 

Computer with an Intel i7-6700 3.40GHz processor with 16GB of RAM and NVIDIA GeForce RTX 2060 GPU. 

 

Figure 5. The operational block diagram of an optimal closed-loop control system to ensure that a VF setup is 

exposed to appropriate pH values includes: Sensing, (Advanced) Filtering, Alerting, Acting, and Processing 

sections. The most critical step of the control system is the filtering section because unpredictable perturbations 

occur in real-life VF implementations. In this diagram, r denotes eference signal, e = f - r and stands for error 

signal, u symbolizes process input, um is manipulated variable, yimpact demarcates extrinsic mechanical 

perturbations, ypump represents intrinsic movement effects, yvulnerability refers to intrinsic crop vulnerability, ydisease 

denotes intrinsic crop disease, s stands for sensed signal, f symbolizes filtered signal, and y is controlled output. 

2.2.2 Methods 

Figure 6 displays (a) the block diagram and (b) the experimental setup that are needed to generate the 

training and testing waveforms, in order to assess the deep-learning RNN and IIR digital filters. The training dataset 

is created by using an ideal pH sensing setup without mechanical perturbations, see the central section of Figure 

6(b). Meanwhile, the intrinsic mechanical perturbations are enacted by exposing the instrument to a laboratory 

stirrer, refer to the left section of Figure 6(b), which mimics the use of conventional pumps in VF systems for 

circulation purposes. Finally, the extrinsic mechanical perturbations were created by impacting the utilized setup, 

at different locations, as depicted in the right-most portion of Figure 6(b) 
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Figure 6. (a) Block diagram and (b) experimental setups of the pH instrumentation utilized to generate training 

and testing datasets, in order to assess the advanced filtering proposed in this work. We utilized different 

arrangements to create the intrinsic and extrinsic mechanical perturbations that are common in real-life VF 

applications. 

2.2.2.1 Generation of Dataset  

Reliable solutions (Mallinckrodt Baker, Hampton, New Jersey, USA) were utilized to ensure accurate pH values 

(pHsignal = 3.99 and pHreference = 6.98) for the measurements, refer to section 2.1.2.1 above.  

We performed two sets of pH measurements for ideal and real scenarios, corresponding to mechanical perturbations 

being absent and present, respectively. In addition to pH values, we recorded the raw ADC temporal voltage values 

for redundancy and better control of the datasets. Thus, the dataset samples (n) included: input temporal indices, ti, 

ADC voltages, vi, and pH values, pHi, for (a) ideal inputi=(ti,vi,pHi) and (b) real outputi=(ti,vi,pHi) scenarios, for 

every sample i=[1 … n]. It is worth noting that the aforementioned datasets have a periodic behavior, in order to 

emulate the characteristic on-off cycle necessary to ensure optimal crop growth and yield. 

 

2.2.2.2 Dataset Augmentation and Splitting 

Specifically with respect to the RNN analysis, we utilized both datasets to train the model and suppress 

perturbations. As depicted in Figure 2 in Annex 2, the RNN is based on a supervised-learning model, which requires 

knowledge of the input signals, as well as the desired output for training purposes. Since after RNN filtering, we 

are interested in obtaining pH signals free of perturbations, we solely utilized the signal without perturbations as 

the desired output dataset to train the model. Thus, the training input and output datasets were 𝑋 = {𝑥1, 𝑥2, 𝑥3, …, 

𝑥𝑛} and 𝑌 = {𝑦1, 𝑦2, 𝑦3, …, 𝑦𝑛}, where 𝑥𝑖 and 𝑦𝑖  were pH values for the signals with perturbations and without 

them, respectively. Furthermore, we employed a data augmentation mechanism to increase the dataset samples and 

the representativity without the need for new measurements. The data augmentation in this work considered that 

the pH instrumentation will record values in the range 0-14, depending on the level of acidity or alkalinity of the 

solution. We commenced the data augmentation by selecting α, the number of augmentations. Then, for each aug 

mentation, we determined a random value 𝜓 in the range of [0,1] to multiply by the original 𝑋 and 𝑌, equally 
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modifying the pH values while maintaining the result within the original boundaries [0,14]. Finally, we maintained 

the original samples and added each augmentation to return the augmented data �̂� and �̂�, as detailed in Algorithm 

1. It is important to note that we employed 30 augmentations of the entire training dataset, or 𝛼 = 30, and that the 

augmented dataset can also be employed to test the IIR filters.  

 

Considering that we must train a deep-learning neural network, the dataset must be split to avoid overfitting and to 

ensure reliable results. In this work, we utilized 60% of the dataset for training, 20% for validation, and 20% for 

testing. Thereafter, we configured the model to generate extra data with the training augmentation data, as described 

in Algorithm 1. 

2.2.2.3 Training Datasets  

The pH values utilized to assess the performance of RNN and IIR digital filters were 4 and 7 units for signal and 

reference waveforms, respectively. However, before commencing pH measurements, the instrument must be 

calibrated. Thus, for calibration purposes, we included a third pH value of 10.00 of a standardized buffer solution 

(Mallinckrodt Baker, Hampton, New Jersey, USA). Finally, the calibration procedure can be improved if a fourth 

solution, outside of the calibrated substance range in our case [3.99, 10.00], is utilized. Hence, a final substance of 

2.5 pH units was employed to perform the calibration procedure. Thereafter, the periodic signal needed for VF was 

generated. Figure 7 depicts the training dataset (a) without mechanical perturbations, and (b) with intrinsic and 

extrinsic disturbances. Moreover, in Figure 7, we separate into two phases the required steps, calibration and 

measurement, needed to sense pH with the portable instrumentation. The datasets consisting of 21723 temporal 

samples, ti, ADC voltages, vi, and pH values, pHi, for scenarios with present and absent perturbations are available 

in the Supplementary Materials section of this work, in Annex 2.  
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Figure 7. The training dataset (a) without mechanical perturbations and (b) exhibiting intrinsic and extrinsic 

disturbances were generated to mimic the conditions that are common in real-life VF applications. The two phases, 

Calibration and VF Periodic Signal generation, needed to employ the pH instrument are respectively depicted in 

the left and right portions of each illustration. 

As seen in Figure 7, once the instrument is duly calibrated, we generate the periodic signals, which are identical to 

the control waveforms of Figure 5. During calibration, the instrument is more prone to exhibit mechanical 

perturbations because buffer solution, electrode, and detection electronics have to be manipulated frequently (i.e. 

electrode and container cleaning is mandatory after each calibration measurement) In this work, we consider these 

unpredictable fluctuations to demonstrate that a RNN filter is more resilient in real scenarios, as opposed to IIR 

filtering. 

2.2.2.4 IIR Digital Filter Designs  

The portable and precise pH instrument that we describe in this work can implement well-established (analog or 

digital) electronic filters, such as Butterworth, Chebyshev, and Elliptic arrangements. Furthermore, a salient feature 

of IIR filters is that they can be based on these electronic configurations. In order to assess the usability of such 

filters in real-life VF applications, we designed (a) Butterworth, (b) Chebyshev I, (c) Chebyshev II, and (d) Elliptic 

digital IIR configurations. As commented previously, the pH input function is periodic with a rather slow varying 

frequency. Therefore, the low-pass filters specifications have to consider this expected behavior. We defined a 

passband frequency of 1Hz with a maximum 1dB attenuation. Additionally, the stopband frequency was specified 

to be 10Hz for a 60dB attenuation. The sampling frequency was assumed to be one order of magnitude greater than 

the stopband frequency. 

Table 1. IIR digital filter designs for the Butterworth, Chebyshev I, Chebyshev II, and Elliptic configurations 

employed in this work. 
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Utilizing the Signal Processing Toolbox of MATLAB, we determined filter orders, as well as the corresponding 

transfer functions of the filters, including the a and b coefficients. Table 1 presents the orders, coefficients, and 

transfer functions of the digital filters. Finally, Figure 8 illustrates the digital filter designs for (a) Butterworth, (b) 

Chebyshev I, (c) Chebyshev II, and (d) Elliptic digital IIR configurations. The IIR digital filter MATLAB scripts 

are available in the Supplementary Materials section in Annex 2.. 

 

Figure 8. The Butterworth, Chebyshev I, Chebyshev II, and Elliptic IIR digital filter designs consider a -1dB 

passband frequency of 1Hz, and a -60dB stopband frequency of 10Hz. 

2.2.2.5 RNN Digital Filter Design 

The RNN-based digital filter proposed in this work implements the advanced structure depicted in Figure 2 in 

Annex 2. In order to optimize the design of the RNN digital filter, we determined the number of neurons per layer 

by testing multiple configurations. The tested layouts included various l1=l2=[10,20,30,40,50,60,70,80,90,100]  

Filter Order a Coefficients b Coefficients Transfer Function 

Butterworth 4 
{ 1, -3.836, 5.521,  

-3.534, 0.8486 } 

{ 8.985×10-7, 3.594×10-6, 5.391×10-6, 

3.594×10-6, 8.985×10-7  } 

7 4 6 3 6 2 6 7

4 3 2

8.985 10 3.594 10 5.391 10 3.59 10 8.985 10

3.836 5.521 3.534 0.8486

z z z z

z z z z

− − − − − +  +  +  + 

− + − +

 

Chebyshev I 3 
{ 1, -2.935, 

 2.875, -0.939 } 

{ 1.47×10-5,4.431×10-5, 

4.431×10-5, 1.477×10-5 } 

5 3 5 2 5 5

3 2

1.477 10 4.431 10 4.431 10 1.477 10

2.935 2.875 0.9398

z z z

z z z

− − − − +  +  + 

− + −

 

Chebyshev II 3 
{ 1, -2.98,  

2.96, -0.9803 } 

{ 9.347×10-5, -9.298 ×10-5, 

 -9.298×10-5, 9.347×10-5} 

5 3 5 2 5 5

3 2

9.347 10 9.298 10 9.298 10 9.347 10

2.98 2.96 0.9803

z z z

z z z

− − − − −  −  + 

− + −

 

Elliptic 3 
{ 1, -2.935, 

 2.875, -0.939 } 

{4.69 ×10-4,-4.09 ×10-4, 

-4.09×10-4, 4.69×10-4} 

4 3 4 2 4 4

3 2

4.69 10 4.09 10 4.09 10 4.69 10

2.935 2.875 0.9399

z z z

z z z

− − − − −  −  + 

− + −

 



 
 

Maestría en Ciencias en Ingeniería Mecatrónica 
Design and characterization of an advanced pH instrument using Artificial Intelligence algorithms for 

Vertical Farming applications 

___________________________________________________________________________________ 
 

___________________________________________________________________________________ 
Instituto Tecnológico de Pabellón de Arteaga 16 

 

LSTM neurons; three different l3=[1,5,7] GRU arrangements; as well as single RNN and output segments, l4=[1] 

and l5=[1].  Furthermore, we also varied the number of prior samples. We tested psamples =[500, 1000, 1500, 

2500, 3000, 3500]. We assessed 2101 different configurations of the model with the MSE loss function, which we 

decided to employ because it is the most utilized metric to train regression models in ANNs. For the 2101 

configurations, we trained the model with 500 epochs and a batch size of 5000. This approach requires different 

steps per epoch depending on the size of the training set, which is variable because, as commented above, we 

allowed changing the prior samples required as inputs. Moreover, we adjusted the learning rate according to 

Equation 1, increasing the effect of error and modifying the learning rate across epochs. 

  5 1001.0 10 10
epoch

rl
−=                                                                        (1) 

The training mechanism utilized in this work stops after twenty steps without improvement of the validation loss. 

Furthermore, we configured the training process to solely save the best model. After assessing the 2101 

configurations with the dataset containing 21723 samples with 30 augmentations for training, we obtained that the 

best model, as determined by the MSE loss function, ensues when 𝑙1 = 90, 𝑙2 = 90, 𝑙3 = 1, 𝑙4 = 1, 𝑙5 = 1, and 

𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 2000. In Figure 9, we depict the logarithmic parallel coordinates for all the configurations trained with 

the MSE loss function based on the testing of MSE results. The best model is highlighted in red, MSE Test = 

0.002017. Meanwhile, blue and gray are variations of models exhibiting better and worse performance, 

respectively. Lastly, in black we present the model with the worst outcome, MSE Test = 0.207638994.  

 

Figure 9. The outcome of the advanced digital filter structure of Figure 2 in Annex 2 is shown as the logarithmic 

parallel coordinates for all the configurations trained with the MSE loss function based on the testing of MSE 
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results; best model is in red; next best models are in blue variations; next in performance are in gray hues; and 

worst is depicted in black.  

The training metrics obtained for the best model trained with the MSE loss function at the maximum step reached 

before stopping due to no loss validation improvement are depicted in Table 2. 

Table 2. Training metrics for the best model trained with MSE loss function at the maximum step reached. 

Step Epoch MAE Epoch MSE Epoch MAPE Epoch lr 

317 0.0364 0.0053 53.3455 0.0145 

 

The validation metrics for the best model trained with the MSE loss function obtained at the maximum stage 

reached are enumerated in Table 3. 

Table 3. Validation metrics for the best model trained with MSE loss function at the maximum step reached. 

Step Epoch MAE Epoch MSE Epoch MAPE Epoch lr 

317 0.0415 0.0030 8.3354 0.0145 

 

The test metrics obtained for the best model trained with the MSE loss function are enlisted in Table 4. 

Table 4. Testing metrics in the test dataset for the best model trained with MSE loss function. 

Model Test MAE Test MSE Test MAPE R-squared 

RNN 0.0337 0.0020 6.8970 0.9076 

k-RNN* 0.0254 0.0013 5.4111 0.9406 

 * The RNN model was optimized by using a multiplying constant, k, of value 1.030  

Once the digital filters were fully characterized, we assessed their implementation in a VF setting, as described in 

annex 2. 
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2.3 Design of a fuzzy inference system to compensate for the effect of temperature on pH 

measurements using genetic algorithms. 

2.3.1 Methods 

The fuzzy inference machine considers the voltage delivered by the electrode (AgCl) measured with five samples 

of known pH, 4, 6.86, 7, 9.18, 10 at different temperatures (15°C to 30°C), thus obtaining a small database with 80 

readings for the genetic algorithm. These experiments define the values of the input and output universes specific 

to the electrode used. The rule used in the controller is the Mamdani rule. The aggregation was done through the 

max operation and defuzzification by a centroid of gravity. 

The fuzzy models presented here have two input variables: the value of the voltage measured by the electrode V 

and the value of the temperature of the solution T. The output variable, pH, describes the temperature of the 

solution. The output variable, pH, describes the actual pH value at a given temperature. The inputs are the voltage  

represented by the set V with five terms: 

 

V = {VpH10, VpH9.18, VpH7, VpH6.86, VpH4} 

 

Where each value represents the approximate pH value corresponding to the voltage levels measured by the 

electrode. 

And the temperature represented with the set T with five terms: 

T = {TVL, TL, TA, TH, TVH} 

 

VL represents the Very low, L set as Low, A is the Average, H equal to High, VH denominated Very High. 

 

The expected output in the experiment is a pH level between 4 to 10. Thus, we let the genetic algorithm tune the 

fuzzy inference system for obtaining the appropriate output sets for the centroid defuzzification. 

 

Then, the output is given by pH with five terms: 

 

pH = {pH4, pH6.86, pH7, pH9.18, pH10} 

 

Where each value represents the real pH value taking into account the temperature. The universe considered for 

the voltage ranges that the sensor can deliver is UV = {x ∈ ℤ: -200 ≤ x ≤ 200}, for temperature is UT = {y ∈ ℤ: 

15≤ y ≤ 30} and for pH value UpH= {z ∈ ℤ: 4 ≤ z ≤ 10}. 
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The objective function (equation (2)) uses the genetic algorithm in the fuzzy inference machine to fit the vertices 

of the Gaussian functions (5 input sets, 5 output sets, and 25 rules). 

𝑦 = (∑ |𝐴𝑖 − 𝐵𝑖|80
𝑖=1 )  +  

0.1

|𝑀−𝑚|
                                                            (2) 

where Ai is the value obtained with the fuzzy inference machine using the vertices tuned by the genetic algorithm, 

Bi is the desired value for the dataset values. M is the maximum, and m is the minimum of the values obtained. 

The objective is to minimize the function given in equation (6).  As the problem to be optimized is dimension 105, 

we used an initial population of 500 individuals, each with 1155 alleles, where every 11 alleles form a bit string 

representing a real number, with a resolution of 1000 decimals. The selection method is by tournament, the 

tournament size applied here is 100, the number of crossover points is a random number, the mutation rate is 5%, 

and 30000 generations. Table 5 represents the values of the voltage (mV) at different temperatures (°C), and 

different pH.   

Table 5. Electrode voltage values at different temperatures. 

 pH=4  pH=6.86  pH=7  pH=9.18  pH=10 

°C   mV  mV  mV  mV  mV 

15 161.51  8  4.95  -119.63  -163.53 

16 162.11  8.03  5.12  -121.06  -163.11 

17 162.71  8.05  5.23  -121.5  -163.8 

18 163.31  8.08  5.67  -121.99  -164.31 

19 163.88  8.1  5.75  -122.63  -164.88 

20 164.48  8.16  5.86  -122.78  -164.48 

21 165.08  8.19  6.09  -123.01  -166.08 

22 165.68  8.23  6.2  -123.22  -166.68 

23 166.28  8.26  6.25  -124.09  -167.28 

24 166.88  8.27  6.43  -124.53  -167.85 

25 168.55  8.28  6.53  -124.96  -169.08 

26 176.05  8.31  6.73  -125.38  -169.3 

27 176.65  8.33  6.86  -125.78  -169.85 

28 178.25  8.37  7.03  -125.24  -170.25 

29 179.90  8.42  7.26  -125.7  -170.85 

30 180.13  8.39  7.67  -126.12  -172.45 

 

III.  CONCLUSIONS 

In this work, the implementation of a cost-effective and portable instrument, which enables accurate pH 

measurements for global Vertical Farming applications, has been described. By performing a well-designed 

calibration of the sensor, near Nernstian response, in this case 57.56 [mV/pH], was demonstrated. The 

instrumentation was compared to a laboratory gold standard, which is at least ten times more expensive, and was 

shown to be accurate in determining the pH of substances in the 2–14 range. Furthermore, the instrument yields 

precise pH results with an average absolute deviation of 0.06 pH units and a standard deviation of 0.03 pH units. 

Compared to previous research efforts, the instrumentation is unique because it incorporates a three-layer IoT 
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architecture with Perception, Network, and Application Layers. Additionally, the design is optimal for worldwide 

adoption by consisting of four modular stages: sensing, signal conditioning, signal acquisition, and 

communications. The design of the instrument was shown to be ADC-limited, with a minimum detectable value of 

0.028 pH units, and a typical absolute accuracy of ±0.062 pH units. In order to overcome this limitation, a means 

to improve performance was presented by meticulously designing the bias and amplification circuitry of the signal 

conditioning stage, and by optimizing the signal acquisition section of the instrument.  

We have proposed an advanced filtering scheme based on Recurrent Neural Networks (RNNs) and Deep Learning 

to enable efficient control strategies for Vertical Farming (VF) applications. We demonstrated that the best RNN 

model incorporates five neuron layers. The first and second of the segments contain ninety LSTM neurons. The 

third layer implements one GRU neuron. The fourth segment incorporates one RNN network, while the output 

layer was designed by using a single neuron exhibiting a rectified linear activation function. By utilizing this RNN 

digital filter two variations were introduced: (1) A scaled RNN model to tune the filter to the signal(s) of interest, 

and (2) A moving average filter to eliminate harmonic oscillations of the output waveforms. The RNN models were 

contrasted with conventional Butterworth, Chebyshev I, Chebyshev II, and Elliptic digital IIR configurations. The 

RNN digital filtering schemes avoid introducing unwanted oscillations, which makes them more suitable for VF 

than their IIR counterparts. Furthermore, by utilizing the advanced features of scaling of the RNN model, we 

demonstrated that the RNN digital filter is pH selective, as opposed to conventional IIR filters. In real VF settings, 

the features of tuning (or selecting) an instrument to detect variable pH values, as well as ensuring that such device 

is resilient to dynamic (i.e., unpredictable) perturbations are of utmost importance. Hence, the use of advanced 

filtering schemes such as those based on RNN and Deep Learning is preferable as opposed to employing IIR 

filtering for VF.  

Finally, a Mamdani fuzzy logic system auto-tuned through genetic algorithms was explored to obtain the real pH 

value without considering the slight variation of temperature. The system can identify the correct pH values 

considering the possible changes in voltage that can influence the electrode due to temperature. At the same time, 

an important fact is that the performance of the pH electrode deteriorates due to its useful life or external factors. 

With the application of the fuzzy system, it is possible to approximate a sensor's behavior to another in optimal or 

more sophisticated conditions with ATC. It would be enough to build a dataset with the voltage measurements 

provided by the sensor at certain temperatures and the correct pH value that corresponds to the readings of the 

already calibrated sensor. The genetic algorithm function will tune the fittest vertices for the fuzzy interference 

system sets in the defuzzification to obtain the correct pH value. For this work, the system only operates within the 

range of data used (pH4 to pH10), and future work will create a more extensive dataset. In addition, the 

incorporation of fuzzy logic in a control mechanism for monitoring nutrients in water in a multilevel hydroponic 

growing system considering parameters such as pH, conductivity, and temperature was explored. By considering 

these variables, dosing pumps could control the modification of nutrients in the water. 
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Abstract: Global Vertical Farming (VF) applications with characteristic Industry 4.0 connectivity will
become more and more relevant as the challenges of food supply continue to increase worldwide.
In this work, a cost-effective and portable instrument that enables accurate pH measurements for
VF applications is presented. We demonstrate that by performing a well-designed calibration of the
sensor, a near Nernstian response, 57.56 [mV/pH], ensues. The system is compared to a ten-fold more
expensive laboratory gold standard, and is shown to be accurate in determining the pH of substances
in the 2–14 range. The instrument yields precise pH results with an average absolute deviation
of 0.06 pH units and a standard deviation of 0.03 pH units. The performance of the instrument is
ADC-limited, with a minimum detectable value of 0.028 pH units, and a typical absolute accuracy of
±0.062 pH units. By meticulously designing bias and amplification circuitry of the signal conditioning
stage, and by optimizing the signal acquisition section of the instrument, a (minimum) four-fold
improvement in performance is expected.

Keywords: pH-instrument; Vertical Farming; Industry 4.0; Nernstian response; cost-effective; portable;
instrumentation

1. Introduction

Globally, numerous industries employ the pH level for multiple purposes. For instance,
the pH is recurrently used as a central metric to determine the alkalinity. Furthermore, by
controlling the pH, an efficient coagulation of sludge in wastewater can be guaranteed [1–3].
Similarly, pH serves as a reference to monitor and prevent corrosion in pipes and boilers
[4,5]. In fermentation processes, continuous quantification of the pH is relevant to avoid
the generation of unwanted and harmful by-products [6–8]. In the brewing industry, the
pH serves to determine aging, increments in hop hardness, and bittering concentrations
[9–11]. For perishable products, such as meat and fish, the pH level reveals shelf life and
freshness [12–15]. Finally, the pH is central to determine ripening stage, as a function of
ethylene concentration, of fruits and vegetables [16–18].

Our laboratory specializes in applied research and technology development in the
field of Precision Farming (PF). PF is defined as the optimal utilization of technology to
accurately assess: planting density, fertilizer quantity, and farming supplies, as needed to
precisely predict crop production and yield [19].

Of particular interest to our group is the important field of Vertical Farming (VF).
VF refers to systems of agriculture where salads, microgreens, herbs, etc. are grown
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under artificial light as supplemental irradiation, and sensing technology is integrated
to continuously improve quality and yield. VF ensures sustainability by addressing the
problem of food security for the growing population around the world [20]. In VF solutions,
plants are produced in Closed Plant Production Systems, which are generally hydroponic,
aeroponic, or aquaponic [21]. In particular, a VF hydroponic system is being constructed
in our laboratory, which consists of three distinct vertical racks where various plants
can be grown. Each variety is exposed to a specific light recipe depending on the plant
characteristics. Ambient humidity and temperature sensors are distributed along the racks
to monitor plant parameters. The nutrients come from a reservoir that incorporates a pump,
as well as water level, temperature, total dissolved solids, and pH sensors. Finally, these
sensors communicate wirelessly with a gateway, which transmits the data to a dashboard.

In the field of VF, the pH is called a main soil parameter, because its measurement
generates main or primary information for soil fertilization and bioremediation processes.
Moreover, the pH level is central to VF, since it influences the chemical, physical, and
biological soil properties, affecting factors such as plant growth, de-nitrification, plant
toxicity, bacterial activity, and soil nutrients [22,23]. In the past, several groups have re-
ported the construction of instrumentation to enable pH measurements. For example, Jin
et al. [24] developed a pH potentiometer applicable to teaching in a chemistry laboratory
setting. Moreover, a pH sensor to assess the changes in cementitious materials, through
a sol-gel process with an alizarin yellow as meter, has been developed [25]. Addition-
ally, portable chemical sensors, requiring specialized processes for manufacturing, have
been reported for non-invasive real-time monitoring of parameters for medical care and
disease diagnosis [26,27]. Manjakkal et al. [28] integrated an electrochemical pH sensor,
applicable to several industries, with a screen printed on flexible substrates through CuO
nanostructures exhibiting nanorods morphology. The measurement range was established
to be 5–8.5 pH units. Dang et al. [29] developed a wireless system for monitoring pH of
sweat, integrated by a pair of serpentine-shaped stretchable interconnects. The authors
constructed a reference electrode using graphite-polyurethane composites for biological
applications. Cordoba et al. [30] reported the development of an optical sensor, which
requires a high-cost external instrument to determine the pH level. Rasheed et al. [31]
designed a multilayer (ZnO/Ag/ZnO) film pH sensor, which was tested as an extended
gate field effect transistor. The pH detection range was demonstrated to be 2–12 pH units.
Lastly, solutions using ISFET (Sensitive Field Effect Transistors) sensors, which have the
advantage of being small, have been proposed. Nonetheless, with ISFET sensors, samples
under study must be small, and the measuring range is limited to 10 pH units (1.5 to
11.5 pH) [32].

An essential aspect of any instrument intended for VF use is that such instrumentation
must meet availability, portability, and cost-effectiveness constraints to enable global adop-
tion. Furthermore, the global food supply chain, which by 2050 will have to increase its
capacity by 60–70% due to the growth of the world population [33], would benefit greatly
if connected (characteristic of Industry 4.0 solutions) pH sensors were available. Thus,
the goal of this article is to describe the implementation of a portable, cost-effective, and
connected instrument that enables accurate pH measurements for VF and, more generally,
Industry 4.0 applications.

This work is divided into six sections. Section 2 deals with the theoretical background,
as required to address pH sensing for global Vertical Farming applications. In Section 3, the
instrument is described in the context of a three-layer Internet of Things architecture. Here,
the circuit design for pH measurements is presented. In Section 4, the results of sensor
characterization and pH measurements are presented. The discussion section, presented in
Section 5, describes two modifications that can be implemented to the circuitry, in order to
increase the precision of the instrument. Finally, the results of this work and future research
directions are summarized in Section 6.
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2. Theoretical Background
pH Sensing Aspects: Considerations for Global Industry 4.0 Applications

The term Potentia Hydrogenii, commonly known as pH, was originally proposed
by Sørensen to describe the solution pressure of hydrogen-ions in aqueous solutions.
Nowadays, the pH is conceived as a metric to quantify the activity of hydrogen-ions, aH+,
in any solution. Mathematically, the pH is defined as shown in Equation (1) [34]:

pH = − log aH+ (1)

The most common materials utilized for constructing electrochemical pH sensors
include: 1. Glass Electrodes, 2. Metal Oxides, 3. Polymer/Carbon, and 4. Metal/Metal
Oxide-Metal Composites [35]. The suitability of any of the aforementioned sensors to
address global Industry 4.0 challenges, including Vertical Farming, depends on worldwide
availability, accessibility, and cost-efficiency of the constituting materials. Unquestionably,
the Glass Electrode is a front-runner by fulfilling the requirements needed for global adop-
tion of pH sensing. Glass electrodes [36], including the well-known silver|silver-chloride
(Ag|AgCl) arrangement, implement a two electrode setup. These potentiometric systems
consist of working and reference electrodes. Furthermore, the main working concept of
these pH sensors relies on measuring equilibrium conditions at the surface of the working
electrode. Under equilibrium conditions, Nernst’s Law, shown in Equation (2) applies, and
describes the (half) cell potential in terms of the activity of the electroactive species [37]:

Eeq = E0 +

(
RT
nF

)
ln
(

a0

aR

)
= E0 + 2.303

(
RT
nF

)
log

(
a0

aR

)
(2)

where
Eeq represents the electric potential at equilibrium [V],
E0 denotes standard potential [V],
R is the universal gas constant; 8.314 [J mol−1 K−1],
T represents the temperature [K],
n denotes the electrons number,
F is the Faraday constant; 96,485 [C mol−1],
a0 represents the activity of the oxidizing agent,
aR denotes the activity of the reducing agent.
In a practical setting, on one side of the sensor, the reference electrode is exposed to

a well-known and constant solution of hydrogen-ion activity, e.g., a buffer solution. On
the other side of the sensor, the electrode is in contact with the pH solution under study.
Due to the aforementioned sensor design, the contribution of one (i.e., the reference) of the
electrodes is known, and Equation (2) can be rewritten as a function of the pH under study,
as expressed in Equation (3):

E = E0 −
(

2.303 × RT
nF

)
pH (3)

Detection electronics, signal conditioning and acquisition, as well as wireless commu-
nications of the electrical signal are critical aspects in sensing (pH) variables for global VF
(and Industry 4.0) applications, especially due to the fact that a majority of the (farming)
operations occur in places with scarce access to technology. Therefore, the instrumentation
required to accurately measure pH for global Industry 4.0 applications is far from trivial,
requiring accurate characterization of the expected signals and a suitable design that is
applicable to the setting where the technology will be implemented.

Taking these considerations for global VF applications into account, an accurate
characterization of the expected signal is indispensable. For a standard and globally
available silver|silver-chloride reference electrode configuration, the electrochemical redox
response is well known (Ag|AgCl standard potential being 220 mV [38]) and involves the
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generation of only one electron. Consequently, the relationship between electric potential
and pH is linear, and the slope is a function of temperature (refer to Equation (3)). Assuming
a working temperature of 25 ◦C, the ideal Nernst response is shown in Equation (4):

E = E0 − 59.16 × pH [mV] (4)

As presented in this section, novel materials have been proposed and developed to
measure the pH for various applications. Some of these materials exhibit a sensitivity
(i.e., the slope in the last expression) metric that is greater than the value of the Nernstian
response, described in Equation (4). Nevertheless, despite material and manufacturing
complexities, most sensitivity values oscillate around 40 to 80 [mV/pH]. Furthermore, in
global Industry 4.0 applications, including VF for developing countries, access to electrodes
made with novel materials is scarce, limiting sensitivity to values below the Nernstian
response, 59.16 [mV/pH]. Therefore, the design and implementation of portable and cost-
efficient solutions to accurately measure pH in global Industry 4.0 applications represent
a challenge.

In this work, we present a potentiometric pH measurement instrument that is compat-
ible with readily available glass electrodes (as well as other less conventional sensors), and
that implements an optimal electronic design by being accurate, portable, cost-efficient,
and Industry 4.0 ready for global applications.

3. Materials and Methods

Internet of Things (IoT) is a key enabling technology for Industry 4.0 applications.
No unified or standardized agreement has been reached with respect to IoT architectures.
Nonetheless, every IoT architecture should implement at least three layers [39]. More com-
plex architectures, including four- or five-layered ones, have also been proposed [40]. The
instrument described in this work is unique, compared to other pH sensing devices, because
it incorporates a three-layer IoT architecture with Perception, Network, and Application Layers.

3.1. Materials

In Figure 1, we depict the block diagram of the cost-effective and portable instrument
to enable accurate pH measurements for global VF and, more generally, Industry 4.0
applications, as proposed and implemented by our group. The instrument described in this
work is unique, compared to other pH sensing devices, because it incorporates a three-layer
IoT architecture with Perception, Network, and Application Layers.
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Figure 1. The cost-effective and portable pH instrument has been implemented in a three-layer IoT
architecture, consisting of (a) Perception, (b) Network, and (c) Application Layers. The Perception Layer is
further divided into: (a.1) Sensing, (a.2) Signal Conditioning, and (a.3) Signal Acquisition stages. The
Network Layer has been enabled by means of a Bluetooth (BLE) Communications stage. The Application
Layer utilizes a gateway, in the form of a Smartphone or a Personal Computer, for user interaction.
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As illustrated in Figure 1, the three-layer architecture of the instrument incorporates:
(a) Perception Layer, (b) Network Layer, and (c) Application Layer. The Perception or Physical
Sensor Layer is further divided into: (a.1) Sensing, (a.2) Signal Conditioning, and (a.3) Signal
Acquisition stages. Meanwhile, the Network Layer, used to connect the pH sensor to other
sensors, network devices, or servers, is implemented through a Wireless Bluetooth (BLE)
Communications stage. Finally, the Instrument Application Layer, which is in charge of
providing useful information to the user, is enabled by means of a smartphone or a personal
computer. Hereafter, we describe the materials necessary to implement the sections of the
accurate, cost-effective, and portable instrumentation for pH measurements.

3.1.1. Perception Layer—Sensing Stage

We employ a silver|silver-chloride, Ag|AgCl, glass electrode in a potentiometric ar-
rangement, which is readily available and cost-effective. The implemented sensor (Hinotek,
Ningbo, China, E201-BNC) consists of a working electrode in the form of a glass ball,
filled with a well-known buffer solution, which is in contact with the sample under study.
The reference electrode also interacts with the solution of unknown pH. The sensor is
protected by a cover and maintained in a storage solution, which is central to ensure sensor
performance over time. A schematic of the pH sensor is depicted in Figure 2.
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Figure 2. The implemented sensor consists of: a. Working electrode in contact with sample under
study; b. Reference electrode interacting with solution of unknown pH; c. Protective cover; d. Storage
solution; and e. Standard BNC connector for interoperability.

Any other pH detector (including those implementing novel materials) in a poten-
tiometric arrangement would, despite accessibility and/or availability constraints, be
compatible with the instrument described in this work, provided it has a standard BNC
connector. Such a connector was selected to ensure interoperability and to facilitate signal
conditioning interfacing.

3.1.2. Perception Layer—Signal Conditioning and Signal Acquisition Stages

As clearly seen from Equation (4), alkaline solutions tend to generate negative potential
differences. Meanwhile, acidic solutions will have a positive trend, in terms of the voltage
generated by the sensor. Therefore, in order to ensure that the electrical waveform is
adequate for analog to digital conversion (ADC), an offset voltage must be implemented in
the signal conditioning stage. As illustrated in Figure 3, a divider network with a stable
voltage input (Texas Instruments, Dallas, TX, USA, TL431) of 2.5 V defines the bias voltage.
This offset voltage can be varied by means of a potentiometer (RV1). In the discussion
section, we present key modifications to the passive components of this bias stage of the
signal conditioning circuitry, which serve to optimize pH detection.
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Figure 3. The signal conditioning stage is constructed by implementing an offset section, followed by
a detection/amplification stage. The sensor is coupled using an array of precision op-amps in buffer
and non-inverting amplifier configurations to ensure adequate performance.

Considering that a potentiometric system is in place, pH measurements should be
ideally performed in equilibrium, as emphasized in Equation (2). Therefore, the electrical
current generated between working and reference electrodes should be as negligible as
possible. This implies that the impedance of offset and detection stages should be various
orders of magnitude greater compared to the pH sensor impedance.

The instrument employs an array of precision operational amplifiers, op-amps (Texas
Instruments, TLC4502), with an input impedance of 1 × 1012 [Ω] and a typical bias current
of 1 [pA]. Such a configuration ensures that negligible current flows through the sensor as
required by the potentiometric design. Finally, the amplification section is configured as
a conventional non-inverting amplifier with the gain determined by resistors R6 and R7,
as depicted in Figure 3. In order to facilitate global VF applications, the complete signal
conditioning stage can be implemented in a single electronic module (DIY More, Hong
Kong, China PH-4502C). A thorough revision of such integrated modules is suggested,
in order to determine expected offset, detection, and amplification performance. Finally,
breadboard implementations can be constructed by following the schematic of Figure 3.

The electrical signal generated by the instrument proposed in this work is the sum of
the bias voltage plus the potential difference generated by the pH sensor, as seen in Figure 3.
This signal is amplified and acquired by the ADC of a microcontroller. In our case, an
ATmega328P (Atmel Corporation, San Jose, CA, USA) microcontroller built into an Arduino
UNO board (Smart projects, Ivrea, Italy, Arduino UNO) was used. It is important to note
that, in order to enable global adoption, practically any standard microcontroller, such as
those of the STM32 Family (STMicroelectronics, Grenoble, Auvergne-Rhône-Alpes, France),
the nRF52 series (Nordic VLSI, Trondheim, Trondheim Fjord, Norway), or other member
of the ATmega series (Atmel Corporation, San Jose, CA, USA), can be equally employed.
Similarly, other integrated modules can be utilized to replicate this instrumentation locally.

3.1.3. Network Layer—Bluetooth Wireless Communications Stage

The Network Layer enables the pH sensor to connect to other devices such as gateways
(e.g., in the form of smartphones or personal computers) or even other sensors. Such
connectivity is characteristic of Industry 4.0 applications. In the instrument described in this
work, a Bluetooth radio version 2.0 (Linvor, Jinan city, Shandong, China, LV-BC-2.0) enables
wireless transmission of pH data, and serves as the Network Layer. The radio, implemented
in a breadboard (Olimex, Plovdiv, Bulgaria, BLE HC-06) for ease of integration, is a Class 2
device, and exhibits a maximum communication range of 10 m [39]. This range is sufficient
for isolated VF applications. However, for distributed VF applications or, more generally,
other Industry 4.0 applications, a Class 1 Bluetooth device can be employed to yield a
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range of 100 m. In fact, for conventional farming, the Bluetooth technology enables a very
desirable feature: Mesh Networks [40]. In such a topology, a rather large area (e.g., 1000 m2)
can be covered with a handful of Bluetooth radios. Any gateway, functioning as part of the
Application Layer, which supports Bluetooth communications, as specified in this section,
can interface with the instrumentation, potentially minimizing deployment challenges
encountered in global Industry 4.0 applications.

3.1.4. Integration of the Portable pH Instrument

Figure 4 displays the layout and a representative picture of our portable pH instrument,
as well as the integration required to enable accurate pH measurements for global VF
applications. To integrate the overall solution six main components are needed: 1. Glass
electrode for pH sensing with standard BNC connector; 2. Signal conditioning module; 3.
Bluetooth communications module; 4. Integration breadboard; 5. Signal acquisition and
processing module; and 6. Power supply.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 17 
 

bles wireless transmission of pH data, and serves as the Network Layer. The radio, imple-

mented in a breadboard (Olimex, Plovdiv, Bulgaria, BLE HC-06) for ease of integration, is 

a Class 2 device, and exhibits a maximum communication range of 10 m [39]. This range 

is sufficient for isolated VF applications. However, for distributed VF applications or, 

more generally, other Industry 4.0 applications, a Class 1 Bluetooth device can be em-

ployed to yield a range of 100 m. In fact, for conventional farming, the Bluetooth technol-

ogy enables a very desirable feature: Mesh Networks [40]. In such a topology, a rather large 

area (e.g., 1000 m2) can be covered with a handful of Bluetooth radios. Any gateway, func-

tioning as part of the Application Layer, which supports Bluetooth communications, as 

specified in this section, can interface with the instrumentation, potentially minimizing 

deployment challenges encountered in global Industry 4.0 applications. 

3.1.4. Integration of the Portable pH Instrument 

Figure 4 displays the layout and a representative picture of our portable pH instru-

ment, as well as the integration required to enable accurate pH measurements for global 

VF applications. To integrate the overall solution six main components are needed: 1. 

Glass electrode for pH sensing with standard BNC connector; 2. Signal conditioning mod-

ule; 3. Bluetooth communications module; 4. Integration breadboard; 5. Signal acquisition 

and processing module; and 6. Power supply. 

 

Figure 4. (a) The pH instrumentation for global VF applications consists of six main components: 

(1). Glass electrode; (2). Signal conditioning module; (3). Bluetooth communications module; (4). 

Integration breadboard; (5). Signal acquisition and processing module; and (6) Power supply. (b) 

Representative photo. 

Figure 4a provides a detailed integration (i.e., wiring) diagram to ensure adequate 

signal processing, as well as the intermediate breadboard needed to assemble the compo-

nents that constitute the instrument. Finally, Figure 4b presents a representative picture 

of the portable instrument for pH measurements. 

3.2. Methods 

3.2.1. pH Sensor Characterization 

The pH of a solution under study can be determined after a meticulous calibration. 

In order to characterize the pH sensor, the potential difference over the two electrodes 

must be measured, and related to the hydrogen-ion activity of reference solutions. 

Three pH buffer solutions (Mallinckrodt Baker, Hampton, NJ, USA, manufacture 

date 31 August 2020) with a 2-year validity certification (at 25 °C) and traceable to NIST 

standards were used. The standard buffer solutions employed in the calibration of our 

instrument were: 1. Biphthalate; 2. Phosphate; and 3. Borate. Correspondingly, the pH and 

certified range values for the buffer solutions were 4 [3.96, 4.04]; 7 [6.96, 7.04]; and 10 [9.99, 

Figure 4. (a) The pH instrumentation for global VF applications consists of six main components:
(1) Glass electrode; (2) Signal conditioning module; (3) Bluetooth communications module; (4)
Integration breadboard; (5) Signal acquisition and processing module; and (6) Power supply. (b)
Representative photo.

Figure 4a provides a detailed integration (i.e., wiring) diagram to ensure adequate sig-
nal processing, as well as the intermediate breadboard needed to assemble the components
that constitute the instrument. Finally, Figure 4b presents a representative picture of the
portable instrument for pH measurements.

3.2. Methods
3.2.1. pH Sensor Characterization

The pH of a solution under study can be determined after a meticulous calibration. In
order to characterize the pH sensor, the potential difference over the two electrodes must
be measured, and related to the hydrogen-ion activity of reference solutions.

Three pH buffer solutions (Mallinckrodt Baker, Hampton, NJ, USA, manufacture
date 31 August 2020) with a 2-year validity certification (at 25 ◦C) and traceable to NIST
standards were used. The standard buffer solutions employed in the calibration of our
instrument were: 1. Biphthalate; 2. Phosphate; and 3. Borate. Correspondingly, the pH and
certified range values for the buffer solutions were 4 [3.96, 4.04]; 7 [6.96, 7.04]; and 10 [9.99,
10.01]. Utilizing the batch information of our buffer solutions, the pH reference values for
our calibration procedure were: 3.99, 6.98, and 10.00.

The characterization method is divided into two phases. In phase one, the sensitivity
of the pH sensor is determined with a conventional voltage meter, such as a multimeter. It
is important to note that the instrument input impedance should be high, and the noise
performance optimally below the mV range for accurate calibration. In phase two, the
signal conditioning stage, as described in this work is employed, in order to quantify
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the modified (i.e., including bias and amplification effects) sensitivity of the pH sensor.
Hereafter, the methods for both phases are described.

Phase I does not include the signal conditioning stage. First, the pH sensor is attached
to the measuring device using the BNC connector. For this phase, a multimeter (Steren,
Ciudad de México, Mexico, MUL-605) is employed to determine the voltage, irrespective
of polarity, as a function of buffer solution. Next, the calibration curve that describes the
linear behavior of the sensor is calculated by using regression techniques. As seen from
Equation (4), the derived slope will serve to relate pH as a function of (sensor) voltage.

In Phase II, the signal conditioning stage is included. Nonetheless, the above method-
ology remains practically the same. One of the differences is that in the first step, the pH
sensor is attached to the signal conditioning module using the BNC connector. Then, the
circuitry of Figure 3 is employed to measure the voltage as a function of buffer solution.
Next, the calibration curve that describes the linear behavior of the sensor is obtained by
employing regression techniques. Here another difference is in place. The pH is still related
to a modified potential difference, which includes the effects of the signal conditioning
stage: bias and amplification. The modified potential difference is obtained by dividing the
output voltage by the gain and subtracting the bias voltage. The derived slope will serve
to relate pH as a function of (instrument) voltage. Finally, it is important to note that, irre-
spective of the calibration method, the overall cleanliness and mechanical stability, while
measuring, of the working electrode are key factors to obtain accurate calibration results.

3.2.2. Preparation of Signal Conditioning, Acquisition, and Transmission

The procedure implemented to utilize the signal conditioning, acquisition, and trans-
mission stages is as follows. First, the wiring of the instrument is performed, as shown
in Figure 4a. It is relevant to note that this step defines the performance of the signal
acquisition stage, if an external voltage is used. In our case, this parameter was set to
5 V using the microcontroller code. Then, the offset voltage of the instrument is tuned
by cautiously adjusting the potentiometer, RV1 in Figure 3, thus accounting for the ADC
configuration previously mentioned. Finally, BLE transmission of sensed data is facilitated
by means of the microcontroller code, which implements two modalities: Calibration and
Measurement. In calibration mode, the user is enabled to characterize the sensor (refer to
Section 3.2.1) by employing the three buffer solutions. The resulting parameters are stored
in the instrument memory for future use. In measurement mode, the instrument acquires
arbitrary voltage values, and converts such information to pH values. pH information is
then sent serially to the Bluetooth radio, which transmits wirelessly the data to a gateway
(i.e., personal computer or smartphone) for further processing.

3.2.3. Methodology to Assess the pH of Arbitrary Solutions

The first step to measure the pH of a selected sample is to perform the calibration of
the probe, refer to Section 3.2.1. Here, sensor cleanliness is crucial. Second, the sensor is
connected to the instrument, and the signal conditioning, acquisition, and transmission
stages are prepared as mentioned in Section 3.2.2. Once this has been performed, the
instrument is ready for measurements. Nevertheless, the sample must be prepared and
the chemical integrity of the same must be ensured. In order to perform pH evaluation,
mechanical stability must be guaranteed. In the discussion section, we elaborate further on
the implications of unstable systems, which are likely to occur in global VF settings.

A simple-to-use interface was implemented, by means of a push-button (S2), to select
the operation modality. A light emitting diode (LED2) is used to indicate operation mode,
and for general user interaction. Once instrument and sample are ready, the user selects an
operation mode, by means of S2, and performs the pH measurement. Such measurement is
then transmitted to the gateway of interest. The microcontroller code and exemplary pH
measurements are available upon request to the authors.
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The microcontroller code and exemplary pH measurements are available upon request
to the authors. Furthermore, calibration code may be found in the Supplementary Materials
section of this work.

4. Results
4.1. Signal Conditioning Characterization

Potential differences with negative and positive polarities will ensue for alkaline and
acidic solutions, respectively. Furthermore, in order to optimize performance, the full
dynamic range of the ADC should be used. This condition implies that the minimum bias
voltage should ideally match the potential difference for the most alkaline solution possible.
Additionally, optimally, the maximum offset value would match the potential difference
for the most acidic sample.

The minimum offset voltage is obtained by selecting the greatest resistance value of
the potentiometer, RV1, in Figure 3. Recalling that a 2.5 V stable source feeds the voltage
divider network, by simple inspection, the minimum bias voltage is determined to be
840 mV. The maximum offset, however, depends not only on the divider network (with a
theoretical value of 2.5 V), but also on the amplifier and acquisition setup. From Figure 3, it
is trivial to anticipate a three-fold gain for the amplification stage. Furthermore, assuming
a conventional ADC configuration with an analog reference voltage VAREF of 5 V, the
maximum input signal will be given by VAREF/GAIN, or quantitatively 1.67 V.

A device exhibiting Nernstian response would have a full detection range of ±414 mV,
centered ideally at 0 V for a neutral pH. In global VF applications, the aforementioned
range denotes theoretical extrema of practically all available sensors.

Combining the effects of bias and electrode response, the signal conditioning charac-
terization is obtained before and after the amplification stage. The minimum theoretical
voltage should be 426 mV before amplification and 1.278 V after. Meanwhile, as stated
above, the maxima have an additional restriction imposed by the ADC. Thus, the maxi-
mum voltage should be 1.67 V before amplification and 5 V after. This analysis serves to
demarcate the working bias range of the signal conditioning stage. Assuming the Nernstian
response, end users can select any offset voltage in the 840–1250 mV range. From this
analysis, we detect an area of improvement; namely, the optimization of the ADC dynamic
range. Such improvement is addressed in the discussion section.

4.2. Sensor Characterization

As described in Section 3.2.1, and shown quantitatively in Figure 5, the pH sensor is
characterized in two phases: Figure 5a, using a multimeter and Figure 5b, employing the
instrumentation described in this work. During the first ten seconds, refer to Figure 5, the
sensor remains outside of the sample, and then the electrode is exposed (i.e., introduced) to
the solution under test. It is important to note that this was performed for both configura-
tions. Then, we let the sensor stabilize and perform the measurements for a period of 60 s,
while acquiring data every 0.25 s. Table 1 presents, for both sensor characterization phases,
the statistical measures obtained for voltage and pH after the aforementioned 60 s period.

Table 1. Statistical parameters derived from pH sensor characterizations: Phase I and Phase II.

Phase I. Multimeter ** Phase II. Instrumentation **

pH * E{V} [mV] *** E{V} [V] σ{V} [V]

4 164.74302 3.04761449 0.000487422
7 4.48031 2.5272936 0.000456076
10 −166.07790 2.01269855 0.000459554

* The certified (Batch/Product Numbers: B38W00/5657, B35W06/5656, and B35W00/5655) pH values of the
buffer solutions utilized in this work were 3.99, 6.98, and 10.00. The systematic uncertainty of the pH of buffer
solutions establishes a limit in the precision (in the 0.01 range) of pH measurements that can be achieved with this
method. ** Here, E{V} and σ{V} stand for expected value and standard deviation of random variable V, which
represents the measured voltage or electrical potential in mV or V. *** The measurement range for the voltage
meter was set to automatic, and did not surpass ±400 mV. From the manufacturer datasheet, the precision of the
readings is expected to be 0.5% within this range.
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As noted in Section 4.1, from Table 1 and Figure 5, we confirm that, for our sensor, the
response to neutral pH solutions is practically centered at 0 V. Additionally, for the configu-
ration of the instrument, the bias voltage was measured to be 840 mV. Thus, the expected
quantitative voltage for a neutral solution, at the instrument output, is straightforwardly
determined to be 2.52 V, which matches precisely the measured value.

Considering that the instrument will bestow information comparable to that shown in
Table 1, the calibration curve is obtained by performing a linear regression to this data. In
Equation (5), the linear regression is presented. Furthermore, in Figure 6, we depict the
calibration curve for our pH sensor.

pH = −5.791 Vout + 21.647 (5)

where Vout represents the output instrument voltage in [V].
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In Section 3.1.2, the importance of the instrument impedance to obtain accurate
measurements was emphasized. Additionally, in the design proposed in this work,
we placed special emphasis on this respect. In fact, the multimeter datasheet (Steren,
Ciudad de México, Mexico, MUL-605) reports an input impedance of 10 MΩ, which is
significantly lower than the impedance in our proposal. By carefully following the proce-
dure for Phase II, described in the preceding section, the instrument (without offset and
amplification effects) sensitivity can be calculated. This information is shown in Table 2.

Table 2. Statistical sensitivity parameters derived from pH sensor characterization: Phase II.

Phase II. Instrumentation *

pH E{V} [mV]

4 173.666667
7 0
10 −171.666667

* Here, E{V} is the expected value of a random variable V, which represents the measured voltage in mV.

A device exhibiting Nernstian response would have a detection range of ±177 mV,
ideally centered at 0 V, for a pH range of ±3 units. Comparing the theoretical Nernstian
response to the values presented in Table 2, a maximum deviation of 6 mV for the proposed
instrument is observed. Moreover, translating the information presented in Table 2 to the
sensitivity metric (i.e., voltage per single pH unit [mV/pH]), it is simple to demonstrate a
measured (average) sensitivity of 57.56 [mV/pH]. Comparing this value to the Nernstian
response, see Equation (3), the instrument sensitivity is 1.6 units below the reference
parameter. By simple mathematical calculation this represents a 97.3% percent “compliance”
with respect to the optimal Nernstian response. It is, thus, concluded that the proposed
pH sensor characterization described in this work may enable the creation of a precise and
portable instrument for global VF applications requiring pH measurements.

4.3. Accurate pH Measurements for Global Industry 4.0 and Vertical Farming Applications

In order to validate the accuracy of our portable instrumentation, as intended for global
VF (and Industry 4.0) applications, a laboratory grade pH device (Ohaus Corporation,
Parsippany, NJ, USA, AB33M1) was selected as gold standard. Thirteen samples with
varying pH values were utilized. For every measurement, a rigorous process involving
cleanliness, temperature stability, calibration, and mechanical stability of the probe was
implemented. Figure 7 depicts the results of the instrument presented in this work to enable
accurate pH measurements for global Industry 4.0 and VF applications. In order to ensure
global VF applicability, the cost of the device is important. In our case, the cost (uelectronics)
of the instrument was ~60 USD. In contrast, the gold standard costs ~715 USD (Viresa); i.e.,
~11.5× more expensive. Thus, our solution is cost-effective, portable, and accurate.

Using the information depicted in Figure 7, the average and median absolute devia-
tions (reference minus measured pH) are 0.057 and 0.063 pH units, respectively. Meanwhile,
the standard deviation of the absolute deviation is 0.03 pH units. For the acidic substance
exhibiting the lowest pH value, the maximum relative error is 5%. In contrast, alkaline
substances have relative errors that are as low as 0.3%. Figure 7 depicts error bars that
describe the absolute deviations of measured and reference data. As noted before, various
error bars are not easily distinguishable due to instrumentation performance. In any case,
the accuracy and applicability of the proposed instrument is clearly established.
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Figure 7. The performance of the portable instrumentation for pH measurements is established by
comparing our results to those of a reference instrument (Ohaus, AB33M1). The solutions utilized for
this experiment, in ascending order of pH value, commencing from the most acidic one, are given as
follows: a. Lemon juice, b. Cola soda, c. Vinegar, d. Orange juice, e. Beer, f. Coffee, g. Tea, h. Milk, i.
Tap water, j. Human saliva, k. Hand soap, l. Sodium hypochlorite, and m. Sodium hydroxide.

5. Discussion

Various research groups have proposed different systems for pH sensing. Table 3
presents a comparison of sensor features, including pH sensitivity and range, application area,
cost, and portability, as required for global applications. This analysis serves to present the
results of this work in the light of previous advances reported in the scientific literature.
The features of the laboratory grade apparatus, which was employed as gold standard, are
also included for completeness.

Table 3. Comparison of pH sensor features as required for global applications.

pH Sensing
Materials

pH
Range

pH
Sensitivity

Application
Area

Cost
(USD) Portable Global

Access Ref.

CuO Nanorods 5–8.5 0.64 µF/pH at 50 Hz Biological, Food, Medicine,
Agriculture N/A No No [28]

Graphite-polyurethane
composite
(Ag|AgCl)

5–9 −11.13 ± 5.8 mV/pH Health Monitoring * N/A N/A N/A [29]

EGFET
(ZnO|Ag|ZnO) 2–12 0.62 µA1/2/pH Health Monitoring N/A N/A N/A [31]

Glass electrode
(Pd|PdO) N/A 51 mV/pH Laboratory Instruction $50 ** Yes No ** [24]

Carbon fiber thread
electrodes coated with
self-healing polymers

(Ag|AgCl and Pt wire)

3.89–10.09 58.28 mV/pH Health Monitoring and
Disease Diagnostics N/A Yes No [27]

Sol–gel-entrapped 10.2–12 N/A Cementitious materials N/A N/A N/A [25]

TiN-gate ISFET 4–10 53.98 mV/pH Medicine and Biological
Industries N/A N/A N/A [41]

Ohaus AB33M1
(Ag|AgCl) 1–14 N/A Not restricted $715 No No [TW]

***
Glass electrode

(Ag|AgCl) 2–14 57.56 mV/pH Not restricted $60 Yes Yes [TW]
***

* The device was originally reported for sweat monitoring applications. ** Reported cost refers to hardware
electronics, the design of which is intended for a laboratory setting and would require modularity to enable global
adoption. *** TW = This Work.
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As seen from the data in Table 3, most of the end applications are related to biological
areas. Additionally, a crucial aspect is that measurement range are limited, and that sensors
have been designed, developed, and implemented for specific tasks. In contrast, it is
clear from Table 3 that the instrumentation described in this work provides the features of
accuracy, measurement range, portability, cost-efficiency, and adaptability, necessary to address
global Vertical Farming and Industry 4.0 pH sensing challenges. Nonetheless, some systems,
such as those reported by Rasheed et al. [31] and Jin et al. [24], exhibit similar characteristics
in terms of measuring range or cost (i.e., specific features needed for global adoption).
Having a single instrument that can offer the complete set of features needed for global
adoption is a key contribution of this work.

The instrumentation described in this work enables precise determination of the pH,
with an expected absolute deviation of 0.06 pH units and a standard deviation of 0.03 pH
units. The precision required of pH measurements is intrinsically related to the task under
consideration. For instance, in the field of hydroponic farming (hydroponics is an advanced
technique for plant and vegetable production that utilizes water instead of soil as growing
matrix [42], implementable in a Vertical Farming setting), the pH level must be maintained
in the 5.5 to 6.8 range [42]. Furthermore, the detection of minor changes in the pH level
significantly impacts water quality, and thus, the main nutrients of these systems. The
instrument presented in this work enables accurate detection of pH variations of 0.1 pH
units, with a 68% confidence interval, for hydroponic farming. Hereafter, a brief discussion
of the sources of uncertainty, within our instrument, is presented for those applications
requiring more stringent pH control.

First, with respect to the actual sensor, the efficiency of the electrode can degrade
due to the manufacturing process (better vs worse quality), glass membrane, reference
cables (e.g., electrical interference or RF coupling), and especially maintenance. A decrease
in performance has been validated, by our group, if the electrode is poorly maintained
(i.e., cleaned). To counteract this problem, the calibration, as described in this work, was
implemented. More concretely, in order to ensure accurate readings, the calculation of the
sensor “compliance” metric, is advisable. For the case reported in this work, such a metric
was demonstrated to be 97.3%.

Next, the impact of Signal Conditioning and Acquisition stages, which are closely in-
terrelated, is addressed. In the current version of the pH instrument, refer to Section 4.1;
the offset voltage is fixed to its minimum value of 840 mV. This places a restriction on the
usable detection range of the ADC to 48%; namely, from 1.32 to 3.73 V (corresponding to
pH values from 14 to 0 units). Figure 8 depicts a two-step approach to significantly improve
the signal conditioning circuitry. First, the feedback resistor, R7, can be substituted (e.g.,
10 kΩ) to set the amplification factor to a different value (e.g., GAIN = 2), and the analog
reference voltage can be set to 2.56 V. By implementing this first step, the usable detection
range of the ADC becomes 65%; that is 0.83–2.51 V. Second, the minimum offset voltage
of the divider network can be reduced to a different value (e.g., 420 mV). This is achieved
by replacing the fixed resistor, R1, with a 2 kΩ component. By selecting the amplification
factor correctly, the usable detection range can be optimized to 98% (i.e., in the 0–2.52 V
range), which is approximately a two-fold improvement.

As noted throughout this work, the expected magnitude of the detected signal will
approximate the Nernstian response, with a maximum of 59.16 mV per pH. For our
instrument, the measured sensitivity was demonstrated to be 57.56 [mV/pH]. Thus, a
difference of 10 mV in the sensor signal implies a variation of ~0.175 pH units. Various
sources can induce voltage variations of this magnitude, including the communications
and ADC stages.

The Network Layer, or wireless communications stage, is not only necessary to enable
transport of pH information, but rather indispensable to minimize coupling and/or layout
effects in the instrumentation. In fact, pH information could also be sent to a personal
computer (or smartphone) by means of wired (e.g., serial) communications. However,
voltage variations on the 10 mV range due to coupling errors are commonly encountered
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in wired communications. As noted before, such variations would induce an error that is
almost twice the value of the instrument accuracy.
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Moreover, the evaluation of the dynamic range of the ADC is important because this
establishes a minimum detectable voltage (i.e., pH). Thus, the measurement of potentials
below a certain threshold is not plausible, and the system is said to be ADC-limited.
Furthermore, various deviations inhibit ideal performance of ADCs. The absolute accuracy
of an ADC serves to quantify: gain error, offset deviations, differential error, non-linearity,
and quantization error. The ideal value of the absolute accuracy is ±0.5 LSB.

In our instrument, a 10-bit ADC (Atmel Corporation, San José, CA, USA, ATmega328P)
is utilized with a reference conversion voltage of 5 V and a typical absolute accuracy of
±2.2 LSB. This implies a minimum detectable voltage of 4.88 mV, with ideal and typical
absolute accuracies of ±2.44 mV and ±10.74 mV, respectively. As is the case with other
deviation metrics, statistical methods can be utilized to reduce these errors.

The mean sensitivity of our instrument can be obtained from the absolute values of
Table 2, and is equal to 172.67 [mV/pH]. This maps directly to the usable conversion range
of the ADC, which is 2.41 V, over the full range of pH values. Therefore, we expect the
minimum detectable pH value to be 0.028 units, with ideal and typical absolute accuracies
of ±0.014 pH units and ±0.062 pH units, respectively. From this analysis and the results
presented in this work, we can conclude that the current instrument design is ADC-limited.
A straightforward improvement in the instrument can be implemented by using ADCs
with greater dynamic ranges. For instance, the STM32L041 (STMicroelectronics, Grenoble,
Auvergne-Rhône-Alpes, France) incorporates a 12-bit ADC, which would reduce by a four-
fold factor the minimum detectable voltage, improving absolute accuracy proportionally.
In such a setup, the minimum detectable pH increment would be 0.007 units, with ideal
and typical absolute accuracies of ±0.0035 pH units and ±0.015 pH units, respectively.

Global (conventional and Vertical Farming) solutions are necessary worldwide. Such
systems need to be robust in order to ensure adoption. Even in a controlled laboratory
setting mechanical instabilities are readily recognized, refer to Figure 5. Due to the fact
that minimal increments in sensor readings convert into significant pH variations, such
instabilities impact significantly the recovered values. Our group has recently proposed an
artificial intelligence (AI) approach to compensate for these types of scenarios [43,44].

6. Conclusions and Future Work

In this work, the implementation of a cost-effective and portable instrument, which
enables accurate pH measurements for global Vertical Farming applications, has been de-
scribed. By performing a well-designed calibration of the sensor, near Nernstian response,
in this case 57.56 [mV/pH], was demonstrated. The instrumentation was compared to
a laboratory gold standard, which is at least ten times more expensive, and was shown
to be accurate in determining the pH of substances in the 2–14 range. Furthermore, the
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instrument yields precise pH results with an average absolute deviation of 0.06 pH units
and a standard deviation of 0.03 pH units. Compared to previous research efforts, the
instrumentation is unique because it incorporates a three-layer IoT architecture with Percep-
tion, Network, and Application Layers. Additionally, the design is optimal for worldwide
adoption by consisting of four modular stages: sensing, signal conditioning, signal acquisi-
tion, and communications. The design of the instrument was shown to be ADC-limited,
with a minimum detectable value of 0.028 pH units, and a typical absolute accuracy of
±0.062 pH units. In order to overcome this limitation, a means to improve performance
was presented by meticulously designing the bias and amplification circuitry of the signal
conditioning stage, and by optimizing the signal acquisition section of the instrument. The
next steps in our research include the implementation of an AI algorithm to detect and
compensate for mechanical instabilities of the instrument, and to incorporate other critical
sensors, such as total dissolved solids meters, for VF applications.

Supplementary Materials: The calibration code information can be downloaded at: https://pabellon.
tecnm.mx/LIA/productos_generados.html#Trabajos_realizados (accessed on 30 June 2022).
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Abstract: We propose an advanced filtering scheme based on Recurrent Neural Networks (RNNs) and 
Deep Learning to enable efficient control strategies for Vertical Farming (VF) applications.  We 
demonstrate that the best RNN model incorporates five neuron layers, with the first and second 
containing ninety Long Short-Term Memory neurons.  The third layer implements one Gated 
Recurrent Units neuron.  The fourth segment incorporates one RNN network, while the output 
layer is designed by using a single neuron exhibiting a rectified linear activation function.  By 
utilizing this RNN digital filter, we introduce two variations: (1) A scaled RNN model to tune the 
filter to the signal of interest, and (2) A moving average filter to eliminate harmonic oscillations of 
the output waveforms. The RNN models are contrasted with conventional digital Butterworth, 
Chebyshev I, Chebyshev II, and Elliptic Infinite Impulse Response (IIR) configurations.  The RNN 
digital filtering schemes avoid introducing unwanted oscillations, which makes them more suitable 
for VF than their IIR counterparts.  Finally, by utilizing the advanced features of scaling of the RNN 
model, we demonstrate that the RNN digital filter can be pH selective, as opposed to conventional 
IIR filters. 

Keywords: pH-instrument; Vertical Farming; Industry 4.0; IIR Filtering; Recurrent Neural 
Networks; RNN; Neural Networks; Digital Filtering; Butterworth Filter; Chebyshev Filter; Elliptic 
Filter. 

 

1. Introduction 

Recent predictions reveal that the world will not have the capacity to meet the requirements of 
food production and other alimentation products to ensure adequate nutrition for the entire 
population [1]. Precision Agriculture (PA) is the set of technological tools implemented to optimize 
crop-yield and -quality in plant production [2,3].  Also, an essential resource for sustainable 
agriculture is water.  

Today, water use is inefficient: 65-70% of the freshwater is utilized for non-essential human 
activity [4]. Our research group focuses on developing novel PA techniques to maximize natural 
resources through Vertical Farming (VF). Furthermore, the effective use of this production style allows 
optimizing the space in which different crops, such as fruits, vegetables, fine herbs, and flowering 
plants, can be grown in the same area by locating them in different production levels. Hydroponic 
VF is the most common method to cultivate plants. The salient features of hydroponic VF systems 
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reside in their capacity to enable crop growth whilst minimizing water, CO2, energy, and fertilizer 
consumption. This is enabled by virtue of quantifying key growth parameters, such as conductivity, 
temperature, light exposure, and especially pH [5]. 

Generally speaking, plants are more vulnerable whenever alkalinity conditions are present.  
For example, crops are more susceptible to being attacked by insects when the alkalinity increases 
[6].  Meanwhile, whenever an acid behavior is present, plants tend to more frequently suffer diseases 
[7,8]. Furthermore, alkaline environments are correlated with deficiencies of nitrogen, phosphorus, 
and sulfur; whereas calcium, magnesium, potassium, and sodium deficiencies ensue in acidic 
conditions [9]. This implies that latent risks exist with respect to deficient ion distributions, 
vulnerability, and crop disease, which need to be detected and controlled. Therefore, depending on 
the plant or crop of interest, the pH must be controlled (normally in the range of 4 to 8 units [8,10–
12]), in order to ensure optimal environments for growing and, thus, yield. We have recently 
proposed a portable and precise instrument to measure pH [13].  Utilizing such instrumentation, a 
pH control system can be conformed to ensure optimal crop yield.  As a starting point to control pH 
for VF applications, an efficient and simple-to-implement on-off control scheme can be utilized.  

Nonetheless, in order to implement such a control system, it is indispensable to have 
appropriately conditioned signals of the parameter of interest. Filtering signals when sensing 
variables with physical detectors implies suppressing wrong-scaled voltages, quantization 
variations, and harmonics, among other periodic perturbations found in specialized electronic 
circuitry.  Such predictable filtering can be achieved, on the one hand, using traditional techniques 
such as Butterworth, Chebyshev, and Elliptic (analog or digital) filters [14–17].  

On the other hand, when there are unpredictable perturbations, it is challenging to design an 
electronic circuit that can manage such imprecise and random behaviors. However, Artificial 
Intelligence (AI) has shown that it can deal with imprecise and unexpected conditions solving 
complex problems with no deterministic solution, especially when using Artificial Neural Networks 
(ANNs) and Deep Learning [18–21]. 

Recurrent Neural Networks (RNNs) are ANNs utilized when behaviors depend on time 
sequences, which allows the resolution of problems with unexpected behaviors, like detecting 
malware affecting cloud systems [22].   

Natural language processing also employs RNNs for translation because these solutions must 
consider time sequences to maintain context [23]. Forecasting of power demand also uses RNNs to 
predict energy consumption depending on time sequences [24]. Finally, RNNs serve to predict 
concrete dam deformation based on previous deformation or time sequences [25]. 

In this work, we address the effect of temporal intrinsic and extrinsic (mechanical) perturbations, 
as applicable to the sensing and controlling of pH values, by using conventional digital filtering, and 
comparing it to a more resilient solution based on RNN.  A main objective of this work is to evaluate 
the performance of an advanced signal conditioning and filtering stage, utilizing RNN and Deep 
Learning, to account for intrinsic and extrinsic temporal perturbations that ensue in real-world VF 
settings.  

The following work is divided into six sections.  The second section presents the theoretical 
background of the control system, focusing on advanced RNN and traditional digital filtering 
techniques, as applied to pH sensing.  The third part of this work addresses the methodology and 
computing infrastructure needed to implement the IIR and RNN digital filters.  We describe the 
transfer functions of IIR filters, as well as the optimal design of the RNN.  Section four presents a 
comparison between traditional digital filtering and recurrent neural networks, as applicable to VF.  
A special emphasis is placed on presenting two variations of the advanced RNN digital filtering 
scheme.  In the fifth part, we discuss the findings of this work and present new research directions.  
Finally, in the last section, we summarize our comparative analysis. 

2. Theoretical Background 

As commented above, controlling the pH, within a particular species-dependent range, is critical 
to ensure that the crop of interest will exhibit the expected yield, as well as being protected against 
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plant vulnerability and diseases.  Furthermore, real-life VF arrangements are bound to suffer 
mechanical perturbations that are unpredictable.  Therefore, recurring to fundamental control 
theory, the challenge to ensure that a VF setup is exposed to appropriate pH values can be 
schematized as shown in Figure 1.  

  

Figure 1. The operational block diagram of an optimal closed-loop control system to ensure that a VF 
setup is exposed to appropriate pH values includes: Sensing, (Advanced) Filtering, Alerting, Acting, 
and Processing sections.  The most critical step of the control system is the filtering section because 
unpredictable perturbations occur in real-life VF implementations.  In this diagram, r denotes 
reference signal, e = f - r and stands for error signal, u symbolizes process input, um is manipulated 
variable, yimpact demarcates extrinsic mechanical perturbations, ypump represents intrinsic movement 
effects, yvulnerability refers to intrinsic crop vulnerability, ydisease denotes intrinsic crop disease, s stands for 
sensed signal, f symbolizes filtered signal, and y is controlled output. . 

The pH of a VF setup must be varied according to an on-off cycle, in order to ensure sufficient 
(avoiding overabundance) nutrients are delivered to the VF arrangement.  This implies that the pH 
input function is periodic with a rather slow varying frequency.  For example, orchids and 
blueberries need to be exposed to pH values close to 4 units [26–29] for a period of 8 hours, while 
optimally resting for 8 hours (when the pH of the reference substance in the container can be neutral 
as shown in Figure 1) before being exposed to another cycle. These application-dependent conditions 
enable us to predefine the expected waveforms (i.e., the reference signal, r in Figure 1) needed to 
enact the necessary control.  However, as expected in any control system, perturbations occur, and 
it is of utmost importance to consider and address them appropriately.  

As depicted in Figure 1, four distinct perturbations are bound to occur in VF systems:  1. 
Extrinsic unpredictable mechanical perturbations, yimpact, such as impacts; 2. Intrinsic random 
mechanical disturbances, ypump, such as pump-induced effects; 3. Intrinsic crop vulnerabilities, 
yvulnerability; and 4. Intrinsic crop diseases, ydisease. The most challenging of these perturbations are the 
mechanical unpredictable ones.  By implementing an Advanced Filtering stage, we demonstrate that 
such unpredictable behavior can be correctly addressed. 

Two different types of digital filters exist: a. Fixed coefficient filters, including infinite impulse 
response (IIR) filters; and b. Variable coefficient filters, which include neural networks.  Hereafter, 
we briefly present the theory of IIR filters (a cursory overview of digital filters has been recently 
reported in the literature, and newcomers are encouraged to refer to this material [30] ) and delve 
into more detail on the theory of recursive neural networks as pertinent to this work. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 May 2023                   doi:10.20944/preprints202305.0334.v1

https://doi.org/10.20944/preprints202305.0334.v1


 4 of 18 

2.1. Infinite Impulse Response Filters 

Extensive literature exists to introduce the theory of infinite impulse response (IIR) digital filters 
[14–17].  IIR digital filters can be described by means of their transfer function H(z), as shown in 
Equation (1) [31]; 

0

0

( )
( )

( )

M
k

k
k
N

l
l

l

b z
Y z

H z
X z a z









 



  .                                (1) 

By rearranging, Equation (1) can be rewritten in the optimal form for inverse transformation,  
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Here, z is the z-space variable. Meanwhile, al and bk represent the IIR fixed filter coefficients. 
Additionally, M and N are the degrees of the numerator and denominator polynomials, respectively. 

By setting the a0 coefficient to unity, as conventionally done, and rearranging Equation 2, we 
obtain the filter output in the time domain by means of the inverse z-transform. 
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Finally, by determining the fixed coefficients of Equation 3, we can fully describe the output of 
arbitrary IIR digital filters.   

2.2. Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) are artificial neural networks that differ from the most 
common Feedforward Neural Networks (FNNs) by introducing short memory effects, directional 
information cycles, and significant multicollinearity in the RNN variables, produced with weight 
connections between the same layer of neurons.  RNNs add the possibility of changing the predicted 
behavior of the network depending on previous inputs. However, they are limited to short-time 
sequences because their updating gradients vanish or explode rapidly [25]. 

2.2.1. Long Short-Term Memory Networks  

Hochreiter and Schmidhuber proposed Long Short-Term Memory (LSTM) Networks in 1997.  
They have become the most popular RNNs.  LSTMs predict long data sequences over a defined 
period, solving the vanishing problem in RNNs. An LSTM segment consists of blocks of cells.  Each 
cell has its inputs, outputs, and memory.  Cells that belong to the same block share input, output, 
and forget gates.  The input gate decides whether the given information is worth remembering, and 
the forget gate decides how much of the given information is still worth remembering.  The output 
gate decides whether the provided information is relevant at a given step.  Each gate can be 
considered a neuron, and the LSTM cell is a hidden segment in a FNN [32].  

In order to perform advanced filtering for the feedback signal depicted in Figure 1, we propose 
to suppress random pH perturbations (refer to signal s in Figure 1) with unpredictable behaviors for 
VF using neural networks.  We perform such advanced filtering by utilizing the monitoring features 
of time sequences and of previous outputs that are characteristic of RNNs together with Deep 
Learning, aiming to obtain the response of the sensor (signal f in Figure 1) in the absence of 
unpredictable (mechanical) perturbations.  As depicted in Figure 2, the Deep-Learning model tested 
in this work has five layers with neurons used to design RNNs.  The first and second segments, l1 
and l2, only contain LSTM neurons, the third layer, l3, contains Gated Recurrent Units (GRU) neurons, 
the fourth layer, l4, contains simple RNN networks, and the final segment, l5, is the output layer with 
a single neuron with a rectified linear activation function. 
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Figure 2. The advanced filter is based on a deep-learning model that incorporates five neuron layers 
to enable the Recurrent Neural Networks (RNNs). The first and second, l1 and l2, layers solely contain 
LSTM neurons.  The third segment, l3 , contains Gated Recurrent Units (GRU) neurons.  The fourth 
layer, l4 , contains a simple RNN network, and the final segment, l5, is the output layer with a single 
neuron exhibiting a rectified linear activation function. For each layer, the optimal number of neurons 
is highlighted in the square brackets of the diagram. 

In the next section we present the materials used to generate the datasets, as well as the methods, 
such as filter designs including the frequency response of the IIR digital filters and the deep-learning 
RNN procedure, employed in this work. 

3. Materials and Methods 

3.1. Materials 

3.1.1. Instrumentation 

For the purpose of generating reference and output datasets (r and y in Figure 1), we utilized the 
pH instrumentation recently reported by our group. The instrument is conformed of a potentiometric 
silver|silver-chloride electrode (Hinotek, Ningbo, China, E201-BNC), which employs a dedicated 
electronic module (DIY More, Hong Kong, China PH-4502C) to detect the (analog) pH voltage signal.  
Signal digitization is achieved by a 10-bit ADC Arduino UNO (Smart projects, Ivrea, Italia, Arduino 
UNO), and the resulting (digital) pH voltage values are transmitted wirelessly by means of a 
Bluetooth (Olimex, Plovdiv, Bulgaria, BLE HC-06) radio [13].  

Once the data is received, the computing entity performs the IIR and RNN digital filtering.  For 
IIR digital filtering, we employed the Signal Processing Toolbox of MATLAB (MathWorks, Natick, 
United States, MATLAB) running on a Windows 10 Dell G3 3500 computer with a 4-core Intel i5-
10300H 2.50GHz processor with 16GB of RAM.  The RNN analysis was performed with the 
TensorFlow, Sklearn, and other conventional python libraries of JupyterLab (NumFOCUS, Austin, 
United States, Jupyter) running on a Windows 10 Desktop Computer with an Intel i7-6700 3.40GHz 
processor with 16GB of RAM and NVIDIA GeForce RTX 2060 GPU. 

3.2. Methods 

Figure 3 displays (a) the block diagram and (b) the experimental setup that are needed to 
generate the training and testing waveforms, in order to assess the deep-learning RNN and IIR digital 
filters.  The training dataset is created by using an ideal pH sensing setup without mechanical 
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perturbations, see the central section of Figure 3(b).  Meanwhile, the intrinsic mechanical 
perturbations are enacted by exposing the instrument to a laboratory stirrer, refer to the left section 
of Figure 3(b), which mimics the use of conventional pumps in VF systems for circulation purposes 
[33,34]. Finally, the extrinsic mechanical perturbations were created by impacting the utilized setup, 
at different locations, as depicted in the right-most portion of Figure 3(b). 

Figure 3. (a) Block diagram and (b) experimental setups of the pH instrumentation utilized to generate 
training and testing datasets, in order to assess the advanced filtering proposed in this work.  We 
utilized different arrangements to create the intrinsic and extrinsic mechanical perturbations that are 
common in real-life VF applications. 

3.2.1. Generation of Dataset 

The objective of this study is to present a comparative analysis of advanced, RNN versus IIR, 
digital filters to optimize resilience to dynamic perturbations in pH sensing for VF applications.  For 
this purpose, we need to generate the pH waveforms.  Hereafter, we present the methodology 
followed to achieve this goal. 

As reported recently by our group, to generate training and testing datasets, the instrumentation 
was first cleaned and calibrated.  Reliable solutions (Mallinckrodt Baker, Hampton, New Jersey, 
USA) were utilized to ensure accurate pH values (pHsignal = 3.99 and pHreference = 6.98) for the 
measurements [13].   

We performed two sets of pH measurements for ideal and real scenarios, corresponding to 
mechanical perturbations being absent and present, respectively.  In addition to pH values, we 
recorded the raw ADC temporal voltage values for redundancy and better control of the datasets.  
Thus, the dataset samples (𝒏) included: input temporal indices, ti , ADC voltages, vi , and pH values, 
pHi , for (a) ideal 𝒊𝒏𝒑𝒖𝒕𝒊 = (𝒕𝒊, 𝒗𝒊, 𝒑𝑯𝒊) and (b) real 𝒐𝒖𝒕𝒑𝒖𝒕𝒊 = (𝒕𝒊, 𝒗𝒊, 𝒑𝑯𝒊)  scenarios, for every 
sample 𝒊 = [𝟏 … 𝒏].  It is worth noting that the aforementioned datasets have a periodic behavior, in 
order to emulate the characteristic on-off cycle necessary to ensure optimal crop growth and yield. 

3.2.2. Dataset Augmentation and Splitting 

Specifically with respect to the RNN analysis, we utilized both datasets to train the model and 
suppress perturbations.  As depicted in Figure 2, the RNN is based on a supervised-learning model, 
which requires knowledge of the input signals, as well as the desired output for training purposes.  
Since after RNN filtering, we are interested in obtaining pH signals free of perturbations, we solely 
utilized the signal without perturbations as the desired output dataset to train the model.  Thus, the 
training input and output datasets were 𝑿 = {𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … , 𝒙𝒏} and 𝒀 = {𝒚𝟏, 𝒚𝟐, 𝒚𝟑, … , 𝒚𝒏}, where 𝒙𝒊 
and 𝒚𝒊 were pH values for the signals with perturbations and without them, respectively.   

Furthermore, we employed a data augmentation mechanism to increase the dataset samples and 
the representativity without the need for new measurements.  The data augmentation in this work 
considered that the pH instrumentation will record values in the range 0-14, depending on the level 
of acidity or alkalinity of the solution.  We commenced the data augmentation by selecting , the 
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number of augmentations.  Then, for each augmentation, we determined a random value 𝝍 in the 
range of [𝟎, 𝟏]  to multiply by the original 𝑿  and 𝒀 , equally modifying the pH values while 
maintaining the result within the original boundaries [𝟎, 𝟏𝟒].  Finally, we maintained the original 
samples and added each augmentation to return the augmented data 𝑿  and 𝒀 , as detailed in 
Algorithm 1. It is important to note that we employed 30 augmentations of the entire training dataset, 
or 𝜶 = 𝟑𝟎, and that the augmented dataset can also be employed to test the IIR filters. 

 
Considering that we must train a deep-learning neural network, the dataset must be split to 

avoid overfitting and to ensure reliable results.  In this work, we utilized 60% of the dataset for 
training, 20% for validation, and 20% for testing.  Thereafter, we configured the model to generate 
extra data with the training augmentation data, as described in Algorithm 1. 

3.2.3. Training Datasets 

The pH values utilized to assess the performance of RNN and IIR digital filters were 4 and 7 
units for signal and reference waveforms, respectively.  However, before commencing pH 
measurements, the instrument must be calibrated[13]. Thus, for calibration purposes, we included a 
third pH value of 10.00 of a standardized buffer solution (Mallinckrodt Baker, Hampton, New Jersey, 
USA).  Finally, the calibration procedure can be improved if a fourth solution, outside of the 
calibrated substance range in our case [3.99, 10.00], is utilized.  Hence, a final substance of 2.5 pH 
units was employed to perform the calibration procedure.  Thereafter, the periodic signal needed 
for VF was generated.  Figure 4 depicts the training dataset (a) without mechanical perturbations, 
and (b) with intrinsic and extrinsic disturbances.  Moreover, in Figure 4, we separate into two phases 
the required steps, calibration and measurement, needed to sense pH with the portable 
instrumentation.  The datasets consisting of 21723 temporal samples, ti, ADC voltages, vi, and pH 
values, pHi, for scenarios with present and absent perturbations are available in the Supplementary 
Materials section of this work. 
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Figure 4. The training dataset (a) without mechanical perturbations and (b) exhibiting intrinsic and 
extrinsic disturbances were generated to mimic the conditions that are common in real-life VF 
applications. The two phases, Calibration and VF Periodic Signal generation, needed to employ the pH 
instrument are respectively depicted in the left and right portions of each illustration. . 

As seen in Figure 4, once the instrument is duly calibrated, we generate the periodic signals, 
which are identical to the control waveforms of Figure 2.  During calibration, the instrument is more 
prone to exhibit mechanical perturbations because buffer solution, electrode, and detection 
electronics have to be manipulated frequently (i.e. electrode and container cleaning is mandatory 
after each calibration measurement)  In this work, we consider these unpredictable fluctuations to 
demonstrate that a RNN filter is more resilient in real scenarios, as opposed to IIR filtering.  

3.2.4. IIR Digital Filter Designs 

The portable and precise pH instrument that we recently proposed can implement well-
established (analog or digital) electronic filters, such as Butterworth, Chebyshev, and Elliptic 
arrangements. Furthermore, a salient feature of IIR filters is that they can be based on these electronic 
configurations.  In order to assess the usability of such filters in real-life VF applications, we 
designed (a) Butterworth, (b) Chebyshev I, (c) Chebyshev II, and (d) Elliptic digital IIR configurations. 
As commented previously, the pH input function is periodic with a rather slow varying frequency.  
Therefore, the low-pass filters specifications have to consider this expected behavior.  We defined a 
passband frequency of 1Hz with a maximum 1dB attenuation.  Additionally, the stopband 
frequency was specified to be 10Hz for a 60dB attenuation.  The sampling frequency was assumed 
to be one order of magnitude greater than the stopband frequency.   

Table 1. IIR digital filter designs for the Butterworth, Chebyshev I, Chebyshev II, and Elliptic 
configurations employed in this work. 

Filter Order a Coefficients b Coefficients Transfer Function 

Butterworth 4 
{ 1, -3.836, 5.521,  
-3.534, 0.8486 } 

{ 8.985×10-7, 3.594×10-6, 5.391×10-6, 
3.594×10-6, 8.985×10-7  } 

7 4 6 3 6 2 6 7

4 3 2

8.985 10 3.594 10 5.391 10 3.59 10 8.985 10

3.836 5.521 3.534 0.8486

z z z z

z z z z

            
   

 

Chebyshev I 3 { 1, -2.935, 2.875, -0.939 } 
{ 1.47×10-5,4.431×10-5, 
4.431×10-5, 1.477×10-5 } 

5 3 5 2 5 5

3 2

1.477 10 4.431 10 4.431 10 1.477 10

2.935 2.875 0.9398

z z z

z z z

         
  

 

Chebyshev II 3 { 1, -2.98, 2.96, -0.9803 } 
{ 9.347×10-5, -9.298 ×10-5, 
 -9.298×10-5, 9.347×10-5} 

5 3 5 2 5 5

3 2

9.347 10 9.298 10 9.298 10 9.347 10

2.98 2.96 0.9803

z z z

z z z

         
  

 

Elliptic 3 { 1, -2.935, 2.875, -0.939 } 
{4.69 ×10-4,-4.09 ×10-4, 
-4.09×10-4, 4.69×10-4} 

4 3 4 2 4 4

3 2

4.69 10 4.09 10 4.09 10 4.69 10

2.935 2.875 0.9399

z z z

z z z

         
  

 

Utilizing the Signal Processing Toolbox of MATLAB, we determined filter orders, as well as the 
corresponding transfer functions of the filters, including the a and b coefficients of Equation 2.  Table 
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1 presents the orders, coefficients, and transfer functions of the digital filters.  Finally, Figure 5 
illustrates the digital filter designs for (a) Butterworth, (b) Chebyshev I, (c) Chebyshev II, and (d) 
Elliptic digital IIR configurations.  The IIR digital filter MATLAB scripts are available in the 
Supplementary Materials section of this work. 

. 

Figure 5. The Butterworth, Chebyshev I, Chebyshev II, and Elliptic IIR digital filter designs consider 
a -1dB passband frequency of 1Hz, and a -60dB stopband frequency of 10Hz. 

3.2.5. RNN Digital Filter Design 

The RNN-based digital filter proposed in this work implements the advanced structure d
epicted in Figure 2.  In order to optimize the design of the RNN digital filter, we determined
 the number of neurons per layer by testing multiple configurations.  The tested layouts inclu
ded various 𝒍𝟏 = 𝒍𝟐 = [𝟏𝟎, 𝟐𝟎, 𝟑𝟎, 𝟒𝟎, 𝟓𝟎, 𝟔𝟎, 𝟕𝟎, 𝟖𝟎, 𝟗𝟎, 𝟏𝟎𝟎] LSTM neurons; three different 𝒍𝟑 =

[𝟏, 𝟓, 𝟕] GRU arrangements; as well as single RNN and output segments, 𝒍𝟒 = [𝟏] and 𝒍𝟓 = [𝟏].
  Furthermore, we also varied the number of prior samples.  We tested  𝒑𝒔𝒂𝒎𝒑𝒍𝒆𝒔 = [𝟓𝟎𝟎

, 𝟏𝟎𝟎𝟎, 𝟏𝟓𝟎𝟎, 𝟐𝟓𝟎𝟎, 𝟑𝟎𝟎𝟎, 𝟑𝟓𝟎𝟎]. We assessed 2101 different configurations of the model with t
he MSE loss function, which we decided to employ because it is the most utilized metric to t
rain regression models in ANNs [35]. For the 2101 configurations, we trained the model with 
500 epochs and a batch size of 5000.  This approach requires different steps per epoch depen
ding on the size of the training set, which is variable because, as commented above, we allo
wed changing the prior samples required as inputs.  Moreover, we adjusted the learning rate 
according to Equation 4, increasing the effect of error and modifying the learning rate across 
epochs.  

5 1001.0 10 10
epoch

rl
    .                             (4) 

The training mechanism utilized in this work stops after twenty steps without improvement of 
the validation loss. Furthermore, we configured the training process to solely save the best model. 
After assessing the 2101 configurations with the dataset containing 21723 samples with 30 
augmentations for training, we obtained that the best model, as determined by the MSE loss function, 
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ensues when 𝑙ଵ = 90, 𝑙ଶ = 90, 𝑙ଷ = 1, 𝑙ସ = 1, 𝑙ହ = 1, and 𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 2000.  In Figure 6, we depict 
the logarithmic parallel coordinates for all the configurations trained with the MSE loss function 
based on the testing of MSE results.  The best model is highlighted in red, MSE Test = 0.002017. 
Meanwhile, blue and gray are variations of models exhibiting better and worse performance, 
respectively. Lastly, in black we present the model with the worst outcome, MSE Test = 0.207638994. 

 
Figure 6. The outcome of the advanced digital filter structure of Figure 2 is shown as the logarithmic 
parallel coordinates for all the configurations trained with the MSE loss function based on the testing 
of MSE results; best model is in red; next best models are in blue variations; next in performance are 
in gray hues; and worst is depicted in black. 

The training metrics obtained for the best model trained with the MSE loss function at the 
maximum step reached before stopping due to no loss validation improvement are depicted in Table 
2. 

Table 2. Training metrics for the best model trained with MSE loss function at the maximum step 
reached. 

Step Epoch  
MAE 

Epoch  
MSE 

Epoch  
MAPE 

Epoch  
lr 

317 0.0364 0.0053 53.3455 0.0145 
 
The validation metrics for the best model trained with the MSE loss function obtained at the 

maximum stage reached are enumerated in Table 3. 
 

Table 3. Validation metrics for the best model trained with MSE loss function at the maximum step reached. 

Step 
Validation  

MAE 

Validation  

MSE 

Validation 

MAPE 

Validation  

lr 

317 0.0415 0.0030 8.3354 0.0145 

 
The test metrics obtained for the best model trained with the MSE loss function are enlisted in 

Table 4. 

Table 4. Testing metrics in the test dataset for the best model trained with MSE loss function. 

Model 
Test  

MAE 

Test  

MSE 

Test  

MAPE 
R-squared 
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RNN 0.0337 0.0020 6.8970 0.9076 

k-RNN* 0.0254 0.0013 5.4111 0.9406 

* The RNN model was optimized by using a multiplying constant, k, of value 1.030 (see Figure 9) 
Once the digital filters were fully characterized, we assessed their implementation in a VF 

setting, as described next. 

4. Results 

In real-life VF settings, the pH instrument will be calibrated and utilized to generate periodic 
signals exhibiting unpredictable patterns depending on multiple factors.  Thus, the expected output 
of a pH instrument should include both phases, although the most prevalent one will be the periodic 
one.  We utilized the waveforms of Figure 4 to quantify the performance of IIR and RNN digital 
filters for VF applications.  

We commenced our assessment of both sets of digital filters by utilizing as test waveforms those 
of extrinsic (mechanical) perturbations enacted by impacting the container.  Hereafter, we present 
the data with perturbations, without disturbances, and the output of the IIR models, as well as the 
RNNs trained model to filter the perturbations.  In Figure 7, we show the obtained results for (a) IIR 
and (b) RNN. 

Table 5. Testing metrics for the IIR and RNN models while assessing the external impact perturbation 
waveform. 

Model Test MAE Test MSE Test MAPE R-squared 

Butterworth 0.1286 0.2003 0.0248 0.9077 

Chebyshev I 0.1182 0.1684 0.0228 0.9224 

Chebyshev II 0.4334 0.8926 0.0902 0.5889 

Elliptic 0.1177 0.1657 0.0227 0.9236 

RNN 0.0285 0.0014 6.1418 0.8804 

k-RNN* 0.0206 0.0008 4.5467 0.9302 

* The RNN model was optimized by using a multiplying constant, k, of value 1.030 (see Figure 9). 
 

Figure 7. Comparative analysis of (a) IIR and (b) RNN digital filtering to assess the performance of 
the models to extrinsic mechanical perturbations for VF applications.  Shown in the illustration are 
signals without perturbations, with disturbances, and with the IIR and RNN models applied to the 
external impact perturbation waveform. 
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The test metrics obtained for the IIR and the best trained RNN digital filters, employing the MSE 
loss function, while exposed to extrinsic mechanical perturbations, are enlisted in Table 5. 

We continued the analysis by using as test signals the waveform of intrinsic perturbations, 
generated by means of the mechanical stirrer (refer to Figure 3), which mimics the recurrent pump 
variations encountered in VF settings.  In Figure 8, we depict the results of the IIR and RNN models 
when exposed to intrinsic perturbations.  In turn, in Table 6 we present the loss function MSE 
evaluation for IIR and RNN models as applicable to intrinsic disturbance.  

Table 6. Testing metrics for the IIR and RNN models while assessing the internal impact perturbation 
waveform. 

* The RNN model was optimized by using a multiplying constant, k, of value 1.030 (see Figure 9). 

 

Figure 8. Comparative analysis of (a) IIR and (b) RNN digital filtering to assess the performance of 
the models to intrinsic mechanical perturbations in VF applications.  Shown in the graph are signals 
without disturbances, with perturbations, and with the IIR and RNN models applied to the stirrer 
disturbance waveform. 

Continuing our analysis of the advanced digital filter based on the RNN model described in this 
work, we assessed the extrinsic, i.e., Figure 7(b) and Table 5, as well as the intrinsic, i.e., Figure 8(b) 
and Table 6, mechanical perturbation results to determine if the RNN model performance could be 
improved by utilizing a rescaling constant, k.  Thus, we returned to the training dataset and 
optimized a scaling parameter, k, in ranges [0.8,1.3] with steps of 0.001 (500 tests), multiplying the 
model output to improve the R-squared metric without changing the previously trained model.  The 
obtained constant was k = 1.030, as shown in the optimization results of Figure 9.  Using the 
aforementioned constant, we computed again the test metrics obtained for the test dataset in the best 

Model Test MAE Test MSE Test MAPE R-squared 

Butterworth 0.1465 0.2079 0.0276 0.9042 

Chebyshev I 0.1352 0.1748 0.0254 0.9194 

Chebyshev II 0.4524 0.9072 0.0935 0.5821 

Elliptic 0.1347 0.1720 0.0253 0.9207 

RNN 0.0283 0.0013 6.1107 0.8812 

k-RNN* 0.0207 0.0008 4.6574 0.9290 
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model trained with the MSE loss function but now using the output scaling constant.  The 
corresponding results are depicted in the last entry of Table 4. 

 

 
Figure 9. The MSE loss function optimization of the RNN digital filter model is based on the 
utilization of a scaling constant with the training dataset. After testing 500 different values, the 
optimal constant, k, was found to be 1.030; R-squared equaling 0.966. 

Thereafter, we tested the scaled RNN, in short k-RNN, digital filter employing the extrinsic 
mechanical perturbations.  Furthermore, in order to remove the harmonic oscillations of the k-RNN 
digital filter, we applied a moving average filter (MAF) with 300 samples to obtain the output 
waveform.  Figure 10 depicts the results obtained for (a) k-RNN and (b) MAF-RNN digital filters 
while exposed to waveforms with extrinsic perturbations.  In Table 5, we demonstrate that an R-
squared metric of 0.9302 is obtained for the k-RNN model when exposed to unpredictable extrinsic 
mechanical perturbations.  

 

Figure 10. Comparative analysis of (a) k-RNN and (b) MAF-RNN digital filtering to assess the 
performance of the models to extrinsic mechanical perturbations for VF applications.  Shown in the 
illustration are signals without perturbations, with disturbances, and with the k-RNN and MAF-RNN 
models applied to the external impact perturbation waveform. 
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Finally, we calculated the k-RNN and MAF-RNN digital filter performance when exposed to 
intrinsic mechanical perturbations.  In Figure 11, we show the digital filtering performance for (a) k-
RNN and (b) MAF-RNN models when exposed to waveforms with intrinsic perturbations. The 
corresponding test metrics when exposing the k-RNN filter to intrinsic mechanical perturbations are 
illustrated in the last entry of Table 6. 

In the next section, we discuss the results and demonstrate how the RNN digital filter can be 
tuned to suit other VF applications.  

5. Discussion and Future Work 

In real-life VF settings, unpredictable mechanical perturbations hinder the implementation of 
efficient control strategies.  Furthermore, as shown in this work, the use of conventional IIR digital 
filters introduces unwanted oscillations, which would impede the control process.  Thus, the 
construction of robust solutions to address the filtering challenge is of utmost importance.  

In this work, we have focused on providing an advanced digital filtering scheme based on RNN.  
As depicted in Figure 1, we assessed the RNN schemes for a signal centered at 4 pH units, while the 
reference signal was centered at 7.  As commented before, such a configuration is pertinent to grow 
orchids and blueberries, pH ~4, and to maintain the electrode in good condition with a reference 
substance (in Figure 1 reference pH ~7, representative of water) whilst not administering nutrients.   

Figure 11. Comparative analysis of (a) k-RNN and (b) MAF-RNN digital filtering to assess the 
performance of the models to intrinsic mechanical perturbations in VF applications.  Shown in the 
graph are signals without disturbances, with perturbations, and with the k-RNN and MAF-RNN 
models applied to the stirrer disturbance waveform. 

The filtered signals, f in Figure 1, obtained with the RNN schemes, and depicted in Figure 7(b), 
Figure 8(b), Figure 10, and Figure 11 share several important features.  First, we tuned the design of 
the RNN, including the multiplicative constant, to accurately filter the nutrition signal; centered at 
pH ~4. Second, the RNN signals do not exhibit considerable lags, which is relevant to avoid 
overexposing (i.e., to control) the crop to the nutrient substance.  With respect to this last feature, it 
is worth noting that by modifying the MAF window size, we can control the lag exhibited in Figure 
10(b) and Figure 11(b).  

A salient feature of our RNN scheme has to do with the tuning of the digital filter.  It is widely 
known that many crops require a nutrient substance with a pH close to 7 units [36,37].  A set of 
representative crops needing a pH close to 7 include lettuce, tomatoes, spinach, eggplants, and more 
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[38].  Hereafter, we present a modification of the RNN proposal to suit a signal centered close to 7 
units, whilst assuming the reference pH is close to 4.   

The RNN performance can be tuned by modifying the optimization constant, k.  As before, we 
optimized the constant utilizing the R-squared metric with the signal dataset. 

This yields a particularly flexible digital filtering approach, because the constant does not change 
the behavior of the RNN model, rather it serves to tune the RNN to tackle different specific 
challenges.  We performed an optimization procedure similar to the one shown in Figure 9 and 
obtained new values for optimization constant and R-squared metrics; namely k = 1.076 and R-squared 
= 0.959. 

Afterwards, we tested the newly scaled k-RNN digital filter, assuming the same configuration 
of the MAF to eliminate harmonic oscillations of the output waveforms.  Figure 12 depicts the results 
obtained for the k-RNN and MAF-RNN digital filters, tuned for a different pH value (i.e., at a 
particular constant k = 1.076), while exposed to waveforms with (a) extrinsic and (b) intrinsic 
perturbations. 

 

Figure 12. Comparative analysis of k-RNN and MAF-RNN digital filtering, k = 1.076, to assess the 
performance of the model to (a) extrinsic and (b) intrinsic unpredictable perturbations for VF 
applications.  Shown in the illustration are signals without perturbations, with disturbances, and 
with the modified RNN models applied to the unpredictable perturbation waveforms. 

As demonstrated in Figure 12, the RNN-based digital filters are particularly flexible for VF 
applications.  Once the neural network has been adequately trained, we may tune the performance 
of the RNN digital filter by selecting the signal (i.e., pH) of interest.  In a real VF setting, this feature 
is rather important because we can enact selective control depending on the crop of interest, without 
the need to re-train the neural network.   

In the future, we will extend the analysis of the RNN model presented here to include the effects 
of vulnerability and disease in the detected signal.  As commented before, both of these factors are 
critical to determine crop growth and yield. 

6. Summary 

In this work, we have proposed an advanced filtering scheme based on Recurrent Neural 
Networks (RNNs) and Deep Learning to enable efficient control strategies for Vertical Farming (VF) 
applications.  We demonstrated that the best RNN model incorporates five neuron layers.  The first 
and second of the segments contain ninety LSTM neurons.  The third layer implements one GRU 
neuron.  The fourth segment incorporates one RNN network, while the output layer was designed 
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by using a single neuron exhibiting a rectified linear activation function.  By utilizing this RNN 
digital filter two variations were introduced: (1) A scaled RNN model to tune the filter to the signal(s) 
of interest, and (2) A moving average filter to eliminate harmonic oscillations of the output 
waveforms.  The RNN models were contrasted with conventional Butterworth, Chebyshev I, 
Chebyshev II, and Elliptic digital IIR configurations.  The RNN digital filtering schemes avoid 
introducing unwanted oscillations, which makes them more suitable for VF than their IIR 
counterparts.  Furthermore, by utilizing the advanced features of scaling of the RNN model, we 
demonstrated that the RNN digital filter is pH selective, as opposed to conventional IIR filters.  In 
real VF settings, the features of tuning (or selecting) an instrument to detect variable pH values, as 
well as ensuring that such device is resilient to dynamic (i.e., unpredictable) perturbations are of 
utmost importance.  Hence, the use of advanced filtering schemes such as those based on RNN and 
Deep Learning is preferable as opposed to employing IIR filtering for VF. 

 
Supplementary Materials: Advanced filtering code and datasets can be accessed at: hĴp://pabellon.tecnm
.mx/LIA/productos_generados.html#Trabajos_realizados (accessed on 30 April 2023). 
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Abstract.  

 

pH is a crucial variable in hydroponic crops that indicates the solution's acidity 

or alkalinity. It is necessary to control and adjust the pH in the nutrient solution 

of the crop since it affects the transference of nutrients to the root. The pH 

measurement compares the solution's potential with unknown [H+] with a 

known reference. At the same time, the function of the pH meter is to convert 

the voltage ratio between a reference and a sensing half-cell into pH values. In 

acidic or alkaline solutions, the voltage at the outer membrane surface changes 

proportionally to changes in [H+]. However, temperature affects the pH meas-

urement, producing inaccurate measurements. The most complex sensors inte-

grate Automatic Temperature Compensation (ATC) since they accurately adjust 

the electrode calibration for pH when the temperature changes. Nevertheless, 

ATC cannot correct for the pH/temperature effects of samples that are un-

known. This research proposes a fuzzy interference system to compensate for 

the effects of temperature on pH measurement through a Mamdani interference 

system besides genetic algorithms to tune the vertices in the output arrays. 

Keywords: fuzzy, genetic algorithms, artificial intelligence, instrumentation, 

pH variable. 

1 Introduction 

1.1 Description of Problem 

Hydroponics is the technique of soilless cultivation, in which the water supplied to the 

plants dissolves a nutrient solution. When the nutrient solution is applied, the crops 

are not affected in their growth and development and obtain high yield potentials. A 

Key factor in hydroponic crops is the control and adjustment of the pH levels of the 

nutrient solution since it affects the availability of nutrients in the water and therefore 
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prevents root uptake. An element that can be found in different chemical forms de-

pending on the pH of the solution. Soluble chemical forms will be directly assimilated 

by the roots, while other chemical forms will be insoluble and not assimilated, or even 

others may be toxic to the plant. In intensive crops, the pH of the substrate and/or 

nutrient solution must be within a narrow range. In addition, this pH value will in-

crease slightly as the plants absorb the nutrients, so it should be monitored periodical-

ly and adjusted if necessary. The correct pH depends on the growing medium, the 

type of plant, and its age. The pH value is a measure that helps to control the nutrient 

dosing pumps when the pH value goes down or up. However, the pH measurement is 

no longer linear in behavior when the temperature changes. Automatic temperature 

compensation (ATC) is built into some sensors, allowing precise calibration adjust-

ments of the pH electrode when the temperature changes. However, ATC cannot cor-

rect for unknown sample pH/temperature effects. When the behavior of a sensor is 

known, the ATC works adequately to perform the calibration of some sensors. 

A problem to be solved with fuzzy interference systems is to find a structure and 

the type of rules for the implementation to reach an optimal behavior. Genetic algo-

rithms have been implemented in the literature to optimize fuzzy systems applied to 

obtaining appropriate values for parameters measured in real problems. 

A Fuzzy model was built based on a hybrid genetic algorithm adaptive network 

(GA-ANFIS) where the clustering as rule-based parameters is simultaneously opti-

mized using Gas and Artificial Neural Networks (ANNs) [1]. Similarly, a neuro-fuzzy 

inference system (ANFIS) tuned by particle swarm optimization (PSO) algorithm 

monitors a nuclear power plant sensor [2]. 

Roy and Datta [3] proposed a hybrid model with a genetic algorithm and a fuzzy 

inference system used as a strategy in saltwater intrusion management. The genetic 

algorithm adjusts the parameters of the fuzzy system to obtain the optimal structure. 

Similarly, Genetic programming and artificial neural networks generate two nonlinear 

models to predict energy consumption in artificial lighting systems for closed plant 

production systems (CPPS) [4]. 

In this work, we use a fuzzy inference system to compensate for the temperature 

changes in pH measurements, using a genetic algorithm to tune the best vertices of the 

membership functions to obtain the desired behavior, specially adapted for the sensor 

used. 

 

1.2 Theoretical Framework 

The fuzzy interference systems rely on the concepts of fuzzy set theory (fuzzy if-then 

rules and fuzzy reasoning). Several researchers have successfully applied this theory 

in different areas, such as automatic control, data classification, decision analysis, 

expert systems, time series prediction, robotics, and pattern recognition. A rule base 

integrates the selection of fuzzy rules, the database (dictionary) defines the member-

ship functions used in the fuzzy rules and the reasoning mechanism that runs the in-

terference procedure on the given commands and facts to derive a reasonable output 

or conclusion [5]. 
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The fuzzy set enumerates the degree of membership of an element that refers to a 

set. Therefore, the characteristic function of a fuzzy set can have values between 0 

and 1, which denotes the degree of membership of an element to a given set [6]. 

 

If X is a collection of objects denoted generically by x, then a fuzzy set A in X is 

defined as a set of order pairs: 

 A = {(x, µA(x)) | x ∈ X} (1) 

Where µA(x) is the membership function for the fuzzy set A. The MF assigns to each 

element of X a degree of membership among 0 and 1. A fuzzy set is an extension of 

the classical set definition in which the characteristic function is allowed to have any 

value between 0 and 1. 

A linguistic variable is a concept that qualified in a fuzzy way. Examples are 

height, age, error, error variance, among others. This variable is called "linguistic" 

due to its features defined in spoken language.  

The discourse universe contains all the possible values taken by the elements that 

possess a property expressed by the linguistic variable. For example, in linguistic 

variables "height of a human," a set of values would be given between 1.4 and 2.3 m.  

The different classifications made on the linguistic variable are called linguistic 

values, like the case of height. Thus, the universe of discourse could match different 

linguistic values such as low, medium, and high.  

A linguistic value (name of the fuzzy set) together with a membership function 

(maps the elements of the universe of discourse) is a fuzzy set. 

The union operation of two fuzzy sets A and B is a fuzzy set C, denoted as C = A 

∪ B or C = A OR B. The membership function is related to that of A and B defined 

by Jantzen [7].  

 

µC(x) = max((µA(x), µB(x)) = µA(x) V µB(x)          (2) 

 

The intersection of fuzzy sets can be defined analogously. The intersection of two 

fuzzy sets A and B is a fuzzy set C, written as C = A∩B or C = A AND B, whose MF 

is related to those of A and B by 

 µC(x) = max((µA(x), µB(x)) = µA(x) V µB(x) (3) 

Although in principle, any function would be valid for defining fuzzy sets. The most 

common functions used in practice are: 

• GAMMA function:  

• L function: 

• LAMBDA or triangular function: 

• PI or trapezoidal function: 

• Smooth trapezoidal function 

• Gaussian function 
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The fuzzy set theory allows us to represent vague (imprecise) facts and relations. 

Fuzzy reasoning is making inferences from fuzzy facts and relationships, combining 

fuzzy evidence, and updating the accuracy of beliefs. 

Mamdani fuzzy systems mimic the performance of human operators in charge of 

controlling specific industrial processes. The goal was to summarize the operator's 

experience into a set of IF-THEN (linguistic) rules that a machine uses for automati-

cally controlling the process. Specifically, using such a set of IF-THEN rules, a 

Mamdani fuzzy system defines a function f that generates numerical outputs y=f(x) 

from (generally numerical) input values x. 

 

 p→q ≡ p∧ q → µp→q(u,v) = min( µA(u), µB(v)) (4) 

 

Defuzzification refers to an operation for transforming a fuzzy set into a crisp repre-

sentative value. For example, with the centroid defuzzification method, the fuzzy 

output is transformed into a number. This defuzzification is the most widely adopted 

defuzzification strategy, reminiscent of the calculation of expected values of probabil-

ity distributions. 

 𝑍𝐶𝐺 =
∑ 𝑧𝑘𝜇(𝑧𝑘)𝑙

𝑘=1

∑ 𝜇(𝑧𝑘)𝑙
𝑘=1

 (5) 

enetic algorithms simulate the process of natural selection based on Darwin's theo-

ry of evolution. Those species that can adapt to changes in their environment can 

survive and reproduce and pass on to the next generation. This algorithm simulates 

the "survival of the fittest" among individuals of consecutive generations to solve a 

problem. Each generation consists of a population of individuals where each individ-

ual represents a possible solution. The name given to each individual in the popula-

tion is chromosome; within each chromosome are n number of genes which are the 

set of bits that make up a solution. 

Genetic algorithms make the analogy with the genetic structure and behavior of 

chromosomes in the population. The basics of GAs include the natural selection prin-

ciples listed below: 

1. Individuals in the population compete for resources and mates. 

2. Those individuals that are successful (fittest) then mate to create more off-

spring than others. 

3. The genes of the "fittest" parents survive throughout the generation, i.e., 

sometimes parents create offspring that are better than either parent. 

4. Therefore, each successive generation is better suited for its environment. 

The summarized algorithm is below: 

1. Randomly initialize the population. 

2. Determine the fitness of the population. 

3. Until convergence repeat: 

a) Select the parents of the population. 
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b) Crossover and generate a new population. 

c) Perform the mutation in the new population. 

d) Calculate the fitness of the new population. 

2 Methodology 

The fuzzy inference machine considers the voltage delivered by the electrode 

(AgCl) measured with five samples of known pH, 4, 6.86, 7, 9.18, 10 at different 

temperatures (15°C to 30°C), thus obtaining a small database with 80 readings for the 

genetic algorithm. These experiments define the values of the input and output uni-

verses specific to the electrode used. The rule used in the controller is the Mamdani 

rule. The aggregation was done through the max operation and defuzzification by a 

centroid of gravity. 

The fuzzy models presented here have two input variables: the value of the voltage 

measured by the electrode V and the value of the temperature of the solution T. The 

output variable, pH, describes the temperature of the solution. The output variable, 

pH, describes the actual pH value at a given temperature. The inputs are the voltage 

represented by the set V with five terms: 

 

V = {VpH10, VpH9.18, VpH7, VpH6.86, VpH4}, 

 

Where each value represents the approximate pH value corresponding to the voltage 

levels measured by the electrode. 

 

And the temperature represented with the set T with five terms: 

 

T = {TVL, TL, TA, TH, TVH} 

 

VL represents the Very low, L set as Low, A is the Average, H equal to High, VH 

denominated Very High. 

 

The expected output in the experiment is a pH level between 4 to 10. Thus, we let the 

genetic algorithm tune the fuzzy inference system for obtaining the appropriate output 

sets for the centroid defuzzification. 

 

Then, the output is given by pH with five terms: 

 

pH = {pH4, pH6.86, pH7, pH9.18, pH10} 

 

Where each value represents the real pH value taking into account the temperature. 

The universe considered for the voltage ranges that the sensor can deliver is UV = {x 

∈ ℤ: -200 ≤ x ≤ 200}, for temperature is UT = {y ∈ ℤ: 15≤ y ≤ 30} and for pH value 

UpH= {z ∈ ℤ: 4 ≤ z ≤ 10}. 
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The objective function (equation (6)) uses the genetic algorithm in the fuzzy infer-

ence machine to fit the vertices of the Gaussian functions (5 input sets, 5 output 

sets, and 25 rules) with the data in Tables 1 and 2. 

𝑦 = (∑ |𝐴𝑖 − 𝐵𝑖|80
𝑖=1 )  + 

0.1

|𝑀−𝑚|
                                       (6) 

where Ai is the value obtained with the fuzzy inference machine using the vertices 

tuned by the genetic algorithm, Bi is the desired value for the dataset values. M is the 

maximum, and m is the minimum of the values obtained. The objective is to minimize 

the function given in equation (6).  As the problem to be optimized is dimension 105, 

we used an initial population of 500 individuals, each with 1155 alleles, where every 

11 alleles form a bit string representing a real number, with a resolution of 1000 dec-

imals. The selection method is by tournament, the tournament size applied here is 

100, the number of crossover points is a random number, the mutation rate is 5%, and 

30000 generations. Table 1 represents the values of the voltage (mV) at different tem-

pures (°C), and different pH.   

                       Table 1. Electrode voltage values at different temperatures. 

 pH=4  pH=6.86  pH=7  pH=9.18  pH=10 

°C   mV  mV  mV  mV  mV 

15 161.51  8  4.95  -119.63  -163.53 

16 162.11  8.03  5.12  -121.06  -163.11 

17 162.71  8.05  5.23  -121.5  -163.8 

18 163.31  8.08  5.67  -121.99  -164.31 

19 163.88  8.1  5.75  -122.63  -164.88 

20 164.48  8.16  5.86  -122.78  -164.48 

21 165.08  8.19  6.09  -123.01  -166.08 

22 165.68  8.23  6.2  -123.22  -166.68 

23 166.28  8.26  6.25  -124.09  -167.28 

24 166.88  8.27  6.43  -124.53  -167.85 

25 168.55  8.28  6.53  -124.96  -169.08 

26 176.05  8.31  6.73  -125.38  -169.3 

27 176.65  8.33  6.86  -125.78  -169.85 

28 178.25  8.37  7.03  -125.24  -170.25 

29 179.90  8.42  7.26  -125.7  -170.85 

30 180.13  8.39  7.67  -126.12  -172.45 



3 Results 

The fuzzy inference system developed in Python can find a value that approximates 

the actual pH value. Figure 1 shows the fuzzy inference machine that corresponds the 

target pH values with the data set's input voltage and temperature values. 

 

Fig. 1. Comparative graph between the output obtained and the desired output with the input 

data of the dataset. 

Figure 2 shows the data sets for the different input voltages normalized-tuned by 

the genetic algorithm. 

 

Fig. 2. Voltage (mV) input sets, tuned by the genetic algorithm.  
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The pH measurement with 16 different temperatures (from 15°C to 30°C) was di-

vided into sets of 5 (total 3 data sets) to validate the sensor characterization. Figure 3 

shows the element of the input normalized to two, where according to the tempera-

ture, the system infers the optimum pH value. 

 

 

Fig. 3. Input sets for temperature (°C) tuned by the genetic algorithm. 

The data set for the output universe is tuned by the generic algorithm and repre-

sented in Figure 4. The centroid defuzzification method obtained the appropriate pH 

value with the vertices of the Gaussian functions generated by the genetic algorithm. 

 

Fig. 4. Output sets tuned by the genetic algorithm. 
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4 Conclusions 

The present investigation uses a Mamdani fuzzy logic system auto-tuned 

through genetic algorithms to obtain the real pH value without considering the 

slight variation of the temperature. The system can identify the correct pH 

values considering the possible changes in the voltage that can influence the 

electrode due to the temperature. At the same time, an important fact is that the 

performance of the pH electrode is deteriorated by the useful life or by external 

factors. With the application of the fuzzy system, it is possible to approximate 

a sensor's behavior to another in optimal conditions or more sophisticated with 

ATC. It would be enough to build a set of data with the voltage measurements 

given by the sensor at certain temperatures and the correct pH value that corre-

sponds to the readings of the sensor already calibrated. The genetic algorithm 

function will tune the fittest vertices for the fuzzy interference system sets in 

the defuzzification to obtain the correct pH value. For this work, the system 

only works in the range of data we used (pH4 to pH10), as future work will 

create a more extensive data set. In addition, the incorporation of fuzzy logic in 

a control mechanism for monitoring nutrients in water in a multilevel hydro-

ponic growing system considering parameters such as pH, conductivity, and 

temperature.  By considering these variables, dosing pumps will activate for 

the modification of nutrients in the water. 
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