Please use this identifier to cite or link to this item: https://rinacional.tecnm.mx/jspui/handle/TecNM/4421
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMeraz Hernandez, Andros%1031858-
dc.creatorMeraz Hernandez, Andros%1031858-
dc.date.accessioned2022-09-01T22:20:58Z-
dc.date.available2022-09-01T22:20:58Z-
dc.date.issued2022-03-18-
dc.identifier.urihttps://rinacional.tecnm.mx/jspui/handle/TecNM/4421-
dc.descriptionEn este proyecto de tesis se llevó a cabo la implementación de un modelo predictivo capaz de clasificar anomalías, causadas por los agentes patógenos: bacterias, hongos y virus, a partir de fotografías de hojas de las plantas de maíz y jitomate, mediante el enfoque de aprendizaje profundo. Se analizaron varias redes neuronales convolucionales y se seleccionó e implementó la red MobileNetV2 puesto que, esta red genera un modelo ligero pero, que ha demostrado tener un buen desempeño para clasificar imágenes capaz de ser ejecutado en la mayoría de los dispositivos, especialmente en aquellos que no poseen un hardware de alto rendimiento. Con la gran ventaja de que, en una aplicación móvil, no se requiere establecer una conexión vía internet para llevar a cabo un diagnóstico, lo cual lo hace especial para su uso en cualquier lugar. Los resultados que se obtuvieron en este trabajo fueron: la creación de un modelo predictivo capaz de inferir enfermedades de los cultivos antes mencionados bajo dos implementaciones: aplicación web y móvil (Android), con un desempeño del 99%, valor ligeramente mayor a lo reportado en el estado del arte.es_MX
dc.language.isospaes_MX
dc.publisherTecnológico Nacional de Méxicoes_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subjectinfo:eu-repo/classification/cti/7es_MX
dc.titleSistema de visión artificial para la detección de plantas enfermas mediante aprendizaje profundoes_MX
dc.typeinfo:eu-repo/semantics/masterThesises_MX
dc.contributor.directorMagadan Salazar, Andrea%70430-
dc.contributor.directorFuentes Pacheco, Jorge Alberto%209203es_MX
dc.folio22-0125es_MX
dc.rights.accessinfo:eu-repo/semantics/openAccesses_MX
dc.publisher.tecnmCentro Nacional de Investigación y Desarrollo Tecnológicoes_MX
Appears in Collections:Tesis de Maestría en Computación

Files in This Item:
File Description SizeFormat 
MC_Andros_Meraz_Hernandez_2022.pdfTesis5.27 MBAdobe PDFView/Open
MC_Andros_Meraz_Hernandez_2022.pdf
  Restricted Access
Cesión de derechos690.88 kBAdobe PDFView/Open Request a copy


This item is protected by original copyright



This item is licensed under a Creative Commons License Creative Commons