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Summary

Keywords: Algebro-differential systems, LPV systems, Generalized dynamic observer, Adaptive
observer Lipschitz nonlinearities

In this thesis, the design of observers for nonlinear algebro-differential parameter-varying sys-
tems and their applications in fault estimation and parameter estimation are studied. Nonlinear
algebro-differential parameter-varying systems allow the preservation of nonlinearities and a better
understanding of the equations involved in the analyzed model, as well as a broader operating range.

The observer implemented in this work is known as the generalized dynamic observer (GDO). The
core concept involves incorporating dynamics structure to augment its degrees of freedom, with
the goal of achieving accuracy in steady-state and improve robustness in estimation error against
disturbances and uncertainties in parameters.

The main idea is to use the advantages of this generalized structure for designing various method-
ologies in nonlinear algebro-differential parameter-varying systems, thus creating a more general
framework than those documented in the literature.

Different estimation algorithms are presented to obtain diverse observer structures. The asymptotic
stability of the observers is analyzed through Lyapunov analysis using Linear Matrix Inequalities
(LMI), and the elimination lemma, which is employed to transform these LMIs while preserving
the generalized structure of the observers

Finally, the performance of the presented observers is evaluated through some engineering appli-
cations to illustrate the effectiveness of the proposed approaches.
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Resumen

Palabras clave: Sistemas algebro-diferenciales, Sistemas LPV, Observador dinámico general-
izado, Observador adaptable, No linealidades Lipschitz

En esta tesis, se estudia el diseño de observadores para sistemas algebro-diferenciales no lineales con
parámetros variables y sus aplicaciones en la estimación de fallas y la estimación de parámetros.
Los sistemas algebro-diferenciales no lineales con parámetros variable permiten la preservación de
las no linealidades y una mejor comprensión de las ecuaciones involucradas en el modelo analizado,
así como un rango de operación más amplio.

El observador implementado en este trabajo se conoce como observador dinámico generalizado
(GDO). El concepto central consiste en incorporar una estructura dinámica para aumentar sus
grados de libertad, con el fin de lograr una precisión en estado estacionario y mejorar la robustez
frente a errores de estimación debido a perturbaciones e incertidumbres parametricas

La idea principal es aprovechar las ventajas de esta estructura generalizada para diseñar diversas
metodologías en sistemas algebro-diferenciales no lineales con parámetros variable, creando así un
marco más general que el documentado en la literatura.

Se presentan varios algoritmos de estimación destinados a crear diversas estructuras de obser-
vadores. La estabilidad asintótica de los observadores se analiza a través del análisis de Lyapunov
utilizando desigualdades matriciales lineales (LMIs), y se utiliza el lema de eliminación para trans-
formar estas LMIs preservando la estructura generalizada de los observadores.

Por último, se evalúa el rendimiento de los observadores presentados a través de algunas aplica-
ciones en ingeniería, con el fin de ilustrar el desempeño de los enfoques propuestos.
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Chapter 1

General introduction

1.1 Context of the thesis

This report presents the results of the research thesis titled “Observers design for algebro-differential
parameter varying systems”. These results involve proposing a new observer structure for the esti-
mation of state variables and faults for a class of nonlinear algebro-differential parameter-varying
(S-NLPV) systems, and consequently, a structure of adaptive observers for a joint estimation of
state and parameters for the same class of systems.

On the other hand, this research is carried out in collaboration between the National Center for
Research and Technological Development (CENIDET) and the Research Center for Automatic
Control of Nancy (CRAN) at Lorraine University.

1.2 Problem formulation

Based on the literature review, it was possible to identify some common problems and trends
addressed in the literature, relying on the linear parameter-varying (LPV) polytopic approach and
algebro-differential systems. However, there is an extensive literature on the design of observers
for state, parameters and fault estimation in LPV systems and algebro-differential systems. Nev-
ertheless, these cases could have some restrictions:

• In many practical cases, maintaining a nonlinear structure instead of reducing to a linear one
can be more appropriate, and may lead to less conservativeness and over-approximation.

• Typically, the approaches to observer design presented in the literature are addressed through
specific or limited structures.

These issues are still open problems and a possible contribution was found based on the following
nonlinear algebro-differential parameter-varying systems:

1



Eẋ(t) =
k∑

i=1
µi(ρ(t))[Aix(t) +Biu(t)] +Df(t, FLx) (1.1)

y(t) =
k∑

i=1
µi(ρ(t))[Cix(t) +Diu(t)] (1.2)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the known input, y(t) ∈ Rp is the measure-
ment output vector. Matrices Ai ∈ Rn×n, Bi ∈ Rn×m, Ci ∈ Rp×n and Di ∈ Rp×n are known
constant matrices and f(t, FLx) represents a nonlinearity that satisfies the Lipschitz constrain
||∆f || ≤ λ||FL(x1 − x2)|| where ∆f = f(t, FLx1) − f(t, FLx2), λ represents a known Lipschitz
constant, while FL is a real matrix of suitable dimensions.
Let rank(E) = r < n and E⊥ ∈ Rs×n be a full row matrix such that E⊥E = 0, in this case s = n−r.

Considering µi(ρ(t)) as membership functions constructed with predefined variant parametersρ(t) ∈
Rl. The membership functions have the following properties:

k∑
i=1

µi(ρ(t)) = 1, µi(ρ(t)) ≥ 0, (1.3)

for i ranging from 1 to k, where k = 2l, representing the number of vertices in the polytope.

Most mathematical models inherently incorporate complex nonlinearities within their structure.
The nonlinear function f(t, FLx) allows retaining the complete information of the original model in
addition to the known advantages brought by the use of the LPV approach and algebro-differential
systems.

2



1.3 Objectives of the thesis

1.3.1 General objective
Simultaneously estimate the state variables and non-measurable variable parameters in algebro-
differential systems by designing an adaptive observer of unknown inputs using the variable pa-
rameter nonlinear systems approach.

1.3.2 Specific objectives
• Estimate non-measurable state variables in algebro-diferential systems using the nonlinear

parameter-varying approach.

• Simultaneously estimate state variables and unknown inputs in algebro-diferential systems
using the nonlinear parameter-varying approach.

• Design an adaptive observer of unknown inputs for the estimation of state variables with
non-measurable parameters in nonlinear algebro-differential parameter-varying approach.

1.4 Justification
The precise estimation of state variables in nonlinear systems is crucial for achieving efficient con-
trol and monitoring in various control applications. Nevertheless, the use of nonlinear approaches
for different control techniques poses significant challenges due to its inherent complexity.

In the last decades, the LPV framework has proved to be suitable for addressing nonlinear control
problems, since many nonlinearities can be “embedded” in the varying parameters, thus trans-
forming the nonlinear system into an equivalent quasi-LPV representation. However, in many
cases, maintaining a nonlinear structure instead of reducing to a linear one can be more appro-
priate, and may lead to less conservativeness and over-approximation (Sename and Rotondo, 2021).

The nonlinear parameter-varying (NLPV) systems are capable to maintain certain nonlinearities
of the original nonlinear system, which has been a positive topic trend in new research. On the
other hand, algebro-differential systems (known as generalized, singular, or descriptor systems) are
a special class of systems governed by both dynamic and algebro equations and can represent a
broader range of systems such as electrical circuits, biological systems, mechanics, and chemical
processes, among others (Zhang et al., 2019).

This research aims to contribute to the design of observers for state estimation, faults with un-
known inputs, and unknown parameters in nonlinear algebra-differential parameter-varying sys-
tems. There is a vast literature on these topics, but there are still issues that have not been
addressed.
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1.5 Outline of the thesis
The following chapters are organized as shown below:

In Chapter 2, an updated bibliographic review is presented for LPV and NLPV systems, algebro-
differential systems, and adaptable observers. This is done to highlight the opportunity gap ad-
dressed in this thesis work.

In Chapter 3, fundamental concepts are presented regarding algebro-differential systems, LPV,
and quasi-LPV. Their classification, examples, and important properties for this type of systems
are discussed. Subsequently, observers for algebro-differential systems, LPV, adaptable observers,
and unknown input observers are introduced.

In Chapter 4, a generalized dynamic observer is introduced for nonlinear algebro-differential sys-
tems with parameter-varying to estimate state variables. Sufficient conditions for the existence
of the observer which guarantee stability regarding Linear Matrix Inequalities constraints using
the Lyapunov stability theory are given. The approach presented includes the proportional and
proportional-integral observer as particular cases and allows some robustness concerning uncertain-
ties and modelling errors and its steady state accuracy. A rolling disc model is given to illustrate
our results.

In Chapter 5, the design and analysis of a generalized observer for the simultaneous estimation
of state variables and unknown inputs are conducted for nonlinear algebro-differential parameter-
varying systems. Also, the design of a generalized learning observer (GLO) structure for the
simultaneous estimation of variable states and actuator faults is presented for the same class of
systems. The generalized observer structure allows robustness and steady state accuracy in simu-
lation. The conditions of existence and stability are given in terms of LMIs. The obtained results
are illustrated on the heat exchanger with two countercurrent cells model with unknown inputs.

In Chapter 6, an adaptive observer design is presented for the simultaneous estimation of system
parameters and state variables for a class of linear algebro-differential systems. Also, an observer
for simultaneous estimation of parameters and state variables for a category of algebro-differential
linear parameter-varying (S-LPV) systems by employing a generalized adaptive observer is pre-
sented. Sufficient conditions for the existence of the observer, ensuring stability with respect to
Linear Matrix Inequalities (LMIs) constraints, are provided. The methodology presented is a gen-
eralization of proportional and proportional-integral observers and It allows for robustness with
respect to uncertainties and modeling errors, as well as steady-state accuracy. A numerical exam-
ple is given to illustrate our results.

Finally, in Chapter 7, some concluding remarks of this research work are presented and some
perspectives for the future work are discussed.
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Chapter 2

Bibliography review

In this section, an updated and detailed bibliographic review of various crucial topics for the
thesis is conducted. The importance of each topic is explored, its current trends are analyzed,
and future developments are projected. The review contextualizes the research, identifies essential
connections, and highlights areas of academic focus. This analysis not only provides background
but also points towards possible future directions in the field.

2.1 Analysis for LPV and NLPV observers
The LPV methodology has been widely used in recent years. Numerous researchers have studied
this methodology because many physical systems can be modeled as LPV systems. This allows
reducing the complexity of the analysis, as many of the well-established techniques used in linear
systems can be extended to LPV systems (Abdullah and Zribi, 2009).

In many control applications, have knowledge of all the state variables is necessary, although this
is not always possible. Almost two decades ago, LPV techniques emerged as an efficient solution
to address a wide operating range without the need for discretization. They provide reliability
in terms of stability and performance in the face of parameter variations, standing out for their
operational simplicity (Mohammadpour and Scherer, 2012). In previous years, the principles of
observer design for LPV systems have been established. First introduced by Shamma (1988),
followed by some relevant works such as in G. Iulia Bara and Ragot (2001); Astorga-Zaragoza
et al. (2011); Estrada et al. (2015b); Pérez Estrada et al. (2017).

LPV observers

Several relevant works in more recent years have conducted significant studies on the observer
designs of LPV systems. Oliveira and Pereira (2019) presents an unknown input proportional-
integral observer (UIO) that makes use of an explicit integration term for discrete LPV systems.
In Agulhari and Lacerda (2019), conditions for the observer-based control problem for LPV pe-
riodic discrete-time systems are presented, and an H∞ guaranteed cost has been employed to
provide robustness against external noises. A polytopic LPV observer is designed to estimate the
damper force by utilizing the dynamic nonlinear model of the electrorheological (ER) damper in
a quarter-car system. The system is represented in LPV form, considering a phenomenological
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model of the damper presented in Pham et al. (2019). In Díaz et al. (2021), an observer design
for discrete time-varying descriptor systems is presented. It is assumed that the dynamical system
matrix is a function of time-varying parameters that are not precisely known.

Reference Yang et al. (2020) presents an augmented LPV observer for the high-precision state
estimation and fault reconstruction of proton exchange membrane fuel cell (PEMFC) air man-
agement system. In Fouka et al. (2021) a Quasi-LPV Luenberger interconnected fuzzy observer
(QLIF) synthesis for simultaneous estimation of the lateral and longitudinal vehicle dynamics. The
outlined observer is designed considering Quasi-LPV vehicle interconnected model taking into ac-
count real con- straints such as the variations in the immeasurable longitudinal and lateral speed,
non-linearities of steering angle and the tire slip velocities during the interconnected-sub observers
design. Reference Lamouchi et al. (2022) presents a LMIs formulation to design an active fault
tolerant control for polytopic uncertain LPV systems subject to uncertainties and actuator faults.

NLPV observers

It has been shown that in many instances, maintaining a nonlinear structure instead of reducing it
to a linear one can be more appropriate and may lead to less conservatism and over-approximation
Sename and Rotondo (2021). The nonlinear Parameter Varying systems are capable to maintain
certain nonlinearities of the original nonlinear system, which has been a positive topic trend in new
research. In Hassan et al. (2014), the autors consider the design of an observer-based controller
for time-delay systems with Lipschitz nonlinearities. A nonlinear observer design of a diesel engine
model is presented in Boulkroune et al. (2015), the observer is developed for a general class of
nonlinear systems with a locally or globally bounded Jacobian.

The robust full-order and reduced-order observers design for LPV systems with one-sided Lips-
chitz nonlinearities and disturbances are addressed in Abdullah and Qasem (2019). In Pham et al.
(2021) two NLPV classical observers were presented to estimate the damper force, utilizing a dy-
namic nonlinear model. In Zhu et al. (2022), the disturbance observer-based controller (DOBC)
design problem for a class of uncertain NPV systems subject to unknown uncertainty and un-
measurable state variables has been investigated. Reference Zhang and Liu (2022) introduces the
set-membership estimation problem in the context of discrete NLPV. Additionally, a sufficient con-
dition for set-membership estimation is derived, taking into consideration unknown-but-bounded
(UBB) noise.

Algebro-differential observers

Due to the fact that the algebro-differential system can represent a wider range of systems, such
as electrical circuits, biological systems, mechanics, and chemical processes, among others complex
systems, several works have been carried out in recent years Zhang et al. (2019). A generalized
dynamic observer for descriptor systems is synthesized to perform a convergent estimation of actu-
ator faults is presented in Osorio-Gordillo et al. (2018). Reference Ríos-Ruiz et al. (2019) presents
a finite-time convergent functional dynamical observer design for descriptor systems applied to the
sensor and actuator faults detection and estimation. An interval observer (IO) for discrete-time
descriptor systems with uncertainties is presented in Liu et al. (2023).
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Authors in Do et al. (2020) present a H∞ observer with parameter-dependent stability to attenuate
the disturbance impact on estimation error for singular LPV systems (S-LPV). In reference Zhang
et al. (2023) is presented a sliding mode observer (SMO) design method to estimate the states and
unknown inputs (UIs) in a class of non-infinitely observable (NIO) descriptor systems that contain
UIs in both the state and output equations. In Zetina-Rios et al. (2023) a GDO for descriptor
nonlinear parameter varying systems is presented to deal with state estimation in a rolling disc

Adaptive observers

Since adaptive observers are capable of estimating the vector of state variables and unknown
parameters, significant work has been carried out in recent years to address these issues. In the
literature, two primary approaches have been developed for the design of adaptive observers. These
approaches are essentially grounded on the following principles:

1. The unknown parameter vector is inferred from the stability analysis of a state observer,
and the convergence property of the parameter error is achieved through the persistence of
excitation-type constraint. Consequently, a parameter adaptation law is proposed

2. Through an augmented system for which the adaptive observer design is elaborated. In this
case, the system dynamics are augmented with the dynamics of its unknown parameters.

For the first case, relevant works have been presented in recent years. Reference Gaudio et al.
(2021) introduces a parameter estimation algorithm for the adaptive control of a class of time-
varying plants with a matrix of time-varying learning rates. This approach enables parameter
estimation error trajectories to converge exponentially fast towards a compact set whenever ex-
citation conditions are satisfied. An adaptive neural network (NN) optimized output-feedback
control problem is studied for a class of stochastic nonlinear systems with unknown nonlinear dy-
namics, input saturation, and state constraints is presented in Li et al. (2022). In reference Alma
et al. (2023) presents the adaptive observer design for a class of nonlinear descriptor systems for
simultaneous estimation of the system states and its parameters.

For the second case, innovative works have been recorded in recent years. In Chen et al. (2019),
the problem of fault observer design is investigated for Markovian jump systems with simultane-
ous time-varying actuator efficiency factors, as well as additive faults in actuators and sensors.
Reference Zhang et al. (2020) proposes a state augmentation approach to achieve interval fault es-
timation for descriptor systems with unknown but bounded disturbances and measurement noises.
A Fast Adaptive Unknown Input Observer (FAUIO) is proposed in Gao et al. (2022) to enhance
the fault estimation performance of the system.

2.2 Conclusion
After reviewing and analyzing the literature, it is evident that the design of observers for LPV
systems has been extensively explored, as indicated in Table 2.1. Subsequently, an extension
to algebro-differential systems is presented. However, there exists an implementation gap in the
development of methodologies for algebraic-differential NLPV systems. This is due to the fact that
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maintaining nonlinearities along with the aforementioned methodologies expands the knowledge
spectrum of the original model and reduces conservatism for the application of more complex
and precise control techniques. Additionally, it is possible to consider methodologies for fault
estimation and unknown inputs applied to this type of systems. Furthermore, the application of
adaptable observers allows for the proper estimation of unknown system parameters. An important
contribution in this thesis work is the design of adaptable observers applied to this type of systems.

Table 2.1. Bibliography review table
LPV observers

Reference Observer System Description

Oliveira and Pereira (2019) UIO Discrete LPV
Makes use of an explicit
integration term for
discrete LPV systems.

Agulhari and Lacerda (2019) H∞ Discrete LPV Provide robustness
against external noises.

Yang et al. (2020) Augmented LPV PEMFC
Presents a high-precision

state estimation and
fault reconstruction

Díaz et al. (2021) Classical Discrete time-varying descriptor
An affine parameter-dependent
Lyapunov function is considered
to ensure the error convergence

Fouka et al. (2021) QLIF Quasi-LPV
Simultaneous estimation

of the lateral and
longitudinal vehicle dynamics

NLPV observers
Hassan et al. (2014) Observer-based controller Time-delay systems For state estimation

Boulkroune et al. (2015) Nonlinear NLPV systems

Developed for a general
class of nonlinear systems
with a locally or globally

bounded Jacobian

Abdullah and Qasem (2019) Full and reduced-order observers NLPV systems
One-sided Lipschitz nonlinearities

class of nonlinear systems
and disturbances are addressed

Pham et al. (2021) Clasical observers NLPV systems Estimate the damper force

Zhu et al. (2022) Observer-based controller NPV systems Unknown uncertainty and
unmeasurable state variables

Algebro-differential observers

Osorio-Gordillo et al. (2018) GDO Descriptor systems Convergent estimation of
actuator faults is presented

Ríos-Ruiz et al. (2019) Functional dynamical Descriptor systems actuator faults detection
and estimation

Do et al. (2020) H∞ Descriptor systems Presents an observer with
parameter-dependent stability

Liu et al. (2023) Interval observer Discrete systems Estimation of uncertainties

Zhang et al. (2023) Sliding mode Descriptor systems Is a method to estimate
the states and unknown inputs
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Chapter 3

Theoretical framework

The present chapter is dedicated to the description of different concepts and definitions about
algebro-differential systems, LPV systems and observers.

In Section 3.1, algebra-differential systems are described, along with the mathematical derivation
of some examples. In Section 3.2, LPV systems and their representation are addressed. Likewise,
quasi-LPV systems and NLPV Systems are defined. Finally, in Section 3.3, definitions of observers
are presented, along with some types of observers reported in the literature.

3.1 Algebro-differential systems
The state space approach was developed in the late 1950s and early 1960s. This approach offers
significant advantages as it provides an efficient method for the analysis and synthesis of control
systems. Additionally, it offers a deeper understanding of the various properties of systems.

State space models of systems are primarily obtained using the state space variable method. To
obtain a state space model of a practical system, it is necessary to select some physical variables
such as speed, weight, temperature, or acceleration, which are sufficient to characterize the system.

Then, by the physical relationships among the variables or through model identification techniques,
a set of equations can be established. Typically, this set of equations consists of differential and/or
algebraic equations, forming the mathematical model of the system. By properly defining a state
vector x(t) and an input vector u(t), composed of the physical variables of the system, and an
output vector y(t), whose elements are appropriately chosen measurable variables of the system,
this set of equations can be organized into two equations. One of them is the so-called state
equation, which follows the general form:

f(ẋ, x(t), u(t), y(t), t) = 0, (3.1)

and the other is the output equation, or the observation equation, which is in the form of

g(x(t), u(t), y(t), t) = 0, (3.2)
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where f and g are linear vector functions of appropriate dimensions with respect to ẋ(t), x(t), u(t),
y(t) and t. Equations (3.1) and (3.2) give the state space representation for a general nonlinear
dynamical system.

The following equation describes a special form of (3.1) and (3.2)

Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(3.3)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the known input, y(t) ∈ Rp is the measurement
output vector. Matrix E ∈ Rn×n could be singular. A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and
D ∈ Rp×m are real matrices.

3.1.1 Examples of algebro-differential systems
Algebro-differential systems appear in many fields, such as power systems, electrical networks,
aerospace engineering, chemical processes, social economic systems, network analysis, biological
systems, time-series analysis, and so on. In this section, some examples of descriptor systems are
presented, from which readers can indeed see the existence of descriptor linear systems in our real
world.

Electrical circuit Systems

Numerous electrical circuit systems can be characterized using descriptor linear systems.

Example 1. (Dai, 1987) Consider a simple circuit network as shown in Figure 3.1, where R, L
and C stand for the resistor, inductor, and capacity, respectively, and their voltages are denoted
by VR(t), VL(t), VC(t) respectively. VS(t) is the voltage source which is taken as the control input.
I(t) is the current total in the circuit. Following basic circuit theory and the Kirchoff’s law (Smith
and Dorf, 1992), we have the following equations, which describe the system:

Lİ(t) = VL(t), (3.4)

V̇C(t) = 1
C
I(t), (3.5)

R1I(t) = VR1(t), (3.6)
R2I(t) = VR2(t), (3.7)

VL(t) + VC(t) + VR(t) = VS(t). (3.8)
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Fig. 3.1. A single-loop circuit network.

Realizing the change of variable

x1(t) = I(t), x2(t) = VL(t), x3(t) = Vc(t), x4(t) = VR1(t) and x5(t) = VR2(t)

Equations (3.4)–(3.8), with the change of variable taken into account, can be written in the follow-
ing descriptor linear system form:

Eẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t),

(3.9)

with E =


L 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, x(t) =


x1(t)
x2(t)
x3(t)
x4(t)
x5(t)

, A =



0 1 0 0 0
1
C

0 0 0 0
−R1 0 0 1 0
−R2 0 0 0 1

0 1 1 1 1

, B =


0
0
0
0

−1

,

C =

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 and y =

x3(t)
x4(t)
x5(t)

.

Where the rank(E) = r < n, and let E⊥ ∈ Rs×n be a full row matrix such that E⊥E = 0. In this
case, s = n− r, resulting in a singular matrix.

Mechanical systems

Example 2. Constrained linear mechanical systems can be described as follows:

Mz̈(t) +Dż(t) +Kz(t) = Lf(t) + Jµ(t), (3.10)
Gz(t) +Hz(t) = 0, (3.11)

11



where z(t) ∈ Rn is the displacement vector, f(t) ∈ Rn is the vector of known input forces, µ(t) ∈ Rq

is the vector of Lagrangian multipliers, M is the inertial matrix, which is usually symmetric and
positive definite, D is the damping and gyroscopic matrix, K is the stiffness and circulator matrix,
L is the force distribution matrix, J is the Jacobian of the constraint equation, G and H are
the coefficient matrices of the constraint equation. All matrices in (3.10)–(3.11) are known and
constant ones of appropriate dimensions.
Equation (3.10) is the dynamical equation, while (3.11) is the constraint equation. Assume that a
linear combination of displacements and velocities is measurable, then, the output equation is of
the form

y(t) = Cpz(t) + Cvż(t), (3.12)

where Cp, Cv ∈ Rm×n. By further choosing the state vector and the input vector as

x(t) =

z(t)ż(t)
µ(t)

 and u(t) = f(t),

respectively, then the above (3.10)-(3.12) can be written as (3.9) with E =

I 0 0
0 M 0
0 0 0

,

A =

 0 I 0
−K −D J
H G 0

, B =

0
L
0

, C =
[
Cp Cv 0

]
and y =

[
Cpx1(t) + Cvx2(t)

]
.

Where the rank(E) = r < n, and let E⊥ ∈ Rs×n be a full row matrix such that E⊥E = 0. In this
case, s = n− r, resulting in a singular matrix.

3.1.2 Algebro-differential system properties

Definition 1. (Yip and Sincovec, 1981): The regularity property in descriptor systems ensures
the existence and uniqueness of solutions. System (3.3) is considered regular if there exists a
constant scalar s ∈ C such that

det(sE − A) ̸= 0 (3.13)

or equivalently, the polynomial det(sE − A) is not identically zero. In this context, we also refer
to the pair (E,A) or the matrix pencil sE − A is regular.

Definition 2. (Duan, 2010): A descriptor linear system (3.3) is deemed impulse-free if, when
starting from any arbitrary initial value, its state response lacks impulse terms.

rank

[
E 0
A E

]
= n+ rank(E) (3.14)

Definition 3. The pair (E,A) of system (3.3) is said to be admissible if it is regular,
impulse-free, and stable.
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The following condition of system (1.2) is a generalization of the impulse observability

rank

E A
0 C
0 E

 = rank(E) + n, (3.15)

Impulsive terms are not desirable since they can saturate the state response. Impulse-observability
(I-observability) guarantees the ability to estimate impulse terms given by the algebraic equations.

Definition 4. The ability to reconstruct only the reachable state from the output data is charac-
terized by the Reachable-observability (R-observability).
The algebro-differential system of system (1.2) is R-observable if and only if

rank

[
sE − A
C

]
= n,∀s ∈ C, s finite.

3.1.3 LPV systems
Linear parameter-varying (LPV) systems represent a fundamental class of dynamic systems that
play a crucial role in a wide range of applications. These systems offer the flexibility to adapt to
changes in the environment or operating conditions, making them a valuable tool in fields ranging
from control engineering and robotics to aeronautics and biology.

The framework LPV systems concerns linear dynamical systems whose state-space representations
depend on exogenous non-stationary parameters, as in

ẋ(t) = A(θ(t))x(t) +B(θ(t))u(t),
y(t) = C(θ(t))x(t),

(3.16)

where u(t) is the input, x(t) is the state variable, y(t) is the output, and θ(t) is an exogenous
parameter that can be time-dependent.
The terminology “linear parameter-varying” was introduced in Shamma (1988) to distinguish LPV
systems from both LTI (linear time-invariant) and LTV (linear time-varying) systems. The dis-
tinction from LTI systems is clear in that LPV systems are non-stationary. The distinction from
LTV systems is less evident, given that for any trajectory of the parameter θ(·), the dynamics
of (3.16) constitute a linear time-varying system. Instead, LPV systems are set apart from LTV
systems by the perspective adopted in both analysis and synthesis.

3.1.4 Representation of LPV systems
An LPV system can be categorized into different groups depending on the role of parameters in
the system equations. Essentially, there are three comprehensive formulations for LPV systems.
(Briat, 2014):

• Polytopic formulation.
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• Parameter-dependent formulation.

• Formulation for a Linear fractional transformation (LFT).

In the course of developing this thesis, the focus was on investigating LPV systems, particularly
emphasizing their polytopic representation. This choice was made because the polytopic represen-
tation stands out as a widely utilized approach in the existing literature on LPV systems.

Polytopic formulation

The polytopic formulation of LPV systems involves representing them using polytopes, geomet-
ric figures with flat sides in multi-dimensional space. This approach describes the LPV system’s
behavior through a set of linear equations or inequalities associated with distinct regions in the
parameter space, each corresponding to a facet or vertex of the polytope. This representation
enables a piecewise-linear approximation of the system’s dynamics, offering a convenient method
for analyzing and controlling LPV systems with varying parameters.

The polytopic representation of an LPV system involves formulating weighting functions, allowing
for the determination of system variables as the cumulative sum of the models specified at each
vertex of the polytope. Each weighting function must satisfy the following conditions:

0 ≤ µi(ρ(t)) ≤ 1,
2r∑

i=1
µi(ρ(t)) = 1 (3.17)

where µi(ρ(t)) s the parameter-dependent weighting function. The parameter vector ρ(t) lies
within a polytope with 2r vertices, where r is the number of varying parameters. Each vertex of
the polytope is formed by the combination of the extreme values of each parameter.

The general form of an LPV system with a polytopic formulation is as shown below.

ẋ(t) =
k∑

i=1
µi(ρ(t))[Aix(t) +Biu(t)]

y(t) = Cx(t)
(3.18)

where x(t) ∈ Rnis the state vector of the system, u(t) ∈ Rm is the input vector, y(t) ∈ Rp is the
vector of measurable outputs, Ai, Bi and C are known real matrices of appropriate dimensions,
ρ(t) ∈ Rr is the vector of r varying parameters. Each of the k combinations of the variable
parameter limits is evaluated, thus generating a set of local models, where k = 2r, with r equal to
the number of varying parameters.

3.1.5 Quasi-LPV Systems
When LPV systems are obtained by considering the nonlinearities of the model, the weighting
functions become functions of the system’s state. This particular type of LPV systems is known
as quasi-LPV systems (Briat, 2014).
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As an example, consider the following nonlinear system:

ẋ1(t) = x2(t)
ẋ2(t) = x3

1
(3.19)

which can be represented as

ẋ1(t) = x2(t)
ẋ2(t) = ϱ(t)x1(t)

where ϱ(t) = x2
1 ∈ R.

It is noticeable that the nonlinearity can be expressed through a quasi-LPV approach, enabling the
transformation of the nonlinear equation into a linear form. Given that ϱ(t) represents a varying
parameter with known variation limits but an unknown trajectory, the weighting functions depend
on the variations of ϱ(t), which, in turn, change based on the dynamics of the system’s states.

The general form of a quasi-LPV system in its polytopic form is as follows:

ẋ(t) =
k∑

i=1
µi(ϱ(t))(Aix(t) +Biu(t))

y(t) = Cx(t) (3.20)

where x(t) ∈ Rn is the state vector of the system, u(t) ∈ Rm is the input vector, y(t) ∈ Rp is
the vector of measurable outputs, Ai, Bi, and C are known real matrices, ϱ(t) ∈ Rr is the vector
of r varying parameters including the dynamics of the state variables, and µi(ϱ(t)) are the
weighting functions.

3.1.6 Nonlinear parameter-varying systems
Frequently, “linearizing” nonlinear systems using the LPV language, known as the quasi-LPV rep-
resentation, comes with the cost of reducing the generality of the system representation. Recall
that to be assigned as a scheduling parameter, a (nonlinear) function of the state x(t) must be
known or estimated and bounded at least in the region where x(t) remains. This condition, even
if it can be satisfied, would certainly increase conservatism.

Often, by strategically choosing to maintain a certain level of nonlinearity in the system represen-
tation (rather than render it linear thanks to the LPV technique), we can benefit from interesting
properties of nonlinear functions, e.g., Lipschitz conditions, which reduce conservatism and lead to
more realistic results. This idea leads to the so-called nonlinear parameter varying (NLPV) class
of systems that has emerged as a potential research trend in the LPV community (Sename and
Rotondo, 2021). A NLPV system can be described by the following equations :

ẋ(t) =
k∑

i=1
µi(ρ(t))[Aix(t) +Biu(t)] +Df(t, FLx, u) (3.21)

y(t) = Cx(t) +Du(t) (3.22)
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where x(t) ∈ Rn is the semi–state vector, u(t) ∈ Rm is the input vector, y(t) ∈ Rp is the output
vector and f(t, FLx) is the nonlinearity that verifies the Lipschitz constrain.

3.1.7 Observers for NLPV systems
Consider the nonlinear algebro-diferential parameter-varying system in its polytopic form as in
(3.21) - (3.22) and considering the membership functions presented in (3.17). The following pro-
portional observer is proposed.

ζ̇(t) =
k∑

i=1
µi(ϱ(t))

[
Niζ(t) + Fiy(t) + TDif(t, FLx̂) + Jiu(t)

]
, (3.23)

x̂(t) = Pζ(t) +Qy(t), (3.24)

where ζ(t) ∈ Rq0 represents the state vector of the observer, and x̂(t) ∈ Rn is the estimate of
x(t). The matrices Ni ∈ Rq0×q0 , Fi ∈ Rq0×p, Ji ∈ Rq0×m, P ∈ Rn×q0 , Q ∈ Rn×p and T ∈ Rq0×n are
unknown matrices of appropriate dimensions, which must be determined such that x̂(t) converges
asymptotically to x(t).

This type of observer allows the inclusion of time-varying terms and nonlinearities within its
structure. Retaining nonlinearities in a system can be beneficial for several reasons:

• More accurate representation: Many systems in reality are inherently nonlinear. By pre-
serving nonlinearities in the model, a more accurate representation of the system’s behavior
is achieved.

• Modeling complex phenomena: Some phenomena in real systems can be more accurately
modeled using nonlinear functions. Nonlinearity allows capturing complex behaviors that
cannot be effectively described with linear models.

• Adaptability to changes: Nonlinear systems are often more adaptable to variations in
operating conditions. They can better handle disturbances and fluctuations compared to
linear systems, making them more robust in certain scenarios.

• Performance improvement: In some cases, nonlinearities can enhance the performance
of the system. For example, in control, introducing nonlinearities can help improve stability,
dynamic response, and reference tracking capability.

• Diversity of behaviors: Nonlinear systems can exhibit a wide variety of behaviors, includ-
ing bifurcations and chaotic phenomena. This can be useful in applications where there is a
desire to explore and leverage this diversity for specific purposes.

It is important to note that, although nonlinearities can offer advantages in representation and
performance, they can also complicate the analysis and control design. The choice to retain or
eliminate nonlinearities in a system often depends on specific modeling and control objectives.
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3.1.8 Generalized observer
Recently, the study of a new observer structure, called the Generalized Dynamic Observer (GDO),
has been introduced. These observer structures are based on Park et al. (2002) and Marquez
(2003), where the principal idea is to add dynamic structure to increase their degrees of freedom,
achieve steady-state accuracy and improve robustness in estimation error against disturbances and
parametric uncertainties. Therefore, this structure can be considered more general than Propor-
tional Observers (PO) and Proportional-Integral Observers (PIO).

Considering the following linear system

ẋ(t) =Ax(t) +Bu(t)
y(t) =Cx(t)

(3.25)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the known input and y(t) ∈ Rp is the measurement
output vector. Matrices A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are known constant matrices.
The GDO structure for system (3.25) is described by

ζ̇(t) = Nζ(t) +Hv(t) + Fy(t) + Ju(t)] (3.26)
v̇(t) = Sζ(t) + Lv(t) +My(t)] (3.27)
x̂(t) = Pζ(t) +Qy(t) (3.28)

where ζ(t) ∈ Rq0 represents states vector of the observer, v(t) ∈ Rq1 is the auxiliary vector x̂(t) ∈ Rn

is the estimate of x(t). Matrices N ∈ Rq0×q0 , H ∈ Rq0×q1 , F ∈ Rq0×p, S ∈ Rq1×q0 , L ∈ Rq1×q1 ,
M ∈ Rq1×p, P ∈ Rn×q0 , Q ∈ Rn×p, and J ∈ Rq0×m are unknown matrices of appropriate dimensions
that must be determined such that x̂(t) converge to x(t).

3.1.9 Adaptive observers
In the design of observers, it is often assumed that all the parameters of the system are known.
However, this is not always true. Adaptive observers offer an effective solution to this challenge,
enabling the estimation of state variables along with system parameters. This is why they have
been widely used in the literature.

Let us consider the following linear time invariant descriptor system:

ẋ(t) = Ax(t) +Bu(t) + ψ(t)θ(t), (3.29)
y(t) = Cx(t),

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the known input, y(t) ∈ Rp is the measurement
output vector and θ(t) ∈ Rl is the unknown parameter vector assumed to be constant. Matrices
A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are known constant matrices. ψ(t) ∈ Rm×l is a matrix of
known signals, and it is assumed to be piecewise differentiable.
Let us consider the following adaptive observer for system (3.29)
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ζ̇(t) = Nζ(t) + Fy(t) + Ju(t) + Tψθ̂(t) + Υ
˙̂
θ(t),

x̂(t) = Pζ(t) +Qy(t), (3.30)
˙̂
θ(t) = CTΛ(y(t) − Cx̂(t)), (3.31)

where x̂(t) ∈ Rn and θ(t) ∈ Rl are the estimates of x(t) and θ(t), respectively. The matrices
N ∈ Rq0×q0 , F ∈ Rq0×p, J ∈ Rq0×m, P ∈ Rn×q0 , Q ∈ Rn×p and T ∈ Rq0×n are unknown matrices
of appropriate dimensions, which must be determined such that x̂(t) converges asymptotically to
x(t) and θ̂(t) converges to θ(t), respectively.

3.1.10 Unknown input observer
In the context of control systems, it’s crucial to recognize that a predominant number of physical
processes face disturbances in the form of measurement noises, modeling uncertainties, sensor
irregularities, and faults in actuators. These disturbances collectively constitute what we refer to
as unknown inputs. Managing and mitigating the impact of these unknown inputs is a critical
aspect of designing robust control strategies for optimal system performance.
Let us consider the following linear time invariant descriptor system:

ẋ(t) = Ax(t) +Bu(t) +Dd(t) + Ew(t), (3.32)
y(t) = Cx(t),

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the known input, w(t) ∈ Rnw represents the
disturbance vector, d(t) ∈ Rnd is the unknown input vector and y(t) ∈ Rp Matrices A ∈ Rn×n,
B ∈ Rn×m and C ∈ Rp×n are known constant matrices.

In practice, often the disturbances or partial inputs are not known, or can result from either model
uncertainties or faults. An effective way to address this issue is by designing an observer for a
system similar to (3.32).

3.1.11 Tools for the stability analysis of dynamic systems
The following lemmas are used in the sequel of the document.

Lemma 1. (Schur complement) Let A, B and D be matrices of appropriate dimension. Then the
following statements are equivalent :

(i)
[
A B
BT D

]
< 0.

(ii) D < 0 and A−BD−1BT < 0.

(iii) A < 0 and D −BTA−1B < 0.
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Lemma 2. (Skelton et al., 1997) Let matrices B, C and D be given. Then, the following statements
are equivalent:
(i) There exist a matrix Φ satisfying

BΦC + (BΦC)T + D < 0.

(ii) The following two conditions hold

B⊥DB⊥T < 0 or BBT > 0.
CT ⊥DCT ⊥T < 0 or CT C > 0.

Suppose that the statement (ii) holds, then (Cl, Cr) and (Bl,Br) are any full rank factors of B and
C such that B = BlBr and C = ClCr are verified.

Then the matrix Φ in statement (i) is given by

Φ = Br
+KiCl

+ + Z − Br
+BrZClCl

+,

where

K = −R−1Bl
T VCr

T (CrVCr
T )−1 + S

1
2 L(CrVCr

T )− 1
2 ,

S = R−1 − R−1BT
l [V − VCT

r (CrVCr
T )−1CrV ]BlR−1,

V = (BrR−1Bl
T − D)−1 > 0,

where Z, L, R are arbitrary matrices such that ||L|| < 1 and R > 0. Let A⊥ be the orthogonal of
the matrix A and A+ be any generalized inverse of the matrix A, verifying AA+A = A.

Lemma 3. (Xu, 2002) Let M and N be two constant matrices of appropriate dimensions. Then,
the following inequality:

MT N + N T M ≤ γMT M + 1
γ

N T N

holds for any scalar γ > 0.
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Chapter 4

Generalized dynamic methodology for
algebro-differential-NLPV systems

4.1 Introduction
This chapter addresses with the state estimation problem for nonlinear algebro-differential parameter-
varying systems (S-NLPV). The design of a generalized observer for NLPV systems whith a gen-
eral parameterization is shown. The observer design it is formulated as a set of LMIs. Finally,
to demonstrate the effectiveness of the observer, the obtained results are applied to a rolling disc
connected to a fixed wall by a spring and a damper.

4.2 Generalized dynamic observer design for S-NLPV sys-
tems

Consider the following nonlinear algebro-differential parameter-varying system in its polytopic
form.

Eẋ(t) =
k∑

i=1
µi(ϱ(t))

[
Aix(t) +Biu(t) +Dif(t, FLx)

]
,

y(t) = Cx(t),
(4.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the known input and y(t) ∈ Rp is the measurement
output vector, ϱ(t) ∈ Rr is the vector of r variable parameters, µi(ϱ(t)) are the weighting functions
that depend on the variation of ϱ(t). Matrix E ∈ Rn×n could be singular. Ai ∈ Rn×n, Bi ∈ Rn×m,
C ∈ Rp×n and Di ∈ Rn×nf are real matrices and f(t, FLx) ∈ Rnf represents a nonlinearity that
satisfies the Lipschitz constrain ||∆f || ≤ λ||FL(x1 − x2)|| where ∆f = f(t, FLx1) − f(t, FLx2), λ
represents a known Lipschitz constant, while FL is a real matrix of suitable dimensions

Let rank(E) = r < n and let E⊥ ∈ Rs×n be a full row matrix such that E⊥E = 0, in this case
s = n− r.
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Considering µi(ϱ(t)) as membership functions constructed with predefined variant parametersϱ(t) ∈
Rl. The membership functions have the following properties:

k∑
i=1

µi(ϱ(t)) = 1, µi(ϱ(t)) ≥ 0, (4.2)

for i ranging from 1 to k, where k = 2l, representing the number of vertices in the polytope

The following definitions and theorem will be referenced throughout the rest of this chapter.

Assumption 1. It is assumed that system (4.1) is regular (Definition 1), Impulse observable
(Definition 2) and Reachable observable (Definition 4).

Assumption 2. The Lemma 1, elimination Lemma (lemma 2) and Lemma 3 are used in the
sequel of the chapter.

4.2.1 Problem Statement.
Let us consider the following generalized nonlinear observer for system (4.1)

ζ̇(t) =
k∑

i=1
µi(ϱ(t))

[
Niζ(t) +Hiv(t) + Fiy(t) + TDif(t, FLx̂) + Jiu(t)

]
, (4.3)

v̇(t) =
k∑

i=1
µi(ϱ(t))

[
Siζ(t) + Liv(t) +Miy(t)

]
, (4.4)

x̂(t) = Pζ(t) +Qy(t), (4.5)

where ζ(t) ∈ Rq0 represents the state vector of the observer, v(t) ∈ Rq1 is an auxiliary vector and
x̂(t) ∈ Rn is the estimate of x(t). The matrices Ni ∈ Rq0×q0 , Hi ∈ Rq0×q1 , Fi ∈ Rq0×p, Si ∈ Rq1×q0 ,
Li ∈ Rq1×q1 , Mi ∈ Rq1×p, Ji ∈ Rq0×m, P ∈ Rn×q0 , Q ∈ Rn×p, and T ∈ Rq0×n are unknown matrices
of suitable dimensions that need to be determined to ensure asymptotic convergence of x̂(t) to
x(t).
Consider a matrix parameter T to define the following transformed error

ϵ(t) = ζ(t) − TEx(t), (4.6)

its derivative is given as

ϵ̇(t) = ζ̇(t) − TEẋ(t)

ϵ̇(t) =
k∑

i=1
µi(ϱ(t))

[
Niϵ(t) +NiTEx(t) +Hiv(t) + FiCx(t) + TDif(t, FLx̂)+

Ju(t) − TAix(t) − TBiu(t) − TDif(t, FLx)
]

(4.7)

=
k∑

i=1
µi(ϱ(t))

[
Niϵ(t) + (NiTE − TAi + FiC)x(t) + (Ji − TBi)u(t) + TDi∆f (t) +Hiv(t)

]
(4.8)

22



where ∆f (t) = f(t, FLx̂)−f(t, FLx). Equation (4.8) is independent of x(t) and u(t), if the following
equations are satisfied:

(a) NiTE + FiC − TAi = 0,
(b) Ji = TBi.

Then equation (4.8) becomes:

ϵ̇(t) =
k∑

i=1
µi(ϱ(t))

[
Niϵ(t) +Hiv(t) + TDi∆f (t)

]
. (4.9)

By using equation (4.6), equations (4.4) and (4.5) can be written as

v̇(t) =
k∑

i=1
µi(ϱ(t))

[
Siϵ(t) + (SiTE +MiC)x(t) + Liv(t)

]
, (4.10)

x̂(t) = Pϵ(t) + (PTE +QC)x(t), (4.11)

Now if the following conditions are satisfied

(c) SiTE +MiC = 0,
(d) PTE +QC = In,

Convergence is ensured if the aforementioned restrictions (a) - (d) are satisfied. However, if
these restrictions are not met, the convergence of the observer cannot be guaranteed.

then equation (4.10) becomes

v̇(t) =
k∑

i=1
µi(ϱ(t)

[
Siϵ(t) + Liv(t)

]
, (4.12)

and the state estimation error becomes

x̂(t) − x(t) = e(t) = Pϵ(t). (4.13)

If conditions (a)–(d) are satisfied, the following observer error dynamics equation is obtained from
(4.9) and (4.12)

φ̇(t) =
k∑

i=1
µi(ϱ(t))

[
Aiφ(t) + Bi∆f (t)

]
, (4.14)

where φ(t) =
[
ϵ(t)
v(t)

]
, Ai =

[
Ni Hi

Si Li

]
and Bi =

[
TDi

0

]
.

To study the stability of system (4.14) when ∆f (t) = 0, let us consider V (t) = φ(t)TXφ(t) with
X = XT > 0 be a Lyapunov function candidate. Then we have

V̇ (t) = φT (t)[A(ϱ)TX +XA(ϱ)]φ(t)
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where A(ϱ) =
k∑

i=1
µi(ϱ(t))Ai. In this case V̇ (t) < 0 if A(ϱ)TX +XA(ϱ) < 0 which equivalent to

k∑
i=1

µi(ϱ(t))[AT
i X +XAi] < 0

since µi ≥ 0 and
k∑

i=1
µi(ϱ(t)) = 1, the stability condition reduces to the one of matrices

Ai =
[
Ni Hi

Si Li

]
.

4.2.2 Observer parameterization
The parameterization can be obtained by first examining constraints (c) and (d), which can be
formulated as [

Si Mi

P Q

] [
TE
C

]
=
[

0
In

]
, (4.15)

the necessary and sufficient condition for (4.15) to have a solution is

rank

TEC
In

 = rank

[
TE
C

]
= n. (4.16)

From equation (4.16) there always exist two matrices T ∈ Rq0×n and K ∈ Rq0×p such that
TE +KC = R, (4.17)

where R ∈ Rq0×n is an arbitrary full row rank matrix such that rank
[
R
C

]
= n.

Equation (4.17) we can also written as [
T K

] [E
C

]
︸ ︷︷ ︸

Ω

= R, (4.18)

and since rank
[
Ω
R

]
= rank(Ω), the solution of (4.18) is given by

[
T K

]
= RΩ+ − Z1(In+p − ΩΩ+), (4.19)

where Ω+ denotes the generalized inverse matrix such that ΩΩ+Ω = Ω.
Therefore

T = RΩ+
[
In

0

]
︸ ︷︷ ︸

T1

−Z1 (In+p − ΩΩ+)
[
In

0

]
︸ ︷︷ ︸

T2

, (4.20)

K = RΩ+
[

0
Ip

]
︸ ︷︷ ︸

K1

−Z1 (In+p − ΩΩ+)
[

0
Ip

]
︸ ︷︷ ︸

K2

, (4.21)
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where Z1 is an arbitrary matrix. By replacing TE = R − KC into condition (a), the following
equation is obtained

NiR + (Fi −NiK)︸ ︷︷ ︸
K̄i

C = TAi, (4.22)

[
Ni K̄i

] [R
C

]
︸ ︷︷ ︸

Σ

= TAi, (4.23)

The general solution to the equation (4.23) is as follows:[
Ni K̄i

]
= TAiΣ+ − Y1i(Iqo+p − ΣΣ+), (4.24)

by replacing T from (4.20) into (4.24) we have

Ni = N1i − Z1N2i − Y1iN3, (4.25)
K̄i = K̄1i − Z1K̄2i − Y1iK̄3, (4.26)

where N1i = T1AiΣ+
[
Iq0

0

]
, N2i = T2AiΣ+

[
Iq0

0

]
, N3 = (Iq0+p − ΣΣ+)

[
Iq0

0

]
,

K̄1i = T1AiΣ+
[

0
Ip

]
, K̄2i = T2AiΣ+

[
0
Ip

]
, K̄3 = (I − ΣΣ+)

[
0
Ip

]
and Y1i is an arbitrary matrix with

the necessary dimensions.
Now, from (4.22) we can deduce the value of Fi as

Fi = K̄i +NiK,

= K̄1i − Z1K̄2i − Y1iK̄3 +N1iK − Z1N2iK − Y1iN3K,

= F1i − Z1F2i − Y1iF3, (4.27)

where F1i = T1AiΣ+
[
K
Ip

]
, F2i = T2AiΣ+

[
K
Ip

]
and F3 = (Iq0+p − ΣΣ+)

[
K
Ip

]
.

On the other hand, equation (4.17) can be written as[
TE
C

]
=
[
Iq0 −K
0 Ip

]
Σ, (4.28)

by using (4.15) and (4.28) we obtain[
Si Mi

P Q

] [
Iq0 −K
0 Ip,

]
Σ =

[
0
In

]
, (4.29)

which leads the following solution[
Si Mi

P Q

]
=
([

0
In

]
Σ+ −

[
Y2i

Y3i

]
(Iq0+p − ΣΣ+)

)[
Iq0 K
0 Ip

]
, (4.30)

where Y2i and Y3i are arbitrary matrices of appropriate dimensions, also we have used the fact that[
Iq0 −K
0 Ip

]−1

=
[
Iq0 K
0 Ip

]
.
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From (4.30) it can be deduced the general form of matrices Si, Mi, P and Q as follows

Si = −Y2iN3, (4.31)
Mi = −Y2iF3, (4.32)
P = P1 − Y3iN3, (4.33)
Q = Q1 − Y3iF3, (4.34)

where F3 = (Iq0+p − ΣΣ+)
[
K
Ip

]
, N3 = (Iq0+p − ΣΣ+)

[
Iq0

0

]
, Q1 = Σ+

[
K
Ip

]
and P1 = Σ+

[
Iq0

0

]
.

Now, by using the value of matrices Ni, Si and T given by (4.25), (4.31), (4.20), the observer
error dynamics (4.14) can be written as

φ̇(t) =
k∑

i=1
µi(ϱ(t))

[
(A1i − YiA2)φ(t) + Bi∆f (t)

]
, (4.35)

where A1i =
[
N1i − Z1N2i 0

0 0

]
, A2 =

[
N3 0
0 −Iq1

]
, Bi =

[
(T1 − Z1T2)Di

0

]
and Yi =

[
Y1i Hi

Y2i Li,

]
, and

from (4.13) we have
e(t) = Pφ(t), (4.36)

where P =
[
P1 0

]
, without loss of generality Y3i = 0 is taken for simplicity.

The problem of the observer design is reduced to determine matrices Z1 and Yi such that system
(4.35) is asymptotically stable.

4.2.3 Stability analysis of the observer
This section is devoted to the stability analysis of equation (4.35). The following theorem gives
the condition for the stability in a set of LMIs.

Theorem 1. Consider the system given by (4.3)-(4.5) as a generalized observer for system (4.35)
for state estimation if Assumption 1 is fulfilled. The observer (4.3)-(4.5) is asymptotically stable

if there exists two parameter matrices Z1, Yi and a symmetric matrix X1 =
[
X11 X12
XT

12 X22

]
with

X11 =
[
Xa Xa

Xa Xb

]
such that the following LMIs are satisfied

CT ⊥

 He(ΠT
1i + PXT

12 + PTU1) (∗) (∗)
UT

2 P −XT
12 − U1 −U2 − UT

2 + γλ2FLF
T
L 0

ΠT
2i 0 −γIn+q0+q1

 CT ⊥T < 0, (4.37)

[
−U2 − UT

2 + γλ2F T
L FL 0

0 −γIn+q0+q1

]
< 0, (4.38)
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where

CT ⊥ =

A
T ⊥
2 0 0
0 I 0
0 0 I

 ,Π1i =
[
XaN1i −XzN2i 0
XaN1i −XzN2i 0

]
and Π2i =

[
XaT1Di −XzT2Di

XaT1Di −XzT2Di

]
, (4.39)

He is known as hermitian equation, in this case matrix Z1 = X−1
a Xz and parameter matrix Φi is

obtained as follows

Φi = Br
+KiCl

+ + Z − Br
+BrZClCl

+, (4.40)

where
Yi = ΦiX

−1
11 , (4.41)

Ki = −R−1Bl
T ViCr

T (CrViCr
T )−1 + S

1
2
i L(CrViCr

T )− 1
2 , (4.42)

Si = R−1 − R−1BT
l [Vi − ViCT

r (CrViCr
T )−1CrVi]BlR−1, (4.43)

Vi = (BrR−1Bl
T − Di)−1 > 0, (4.44)

with matrices Z, L and R as arbitrary matrices of appropriate dimensions satisfying ||L|| < 1 and
R > 0, with

Di =

 He(ΠT
1i + PXT

12 + PTU1) (∗) (∗)
UT

2 P −XT
12 − U1 −U2 − UT

2 + γλ2FLF
T
L 0

ΠT
2i 0 −γIn+q0+q1

 ,

B =

−I
0
0

 and C =
[
A2 0 0

]
. Matrices Bl, Br, Cl and Cr are any full rank matrices such that

B = BlBr and C = ClCr.

Proof. Equation (4.35) can be rewritten in singular form as

Ēξ̇(t) =
k∑

i=1
µi(ϱ(t))

[
Āiξ(t) + B̄i∆f (t)

]
, (4.45)

where ξ(t) =
[
φ(t)
e(t)

]
, Ē =

[
Iq0+q1 0

0 0

]
, Āi =

[
A1i − YiA2 0

P −In

]
, B̄i =

[
Bi

0

]
.

Now, by considering the following Lyapunov function (Wu et al., 2013)

V (ξ(t)) = ξ(t)T ĒTXξ(t), (4.46)

where
ĒTX = XT Ē ≥ 0, (4.47)

and X = X1Ē + Ē⊥TU , with matrices X1 = XT
1 =

[
X11 X12
XT

12 X22

]
> 0 and

U =
[
U1 U2

]
, such that from (4.47) we can obtain

ĒTX1Ē =
[
X11 0
0 0

]
≥ 0 (4.48)
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with X11 = XT
11 =

[
Xa Xa

Xa Xb

]
> 0.

The derivative of (4.46) along the trajectory of (4.45) gives

V̇ (ξ(t)) =
k∑

i=1
µi(ϱ(t))

[
ξT (t)(ĀT

i X +XT Āi)ξ(t) + ∆f (t)T B̄T
i Xξ(t) + ξT (t)XT B̄i∆f (t)

]
, (4.49)

By using Lemma 3 we can obtain the following inequality from the framed section in equation
(4.49)

∆T
f (t)B̄T

i Xξ(t) + ξT (t)XT B̄i∆f (t) ≤ γ∆T
f (t)∆f (t) + 1

γ
ξT (t)XT B̄iB̄T

i Xξ(t), (4.50)

using the Lipschitz condition in the framed section of equation (4.50), we have

∆T
f (t)∆f (t) ≤ ξT (t)

[
0 0
0 λ2F T

L FL,

]
ξ(t), (4.51)

by inserting (4.50) and (4.51) into (4.49), we obtain

V̇ (ξ(t)) ≤
k∑

i=1
µi(ϱ(t))

[
ξT (t)

(
ĀT

i X +XT Āi + 1
γ
XT B̄iB̄T

i X + γ

[
0 0
0 λ2F T

L FL

])
ξ(t)

]
. (4.52)

Now, if the following LMI is satisfied then V̇ (ξ(t)) < 0.

ĀT
i X +XT Āi + 1

γ
XT B̄iB̄T

i X + γ

[
0 0
0 λ2F T

L FL

]
< 0, (4.53)

By using the Schur complement (Lemma 1) we obtain
ĀT

i X +XT Āi + γ

[
0 0
0 λ2F T

L FL

]
(∗)

B̄T
i X −γIn+q0+q1

 < 0. (4.54)

By replacing matrices Āi, B̄i, and X in inequality (4.54), we obtain He(AT
1iX11 − AT

2 Φ
T
i + PXT

12 + PTU1) (∗) (∗)
UT

2 P −XT
12 − U1 −U2 − UT

2 + γλ2F T
L FL 0

BT
i X11 0 −γIn+q0+q1

 < 0, (4.55)

where Φi = X11Yi.
Now, by inserting the values of matrices A1i, Bi and X11 we obtain He(ΠT

1i − AT
2 Φ

T
i + PXT

12 + PTU1) (∗) (∗)
UT

2 P −XT
12 − U1 −U2 − UT

2 + γλ2F T
L FL 0

ΠT
2i 0 −γIn+q0+q1

 < 0, (4.56)
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where Π1i and Π2i are defined in (4.39), Xz = XaZ1.
Inequality (4.56) can also be rewritten as

(BΦiC) + (BΦiC)T + Di < 0, (4.57)

where Di =

 He(ΠT
1i + PXT

12 + PTU1) (∗) (∗)
UT

2 P −XT
12 − U1 −U2 − UT

2 + γλ2F T
L FL 0

ΠT
2i 0 −γIn+q0+q1

,

B =

−I
0
0

 and C =
[
A2 0 0

]
.

According to Lemma 2, inequality (4.57) is satisfied if and only if the following inequalities verified

CT ⊥DiCT ⊥T < 0, (4.58)
B⊥DiB⊥T < 0, (4.59)

the inequalities (4.58) and (4.59) are equivalent to (4.60) and (4.61) respectively

CT ⊥

 He(ΠT
1i + PXT

12 + PTU1) (∗) (∗)
UT

2 P −XT
12 − U1 −U2 − UT

2 + γλ2F T
L FL 0

ΠT
2i 0 −γIn+q0+q1

 CT ⊥T < 0, (4.60)

[
−U2 − UT

2 + γλ2F T
L FL 0

0 −γIn+q0+q1

]
< 0. (4.61)

which complete the proof of the theorem.

Remark
The following algorithm summarizes the procedure to design a GDNPVO.

1. Select the observer order q0 and a matrix R ∈ Rq0×n such that rank(Σ) = n.

2. Compute matrices N1i, N2i, N3, T1, T2, K1, K2 and P1 defined in Section 4.2.2.

3. Solve LMIs (4.60) and (4.61) to find X, Z1 and γ > 0.

4. Propose matrices L, R and Z, such that ||L|| < 1, R > 0 and Vi > 0.

5. Considering the elimination lemma, determine the parameter matrix Yi as in equation (4.41),
which involves the unknown observer matrices.

6. Compute all the remaining matrices of the GDNPVO (4.3)-(4.5); Ni, Hi, Fi, Ji, Si, Li, Mi, P
and Q, by using (4.25) to compute Ni, (4.41) to compute Hi and Li, (4.31)-(4.34) to compute
Si, Mi, P and Q taking matrix Y3 = 0. The matrices Fi are given by (4.27) and matrix Ji

from constraint (b).

29



4.2.4 Particular cases
This section shows how the proportional observer (PO) and proportional integral-observer (PIO)
are particular cases of the generalized observer (GO), and how they can be designed directly from
our results.

Proportional observer (PO)

Considering the nonlinear algebro-differential parameter-varying system of the equation (4.1), the
PO corresponds to the following considerations in the matrices of the generalized nonlinear observer
of equations (4.3)-(4.5): Hi = 0, Si = 0, Mi = 0 and Li = 0. In this case we obtain the following
observer:

ζ̇(t) =
k∑

i=1
µi(ϱ(t))

[
Niζ(t) + Fiy(t) + TDif(t, FLx̂) + Jiu(t)

]
, (4.62)

x̂(t) = Pζ(t) +Qy(t), (4.63)

and the observer error dynamics (4.35) becomes:

ϵ̇(t) =
k∑

i=1
µi(ϱ(t))

[
(A1i − YiA2)ϵ(t) + Bi∆f(t)

]
, (4.64)

where A1i = N1i − Z1N2i, A2 = N3, Bi = (T1 − Z1T2)Di and Yi = Y1i.

With these matrices the observer design can be directly obtained following the results of Section
4.2.2 and 4.2.3.

Proportional-integral observer (PIO)

The PIO corresponds to the following considerations in the matrices of the generalized nonlinear
observer of equations (4.3)-(4.5): Li = 0, Si = CP and Mi = Q − I. Obtaining the following
observer:

ζ̇(t) =
k∑

i=1
µi(ϱ(t))

[
Niζ(t) +Hiv(t) + Fiy(t) + TDif(t, FLx̂) + Jiu(t)

]
, (4.65)

v̇(t) = Cx̂(t) − y(t), (4.66)
x̂(t) = Pζ(t) +Qy(t), (4.67)

and the observer error dynamics (4.35) becomes:

φ̇(t) =
k∑

i=1
µi(ϱ(t))

[
(A1i − YiA2)φ(t) + Bi∆f(t)

]
, (4.68)

where A1i =
[
N1i − Z1N2i 0

−CP1 0

]
, A2 =

[
N3 0
0 −I

]
, Bi =

[
(T1 − Z1T2)Di

0

]
and Yi =

[
I
0

] [
Y1i Hi

]
.

The design can be obtained directly by applying the results of section 4.2.2 and 4.2.3.
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4.3 Application to a rolling disc
A rolling disc connected to a fixed wall is a mechanical system where a disc can roll on a surface
while being attached to a wall via a rod or a spring.

In real-world engineering, the concepts of rolling motion and friction are applied in the design
of vehicles and robots. These principles are essential for understanding the movement of wheels
and ensuring the stability and efficiency of the systems. Additionally, rolling disc systems are used
in manufacturing and transportation, such as in conveyor belts and industrial machinery, to move
products efficiently and with minimal energy loss. The design of a state observer for a rolling disc
is crucial for enhancing the monitoring and diagnosis of the system through precise estimations
of internal variables, as it is often not straightforward due to the complexity and cost of sensors
required to directly measure these variables (Rizal et al., 2022).

4.3.1 Model of the Rolling disc
To show the effectiveness of the observer, the obtained results are applied to a rolling disc presented
in Sjoberg and Glad (2006). The rolling disc is presented in Figure 4.1, it is connected to a fixed
wall by a spring and a damper.

Fig. 4.1. Rolling disc connected to a fixed wall.

This system is governed by the following set of ordinary differential equations

ẋ1(t) = x2(t), (4.69)

ẋ2(t) = −k(t)
m

x1(t) − k(t)
m

x3
1(t) − b

m
x2(t) − 1

m
x4(t), (4.70)

0 = x2(t) − rx3(t), (4.71)

0 = −k(t)
m

x1(t) − k(t)
m

x3
1(t) − b

m
x2(t) +

(r2

J
+ 1
m

)
x4(t) − r

J
u(t), (4.72)
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where x1(t) is the position of the center of the disc, x2(t) is the translational velocity of this center,
x3(t) is the angular velocity of the disc, x4(t) is the contact force between the disc and the surface,
u(t) is the applied input force to the disc.

The spring has the positive stiffness k(t). The parameter b > 0 is the damping coefficient of
the shock absorber. The radius of the disc is r, its inertia is given by J and the mass of the disc
is m.
The parameters of the Rolling disc system are given in the following table (Estrada et al., 2015a).

Table 4.1. Rolling disc system parameters
Description Symbol Value

Damping coefficient b 35
Disc radius r 0.3
Inertia coefficient J 3.2kg ·m2

Mass m 40kg
Stiffness k(t) [70, 100]N/m

4.3.2 Nonlinear algebro-differential parameter-varying system formu-
lation

From (4.71) we get x2(t) = rx3(t) and replacing it in (4.69)-(4.72), we can obtain the following
descriptor model

1 0 0
0 1 0
0 0 0


︸ ︷︷ ︸

E

ẋ1(t)
ẋ3(t)
ẋ4(t)


︸ ︷︷ ︸

ẋ(t)

=


0 r 0

−ρ(t)
mr

− b

m
− 1
mr

−ρ(t)
m

−br

m

(
r2

J
+ 1
m

)


︸ ︷︷ ︸
A(ρ(t))

x1(t)
x3(t)
x4(t)


︸ ︷︷ ︸

x(t)

+


0
0

− r

J


︸ ︷︷ ︸

B

u(t) +


0

−ρ(t)
mr

−ρ(t)
m


︸ ︷︷ ︸

D(ρ(t))

x3
1(t)︸ ︷︷ ︸

f(t,FLx)

,
(4.73)

y(t) =
[
0 0 1

]
︸ ︷︷ ︸

C

x(t), (4.74)

where the stiffness ρ(t) = k(t) is the time varying parameter and the nonlinearity f(t, FLx) is
considered as a Lipschitz function. The input signal is defined as

u(t) =
{

0.1Nm 0s ≤ t ≤ 15s
0.4Nm otherwise. (4.75)

with this, the Lipschitz constant is selected as λ = 10. In fact the state x1(t) is in a bounded set
and x3

1(t) is Lipschitz as shown below.
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Determination of the Lipschitz constant

First we recall that if a function g(x, u, t) is continuous in a closed and bounded region D and if
∂g

∂x
is continuous in D, then there exist a positive constant λ such that ∥g(x1, µ, t) − g(x2, µ, t)∥ ≤

λ ∥x1 − x2∥ . Now, to calculate this constant for our model, we can put the Jacobian matrix of the
system (4.73)-(4.74) as shown below

∂f(x, u, t)
∂x(t) =



0 1 0 0

−k1

m
− 3k2x

2
1(t)

m

−b
m

0 1
m

0 1 −r 0

−k1

m
− 3k2x

2
1(t)

m
0 − b

m

r2

J
+ 1
m

 (4.76)

since in a finite space all the norms are equivalent, the norm 1 is used in (4.76) to obtain the
maximum column value, resulting in

∥∥∥∥∥∂f(x, u, t)
∂x(t)

∥∥∥∥∥
1

≤ max

{∣∣∣∣∣−k1

m

∣∣∣∣∣+
∣∣∣∣∣−3k2x

2
1(t)

m

∣∣∣∣∣+
∣∣∣∣∣−k1

m

∣∣∣∣∣+
∣∣∣∣∣−3k2x

2
1(t)

m

∣∣∣∣∣ , |1| +∣∣∣∣∣− b

m

∣∣∣∣∣+ |1| , |−r| +
∣∣∣∣∣− b

m

∣∣∣∣∣ ,
∣∣∣∣ 1
m

∣∣∣∣+
∣∣∣∣∣r2

J
+ 1
m

∣∣∣∣∣
} (4.77)

substituting the parameters values of the Table 4.1 in the equation (4.77) we obtain

∥∥∥∥∥∂f(x, u, t)
∂x(t)

∥∥∥∥∥
1

≤ max
{
5 + 15x2

1(t), 2.75, 1.15, 0.1
}

(4.78)

Therefore any constant greater than the maximum value of the equation (4.78) can be selected as
the Lipschitz constant λ for this particular example.
In practical case, by considering the value of r given in Table 4.1 and the fact that the maximum
length of the considered spring is d = 0.25m, the maximum value of x1 is : max(x1) = r + d =
0.55m.
The maximum value of (4.78) is then obtained as :∥∥∥∥∥∂f(x, u, t)

∂x(t)

∥∥∥∥∥
1

≤ max
{
5 + 15x2

1(t), 2.75, 1.15, 0.1
}

= 9.5375 ≤ λ (4.79)

which justify the choice of λ = 10.

4.3.3 Simulation results
First we can see Assumption 1 is satisfied, then we can apply the algorithm of section (4.2.3) as
follows
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1. By fixing q0 = 3, we can choose matrix R =

1 1 0
1 1 0
0 1 0

× 103, such that rank(Σ) = 3.

2. We obtain the following matrices N11 =

−2.92 −2.29 5.26
−2.92 −2.92 5.26
−2.92 −2.92 4.96

,

T1 =

1000 1000 0
1000 1000 0

0 1000 0

, N12 =

−4.17 −4.17 7.76
−4.17 −4.17 7.76
−4.17 −4.17 7.46

,

T2 =


0 0 0
0 0 0
0 0 1
0 0 0

, N21 =


0 0 0
0 0 0

−0.0009 −0.0009 0.0015
0 0 0

,

N22 =


0 0 0
0 0 0

−0.0013 −0.0013 0.0022
0 0 0

, K1 =

0
0
0

, K2 =


0
0
0
0

,

N3 =


0.50 −0.50 0

−0.50 0.50 0
0 0 0
0 0 0

, P1 =

0.5 0.5 −1
0 0 1
0 0 0

 ×10−3.

3. By using the YALMIP toolbox [Lofberg (2004)] we solve LMIs (4.60) and (4.61) to obtain

X =



0.0014 −0.0014 −0.0005 0.0014 −0.0014 −0.0005 0 0 0
−0.0014 0.0014 0.0005 −0.0014 0.0014 0.0005 0 0 0
−0.0005 0.0005 0.0014 −0.0005 0.0005 0.0014 0 0 0
0.0014 −0.0014 −0.0005 2.3369 −0.0157 −0.0004 0 0 0

−0.0014 0.0014 0.0005 −0.0157 2.3369 0.0004 0 0 0
0.0116 −0.0155 0.0040 0 0 0 3.9898 0 0

0 0 −0.0040 0 0 0 0 4 0
0 0 0 0 0 0 0 0 4


× 108,

Z1 =

0 0 −1.4987 0
0 0 −1.5021 0
0 0 0.0345 0

× 105, and γ = 5.8599 × 10−5

4. Considering R = I8 × 996.3 and L = ones8,4 × 0.01 satisfying the following conditions
||L|| < 1, and R > 0 such that Vi > 0.

5. Taking matrix Z = 0 we obtain matrix Yi as in equation (4.41).
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Y1 =



1.0068 −1.0068 0 0 −1.0067 1.0067 0
1.0068 −1.0068 0 0 −1.0067 1.0067 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


× 104,

Y2 =



1.1321 −1.1321 0 0 −1.1320 1.1320 0
1.1321 −1.1321 0 0 −1.1320 1.1320 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


× 104

6. We deduce all the matrices of the GDNPVO and we obtain

N1 =

−1.0202 0.9934 0.0228
−1.0202 0.9933 0.0229

0 0 0

× 104, J =

−1.4051
−1.4082
0.0324

× 104,

N2 =

−1.1512 1.1129 0.0343
−1.1513 1.1129 0.0344

0 0 0

× 104, P =

0.5 0.5 −1
0 0 1
0 0 0

 ×10−3,

H1 =

−1.0067 −1.0067 0
−1.0067 −1.0067 0

0 0 0

× 104, H2 =

−1.1320 1.1320 0
−1.1320 1.1320 0

0 0 0

× 104,

S1 =

−1.0068 1.0068 0
−1.0068 1.0068 0

0 0 0

× 104, S2 =

−1.1321 1.1321 0
−1.1321 1.1321 0

0 0 0

× 104,

F1 = F2 =

 7.8787
7.8787

−0.2668

× 103, L1 =

0.4262 −0.4266 0
0.4265 −0.4269 0
0.0231 −0.0231 −0.0007

× 10−8,

L2 =

 0.4799 −0.4799 0
0.4796 −0.4796 0

−0.0938 0.0938 −0.0007

× 10−8, M1 = M2 =

0
0
0

 and Q =

0
0
1

 .
The input was considered as shown in (4.75). The initial condition for the nonlinear system (4.73)
- (4.74) are x(0) = [0.1, 0.75, 8.6353]T , and for the observer (4.3) - (4.5) the initial conditions are
x̂(0) = [2.1, 15.75, 735]T .

The performance of the proposed observer is shown in in Figures 4.2-4.4. To evaluate the observers
robustness, parametric uncertainties were considered in the system during all the simulation with
amplitude of ∆b = 6 × 10−3 and ∆J = 1 × 10−5, so that in simulation we have b̄ = b − ∆b and
J̄ = J − ∆J . Figures 4.2-4.3 show the estimation of the system states and Figure 4.4 the algebraic
system state.
In order to compare the observer performances, the integral of absolute error (IAE) is calculated
in Table 4.2. It can be concluded that the GDO has a good state estimation despite parameter
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Fig. 4.2. Comparison of state estimate x1(t).

Fig. 4.3. Comparison of state estimate x3(t).

uncertainties compared with the PO and PIO, obtaining the minimum valued on the estimation
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Fig. 4.4. Comparison of state estimate x4(t).

Table 4.2. Observer performance index

States GDO
IAE

PIO
IAE

PO
IAE

x̂1(t) − x1(t) 41.38 70.89 79.91
x̂3(t) − x3(t) 37.85 249.46 431.62
x̂4(t) − x4(t) 22.03 22.03 22.03

errors. The definition of performance analysis can be found in the appendix A.
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4.3.4 Conclusions
In this chapter a GDO for descriptor nonlinear parameter varying systems is synthesized to per-
form state estimation. The stability conditions is presented through the solution of LMIs. De-
pending on the design specifications, the GDNPVO can be configured as a simple proportional or
a proportional-integral observer by suitably computing the observer gains. A rolling disc model
form was considered to demonstrate the performance of the designed observer. It has been demon-
strated that the GDNPVO improves robustness in estimation performance against parametric
uncertainties.
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Chapter 5

Generalized dynamic unknown inputs
observers for S-NLPV systems

5.1 Introduction
This chapter presents the simultaneous unknown inputs and state estimation problem for nonlin-
ear algebro-differential parameter-varying systems (DAE-NLPV). This structure is general, and
the PO and PIO designs can be considered as particular cases. The performance of the proposed
methodology is evaluated in the model of a heat exchanger with two countercurrent cells with
actuator faults.

In Section 5.3, the design of a generalized learning observer structure for simultaneous es-
timation of variable states and actuator faults for the same class of systems, where a general
parameterization is shown. This generalized structure provides additional degrees of freedom in
the observer design to improve robustness and reduce the convergence time for fault estimation.
The design is obtained in terms of a set of linear matrix inequalities evaluated in the model of a
heat exchanger.

5.2 Generalized dynamic unknown inputs observers design
for S-NLPV systems

5.2.1 Preliminaries
Consider the following nonlinear algebro-differential parameter-varying system in its polytopic
form.

Eẋ(t) =
k∑

i=1
µi(ϱ(t))

[
Aix(t) +Biu(t) +Dif(t, FLx)

]
+Gfa(t),

y(t) = Cx(t),
(5.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the known input and y(t) ∈ Rp is the measurement
output vector and fa(t) ∈ Rnfa is the unknown input vector. Matrix E ∈ Rn×n could be singular.
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Ai ∈ Rn×n, Bi ∈ Rn×m, C ∈ Rp×n, Di ∈ Rn×nf and G ∈ Rn×nfa , are real matrices and f(t, FLx) is
a nonlinearity satisfying the Lipschitz constraint ||∆f || ≤ λ||FL(x1 −x2)|| where ∆f = f(t, FLx1)−
f(t, FLx2), λ is a known Lipschitz constant and FL is real matrix of appropriate dimension.
Let rank(E) = r < n and E⊥ ∈ Rs×n be a full row matrix such that E⊥E = 0, in this case
s = n− r.
Let µi(ϱ(t)) be membership functions formed with known variant parameters ϱ(t) ∈ Rl. The
membership functions have the following properties:

k∑
i=1

µi(ϱ(t)) = 1, µi(ϱ(t)) ≥ 0, (5.2)

∀i = 1 . . . , k and k = 2l.
The following definitions and theorem will be used in the sequel of the paper.

Assumption 3. It is assumed that the system described by equation (5.1) is regular (Definition
1), Impulse observable (Definition 2) and Reachable observable (Definition 4).

Assumption 4. It is assumed that rank(CG) = rank(G).
This Assumption implies that p ≥ nfa the number of measurable outputs must be greater than or
equal to the number of faults (Edwards and Tan, 2006).

Assumption 5. The fault vector is assumed to be constant, i.e. ḟa(t) = 0.

5.2.2 Problem Statement
Let us consider the following generalized nonlinear observer for system (5.1)

ζ̇(t) =
k∑

i=1
µi(ϱ(t))

[
Ni(ζ(t) + TGf̂a(t)) +Hiv(t) + Fiy(t) + Jiu(t)+

TDif(t, FLx̂) + TGf̂a(t)
]
, (5.3)

v̇(t) =
k∑

i=1
µi(ϱ(t))

[
Si(ζ(t) + TGf̂a(t)) + Liv(t) +Miy(t)

]
, (5.4)

x̂(t) = P (ζ(t) + TGf̂a(t)) +Qy(t), (5.5)
˙̂
fa(t) = Φfa(Cx̂(t) − y(t)), (5.6)

where ζ(t) ∈ Rq0 represents the state vector of the observer, v(t) ∈ Rq1 is an auxiliary vector,
x̂(t) ∈ Rn is the estimate of x(t) and f̂a(t) ∈ Rnfa is the estimate of fa(t). The matrices Ni ∈ Rq0×q0 ,
Hi ∈ Rq0×q1 , Fi ∈ Rq0×p, Si ∈ Rq1×q0 , Li ∈ Rq1×q1 , Mi ∈ Rq1×p, Ji ∈ Rq0×m, P ∈ Rn×q0 , Q ∈ Rn×p,
and T ∈ Rq0×n are unknown matrices of appropriate dimensions, which must be determined such
that x̂(t) converges asymptotically to x(t) and f̂a(t) converge to fa(t).
Let a matrix parameter T to define the following transformed error

ϵ(t) = ζ(t) − TEx(t) + TGfa(t), (5.7)
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its derivative is given by

ϵ̇(t) = ζ̇(t) − TEẋ(t)

ϵ̇(t) =
k∑

i=1
µi(ϱ(t))

[
Ni((ϵ(t) + TEx(t) − TGfa(t)) + TGf̂a(t)) +Hiv(t) + FiCx(t)+

Ju(t) + TDif(t, FLx̂) + TGf̂a(t) − [T (Aix(t) +Biu(t) +Dif(t, FLx(t)) +Gfa(t))]
]

ϵ̇(t) =
k∑

i=1
µi(ϱ(t))

[
Niϵ(t) +Hiv(t) + (NiTE − TAi + FiC)x(t)+

(Ji − TBi)u(t) + (NiTG+ TG)ef (t) + TDi∆f (t)
]

(5.8)

where ef (t) = f̂a(t)−fa(t) and ∆f (t) = f(t, FLx̂)−f(t, FLx). Equation (5.8) is linearly independent
of x(t) and u(t), if the following equations are satisfied:

(a) NiTE + FiC − TAi = 0, (5.9)
(b) Ji = TBi. (5.10)

Then equation (5.8) becomes:

ϵ̇(t) =
k∑

i=1
µi(ϱ(t))

[
Niϵ(t) +Hiv(t) + (NiTG+ TG)ef (t) + TDi∆f (t)

]
. (5.11)

By using equation (5.7), equations (5.4) and (5.5) can be written as

v̇(t) =
k∑

i=1
µi(ϱ(t))

[
Siϵ(t) + Liv(t) + (SiTE +MiC)x(t) + SiTGef (t)

]
, (5.12)

x̂(t) = Pϵ(t) + (PTE +QC)x(t) + PTGef (t), (5.13)

Now, if the following conditions are satisfied

(c) SiTE +MiC = 0, (5.14)
(d) PTE +QC = In, (5.15)

Convergence is ensured if the aforementioned restrictions (a) - (d) are satisfied. However, if
these restrictions are not met, the convergence of the observer cannot be guaranteed.

then equation (5.12) becomes

v̇(t) =
k∑

i=1
µi(ϱ(t)

[
Siϵ(t) + Liv(t) + SiTGef (t)

]
, (5.16)

and the state estimation error becomes

x̂(t) − x(t) = e(t) = Pϵ(t) + PTGef (t). (5.17)
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If conditions (a)–(d) are satisfied, the following observer error dynamics equation is obtained from
(5.11) and (5.16)

φ̇(t) =
k∑

i=1
µi(ϱ(t))

[
Aiφ(t) + Bief (t) + Ci∆f (t)

]
, (5.18)

where φ(t) =
[
ϵ(t)
v(t)

]
, Ai =

[
Ni Hi

Si Li

]
, Bi =

[
NiTG+ TG

SiTG

]
and Ci =

[
TDi

0

]
.

To study the stability of system (5.18) when ef (t) = 0 and ∆f (t) = 0, let us consider
V (t) = φ(t)TXφ(t) with X = XT > 0 be a Lyapunov function candidate. Then we have

V̇ (t) = φ̇T (t)Xφ(t) + φT (t)Xφ̇(t) = φT (t)[ATX +XA]φ(t) (5.19)

with A =
k∑

i=1
µi(ϱ(t))Ai.

In this case V̇ (t) < 0 if ATX +XA < 0 which equivalent to
k∑

i=1
µi(ϱ(t))[AT

i X +XAi] < 0 (5.20)

since µi(ϱ(t)) ≥ 0 and
k∑

i=1
= 1, the stability condition reduces to the one of matrices

[
Ni Hi

Si Li

]
.

5.2.3 Observer design
This section will be devoted to the parameterization of all the matrices of the observer and then
the observer design will be formulated as a set of LMIs. Considering a similar parameterization as
in Section 4.2.2, it is possible to obtain the values of the unknown matrices of the observer.

Substituting the previous parameterization into the observer error dynamics (5.18), a bilinearity
in the product of matrices NTG becomes evident. To address this bilinearity, a modification is
made to the parameterization.

Let T̄2 = T2G and Z1 = Z(In+ny −T̄2T̄
+
2 ), where Z is an arbitrary matrix of appropriate dimension,

so that, the product of matrices NiTG becomes

NiTG = N1iT1G− ZN2iT1G− Y1iN3T1G,

where the fact of T̄2T̄
+
2 T̄2 = T̄2 is considered. Matrices N1i, N3, T1 are previously defined in Section

4.2.2, and matrix N2i is defined in (5.23).
In the same way, the following expressions are obtained for matrices T , K, Ni and Fi

T = T1 − ZT2, (5.21)
K = K1 − ZK2, (5.22)
Ni = N1i − ZN2i − Y1iN3, (5.23)
Fi = F1i − ZF2i − Y1iF3, (5.24)
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where T2 = (In+ny − T̄2T̄
+
2 )T2, K2 = (In+ny − T̄2T̄2)K2, N2i = (In+ny − T̄2T̄

+
2 )N2i, F2i = (In+ny −

T̄2T̄
+
2 )F2i and matrices T1, T2, K1, K2, N1i, N2i, N3, F1i, F2i and F3 are defined in Section 4.2.2.

Now, by using the value of matrices Ni, Si and T given by (5.23), (4.31), (5.21), the observer error
dynamics (5.18) can be written as

φ̇(t) =
k∑

i=1
µi(ϱ(t))

[
(A1i − YiA2)φ(t) + (F1i − YiF2)ef (t) + Ci∆f (t)

]
, (5.25)

where A1i =
[
N1i − ZN2i 0

0 0

]
, A2 =

[
N3 0
0 −Iq1

]
, F1i =

[
N1iT1G+ T1G− ZN2iT1G

0

]
,

F2 =
[
N3T1G

0

]
, Ci =

[
T1Di − ZT2Di

0

]
and Yi =

[
Y1i Hi

Y2i Li,

]
, and from (5.77) we have

e(t) = Pφ(t) + Hef (t), (5.26)

where P =
[
P1 0

]
and H = P1T1G. Without loss of generality, Y3i = 0 is taken for simplicity.

Considering Assumption 5 and equation (5.6), ef (t) can be rewritten as

ėf (t) = ˙̂
fa(t)

= Dφ(t) + Gef (t) (5.27)

where D =
[
ΦfaCP1 0

]
and G = ΦfaCP1T1G.

Finally, we can consider ėf (t) on the dynamic error equation. Equation (5.25) can be rewritten as

ξ̇(t) =
k∑

i=1
µi(ϱ(t))

[
Āiξ(t) + C̄i∆f (t)

]
, (5.28)

where ξ(t) =
[
φ(t)
ef (t)

]
, Āi =

[
A1i − YiA2 F1i − YiF2

D G

]
and C̄i =

[
Ci

0

]
.

The problem of the observer design is reduced to determine matrices Z and Yi such that system
(5.28) is asymptotically stable.

5.2.4 Stability analysis of the observer
This section is devoted to the stability analysis of equation (5.28). The following theorem gives
the condition for the stability in a set of LMIs.

Theorem 2. Consider the system given by (5.3) - (5.6) as a generalized observer for system (5.1)
for state estimation if Assumption 3 is fulfilled. The observer (5.3) - (5.6) is asymptotically stable

if there exists matrices Z, Yi and a matrix X =
[
X1 0
0 X2

]
with X1 =

[
X11 X11
X11 X12

]
> 0 such that

the following LMIs are satisfied.

CT ⊥

 Π1i + ΠT
1i + γλ2PTF T

L FLP (∗) (∗)
ΠT

2i +X2DT + γλ2HTF T
L FLP GTX2 +X2G + γλ2HTF T

L FLH 0
ΠT

3i 0 −γInf

 CT ⊥T < 0,(5.29)

44



[
GTX2 +X2G + γλ2HTF T

L FLH 0
0 −γInf

]
< 0, (5.30)

where the symbol (∗) denotes the transpose elements on the symmetric positions,

CT ⊥ =

A
T ⊥
2 0 0
0 FT ⊥

2 0
0 0 I

 ,Π1i =
[
X11N1i −XzN2i 0
X11N1i −XzN2i 0

]
, (5.31)

Π2i =
[
X11N1iT1G+X11T1G−XzN2iT1G
X11N1iT1G+X11T1G−XzN2iT1G

]
,Π3 =

[
X11T1D −XzT2D
X11T1D −XzT2D

]
, (5.32)

in this case matrix Z = X−1
11 Xz and parameter matrix ΦT

i is obtained as follows

ΦT
i = Br

+KiCl
+ + Z − Br

+BrZClCl
+, (5.33)

where
Yi = (ΦiX

−1
1 )T , (5.34)

Ki = −R−1Bl
T ViCr

T (CrViCr
T )−1 + S

1
2
i L(CrViCr

T )− 1
2 , (5.35)

Si = R−1 − R−1BT
l [Vi − ViCT

r (CrViCr
T )−1CrVi]BlR−1, (5.36)

Vi = (BrR−1Bl
T − Di)−1 > 0, (5.37)

where matrices Z, L, R are arbitrary matrices such that ||L|| < 1 and R > 0, with

Di =

 Π1i + ΠT
1i + γλ2PT F T

L FLP (∗) (∗)
ΠT

2i + X2DT + γλ2HT F T
L FLP GT X2 + X2G + γλ2HT F T

L FLH 0
ΠT

3i 0 −γInf

 ,

B =

−I
0
0

 and C =
[
A2 F2 0

]
, such that there exist matrices Bl, Br, Cl and Cr, are such that

B = BlBr and C = ClCr, respectively.

Proof. By considering the following Lyapunov function (Wu et al., 2013)

V (ξ(t)) = ξ(t)TXξ(t), (5.38)

such that
X =

[
X1 0
0 X2

]
, (5.39)

with X1 = XT
1 =

[
X11 X11
X11 X12

]
> 0.

The derivative of (5.38) along the trajectory of (5.28) gives

V̇ (ξ(t)) =
k∑

i=1
µi(ϱ(t))

[
ξT (t)(ĀT

i X +XT Āi)ξ(t) + ξT (t)XT C̄i∆f (t) + ∆T
f (t)C̄T

i Xξ(t)
]
, (5.40)
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By using Lemma 3 we can obtain the following inequality

∆T
f (t)C̄T

i Xξ(t) + ξT (t)XT C̄i∆f (t) ≤ γ∆T
f (t)∆f (t) + 1

γ
ξT (t)XT C̄iC̄T

i Xξ(t), (5.41)

and from the Lipschitz condition, we have

∆T
f ∆f ≤ λ2ξT (t)

[
PTF T

L FLP PTF T
L FLH

HTF T
L FLP HTF T

L FLH,

]
ξ(t), (5.42)

by inserting (5.41) and (5.42) into (5.40), we obtain

V̇ (ξ(t)) ≤
k∑

i=1
µi(ϱ(t))

[
ξT (t)

(
ĀT

i X +XT Āi + 1
γ
XT C̄iC̄T

i X + γλ2
[
PTF T

L FLP PTF T
L FLH

HTF T
L FLP HTF T

L FLH,

])
ξ(t)

]
.

Now, if the following LMI is satisfied then V̇ (ξ(t)) < 0

ĀT
i X +XT Āi + 1

γ
XT C̄iC̄T

i X + γλ2
[
PTF T

L FLP PTF T
L FLH

HTF T
L FLP HTF T

L FLH,

]
< 0, (5.43)

by using the Schur complement we obtainĀT
i X +XT Āi + γλ2

[
PTF T

L FLP PTF T
L FLH

HTF T
L FLP HTF T

L FLH,

]
(∗)

C̄T
i X −γInf

 < 0. (5.44)

By replacing matrices Āi, C̄i from (5.25), and X from (5.39) in inequality (5.44), we obtain Π1i + ΠT
1i − AT

2 Φi − ΦT
i A2 + γλ2PTF T

L FLP (∗) (∗)
ΠT

2i +X2DT − FT
2 Φi + γλ2HTF T

L FLP GTX2 +X2G + γλ2HTF T
L FLH 0

CT
i X1 0 −γInf

 < 0,

(5.45)
where Φi = YT

i X1.
Now, by inserting the values of matrices A1i and X11 we obtain Π1i + ΠT

1i − AT
2 Φi − ΦT

i A2 + γλ2PTF T
L FLP (∗) (∗)

ΠT
2i +X2DT − FT

2 Φi + γλ2HTF T
L FLP GTX2 +X2G + γλ2HTF T

L FLH 0
ΠT

3i 0 −γInf

 < 0,

(5.46)
where Π1i, Π2i and Π3i are defined in (5.32), and Xz = X11Z.
Inequality (5.46) can also be rewritten as

(BΦT
i C) + (BΦT

i C)T + Di < 0, (5.47)

where

Di =

 Π1i + ΠT
1i + γλ2PTF T

L FLP (∗) (∗)
ΠT

2i +X2DT + γλ2HTF T
L FLP GTX2 +X2G + γλ2HTF T

L FLH 0
ΠT

3i 0 −γInf

 ,
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B =

−I
0
0

 and C =
[
A2 F2 0

]
.

According to Lemma 2, inequality (5.47) is satisfied if and only if the following inequalities are
verified

CT ⊥DiCT ⊥T < 0, (5.48)
B⊥DiB⊥T < 0, (5.49)

the inequalities (5.48) and (5.49) are equivalent to (5.29) and (5.30) respectively

CT ⊥

 Π1i + ΠT
1i + γλ2PTF T

L FLP (∗) (∗)
ΠT

2i +X2DT + γλ2HTF T
L FLP GTX2 +X2G + γλ2HTF T

L FLH 0
ΠT

3i 0 −γInf

 CT ⊥T < 0,(5.50)

[
GTX2 +X2G + γλ2HTF T

L FLH 0
0 −γInf

]
< 0. (5.51)

Then by using the results of Lemma 2 we obtain the solution of Yi by using (5.33)-(5.37) which
complete the proof.

The following algorithm summarizes the generalized nonlinear observer design procedure.

1. Select the observer order q0 and define matrix R ∈ Rq0×n such that rank(Σ) = n.

2. Compute matrices N1i, N2i, N3, T1, T2, K1, K2 and P1 defined in Section 5.2.3.

3. Solve LMIs (5.29) and (5.30) to find X, Z and γ > 0.

4. Find matrices L, R and Z, such that ||L|| < 1, R > 0 and Vi > 0.

5. Considering the elimination lemma, determine the parameter matrix determine the param-
eter matrix Yi as in equation (5.34) which involves the unknown observer matrices.

6. Compute all the matrices of the generalized nonlinear observer (5.3)-(5.5); Ni, Hi, Fi, Ji, Si,
Li, Mi, P and Q, by using (5.23) to compute Ni, (5.34) to compute Hi and Li, (4.31)-(4.34)
to compute Si, Mi, P and Q taking matrix Y3i = 0. The matrices Fi are given by (5.24) and
matrix Ji from (5.10).
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5.2.5 Application to heat exchanger

A heat exchanger with two countercurrent cells is a specific type of heat exchanger that features
two countercurrent cells. In this device, two streams of fluid (typically, a hot fluid and a cold fluid)
flow in opposite directions within the heat exchanger.

The countercurrent configuration is common in heat exchangers because it maximizes heat
transfer efficiency. In this design, the temperature difference between the two fluids is maintained
high across the entire heat exchanger, resulting in enhanced heat transfer. Additionally, at the
end of each countercurrent cell, the temperature of the hot fluid is lowest and that of the cold
fluid is highest, further maximizing thermal efficiency. The presence of two countercurrent cells
in the heat exchanger provides a larger heat transfer area and thus greater heat transfer capacity
compared to single-cell heat exchangers. This enables more efficient heat exchange and greater
flexibility in the application of the heat exchanger in various industrial processes, air conditioning
systems, refrigeration, and other applications where heat transfer is required.

An observer is needed to estimate faults and states in a heat exchanger due to the difficulty
of directly measuring certain critical variables, such as temperature and fluid flow, as well as the
presence of potential faults or deterioration in the system. The observer can use mathematical
models and input data to accurately estimate the current state of the heat exchanger and de-
tect possible faults or anomalies before they significantly affect its performance. This allows for
continuous monitoring and preventive action to maintain the efficiency and reliability of the heat
exchanger (Thulukkanam, 2000).

Model of the heat exchanger with two countercurrent cells

To show the effectiveness of the observer, we apply our results to a heat exchanger with two
countercurrent cells (Figure 5.1) (Dobos et al., 2009).

Fig. 5.1. Schematic representation of the double-pipe heat exchanger.
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The equations that represent the energy balance are given in (5.52)

dT1,c

dt
=2vc

Vc

(T2,c − T1,c) + UA

ρcCρcVc

∆T1

dT1,h

dt
=2vh

Vh

(T0,h − T1,h) − UA

ρhCρhVh

∆T1

dT2,c

dt
=2vc

Vc

(T3,c − T2,c) + UA

ρcCρcVc

∆T2

dT2,h

dt
=2vh

Vh

(T1,h − T2,h) − UA

ρhCρhVh

∆T2

(5.52)

where ∆T1 and ∆T2 are defined as follows

∆T1 =(T1,h − T2,c) − (T0,h − T1,c)

ln

(
(T1,h − T2,c)
(T0,h − T1,c)

)

∆T2 =[T2,h − T3,c] − [T1,h − T2,c]

ln

[
[T2,h − T3,c]
[T1,h − T2,c]

] (5.53)

The rate of heat flow across the solid-fluid interface is Q = UA∆T1 and Q2 = UA∆T2.

Vc is the volume in external side (134.99 × 10−6m3), Vh is the Volume in the inner side
(15.512 × 10−6m3), vc is the Flow tn the cold stream (6.399 × 10−6cm3/min), vh is the Flow in the
hot stream (1.94 × 10−5cm3/min), Cρc is the Specific heat of cold water (4181.5 J/Kg°C), Cρh is
the Specific heat of hot water (4196.5 J/Kg°C), ρc is the Density of cold water (996.781Kg/m3), ρh

is the Density of hot water (971.150Kg/m3), A is the Heat transfer surface area (0.015387511m2)
and U is the Global heat transfer coefficient (1400W/m2).

T3,c(t) and T0,h(t) are the inlet temperatures in the cold and hot streams respectively. T1,c(t)
and T2,h(t) are the outlet temperatures in the cold and hot streams, respectively.

Nonlinear algebro-differential parameter-varying system formulation

Considering the model presented in Equation (5.52), the following nonlinear state space represen-
tation is obtained:
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

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

E



Ṫ1,c(t)
Ṫ1,h(t)
Ṫ2,c(t)
Ṫ2,h(t)
Q̇(t)
Q̇2(t)


︸ ︷︷ ︸

ẋ(t)

=



−2vc

Vc

0 2vc

Vc

0 1
CρcρcVc

0

0 −2vh(t)
Vh

0 0 − 1
CρcρcVc

0

0 0 −2vc

Vc

0 0 1
CρcρcVc

0 2vh(t)
Vh

0 −2vh(t)
Vh

0 − 1
CρcρcVc

0 0 0 0 − 1
UA

0

0 0 0 0 0 − 1
UA


︸ ︷︷ ︸

A(ρ(t))



T1,c(t)
T1,h(t)
T2,c(t)
T2,h(t)
Q(t)
Q2(t)


︸ ︷︷ ︸

x(t)

+



0 0
2vh

Vh

0

0 2vc

Vc

0 0
0 0
0 0


︸ ︷︷ ︸

B

[
T0,h

T3,c

]
︸ ︷︷ ︸

u(t)

+



0
0

2vc

Vc

0
0
0


︸ ︷︷ ︸

G

fa(t) +



0 0
0 0
0 0
0 0
1 0
0 1


︸ ︷︷ ︸

D

[
∆T1
∆T2

]
︸ ︷︷ ︸
f(t,FLx)

, (5.54)

y(t) =

0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


︸ ︷︷ ︸

C

x(t), (5.55)

where the flow the cold stream ρ(t) = vh(t) is considered as the time varying parameter, and the
nonlinearity f(t, FLx) is considered as a Lipschitz function. The input signal is considered constant
u(t) =

[
T0,h T3,c

]
=
[
77.9◦C 21.2◦C

]
.

The fault signal is defined as

f(t) =
{

8◦C 80s ≤ t ≤ 120s
0◦C otherwise. (5.56)

with this, the Lipschitz constant is selected as λ = 100. In fact the states Q(t) and Q2(t) are in a
bounded set and ∆T1, ∆T2 are Lipschitz functions, as shown below.

Determination of the Lipschitz constant

First we recall that if a function f(x, u, t) is continuous in a closed and bounded region D and if
∂f(x, u, t)

∂x
is continuous inD, then there exist a positive constant λ such that ∥f(x1, u, t) − f(x2, u, t)∥ ≤

λ ∥x1 − x2∥ . Now, to calculate this constant for our model, we can put the Jacobian matrix of the
system (5.54)-(5.55) as shown below
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∂f(x, u, t)
∂x(t)

=



−
2vc

Vc
+ UA

∂∆T1

∂T1,c

UA
∂∆T1

∂T1,h

2vc

Vc
+ UA

∂∆T1

∂T2,c

0
1

CρcρcVc
0

UA
∂∆T1

∂T1,c

−
2vh(t)

Vh

+ UA
∂∆T1

∂T1,h

UA
∂∆T1

∂T2,c

0 −
1

CρhρhVh

0

0 UA
∂∆T2

∂T1,h

−
2vc

Vc
+ UA

∂∆T2

∂T2,c

UA
∂∆T2

∂T2,h

0
1

CρcρcVc

0
2vh(t)

Vh

+ UA
∂∆T2

∂T1,h

UA
∂∆T2

∂T2,c

−
2vh(t)

Vh

+ UA
∂∆T2

∂T2,h

0 −
1

CρhρhVh

0 0 0 0 −
1

UA
0

0 0 0 0 0 −
1

UA


(5.57)

since in a finite space all the norms are equivalent, the norm 1 is used in (5.57) to obtain the
maximum column value, resulting in∥∥∥∥∥∂f(x, u, t)

∂x(t)

∥∥∥∥∥
1

≤ max

{∣∣∣∣∣−2vc

Vc

+ UA
∂∆T1

∂T1,c

∣∣∣∣∣+
∣∣∣∣∣UA∂∆T1

∂T1,c

∣∣∣∣∣ ,
∣∣∣∣∣UA∂∆T1

∂T1,h

∣∣∣∣∣+∣∣∣∣∣−2vh(t)
Vh

+ UA
∂∆T1

∂T1,h

∣∣∣∣∣+
∣∣∣∣∣UA∂∆T2

∂T1,h

∣∣∣∣∣+
∣∣∣∣∣2vh(t)
Vh

+ UA
∂∆T2

∂T1,h

∣∣∣∣∣ ,∣∣∣∣∣2vc

Vc

+ UA
∂∆T1

∂T2,c

∣∣∣∣∣+
∣∣∣∣∣UA∂∆T1

∂T2,c

∣∣∣∣∣+
∣∣∣∣∣−2vc

Vc

+ UA
∂∆T2

∂T2,c

∣∣∣∣∣+∣∣∣∣∣UA∂∆T2

∂T2,c

∣∣∣∣∣ ,
∣∣∣∣∣UA∂∆T2

∂T2,h

∣∣∣∣∣+
∣∣∣∣∣−2vh(t)

Vh

+ UA
∂∆T2

∂T2,h

∣∣∣∣∣ ,∣∣∣∣∣ 1
CρcρcVc

∣∣∣∣∣+
∣∣∣∣∣− 1
CρhρhVh

∣∣∣∣∣+
∣∣∣∣− 1
UA

∣∣∣∣ ,∣∣∣∣∣ 1
CρcρcVc

∣∣∣∣∣+
∣∣∣∣∣− 1
CρhρhVh

∣∣∣∣∣+
∣∣∣∣− 1
UA

∣∣∣∣
}

(5.58)

substituting the parameters values of the heat model of Section 5.2.5 in the equation (5.58) we
obtain ∥∥∥∥∥∂f(x, u, t)

∂x(t)

∥∥∥∥∥
1

≤ max {22.81, 46.13, 41.33, 14.76, 0.064, 0.064} (5.59)

Therefore any constant greater than the maximum value of the equation (5.59) can be selected as
the Lipschitz constant λ for this particular example.
The maximum value of (5.59) is then obtained as :∥∥∥∥∥∂f(x, u, t)

∂x(t)

∥∥∥∥∥
1

≤ max {22.81, 46.13, 41.33, 14.76, 0.064, 0.064} = 46.13 ≤ λ (5.60)

which justify the choice of λ = 100.

5.2.6 Simulation results
First we can see that Assumptions 3, 4 and 5 are satisfied, then we can apply the algorithm of
Section 5.2.4 as follows
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1. By fixing q0 = 6, we can choose matrix R =



0 1 0 0 0 1
0 1 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 1 1
1 0 0 0 0 1


× 103, such that

rank(Σ) = rank

[
R
C

]
= 6.

2. We obtain the following matrices N11 =



−2.36 −2.37 0 0 2.36 0
−2.36 −2.37 0 0 2.36 0
2.37 2.39 −2.37 0 −2.39 0

0 0 0 −0.05 0 0
−2.36 −2.37 0 0 2.36 0

0 −0.09 0 0.09 0.10 −0.09


,

N12 =



−2.49 −2.50 0 0 2.49 0
−2.49 −2.50 0 0 2.49 0
2.50 2.52 −2.50 0 −2.52 0

0 0 0 −0.05 0 0
−2.49 −2.50 0 0 2.49 0

0 −0.09 0 0.09 0.10 −0.09


, T1 =



0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0.5 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0


× 103,

T2 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.50 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −0.50 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, K1 =



0 0 1
0 1 0
0 0 0

0.5 0 0
0 1 1
0 0 1


× 103, K2 =



0 0 0
0 0 0

−0.5 0 0
0 0 0
0 0 0
0 0 0

0.5 0 0
0 0 0
0 0 0


,

P1 =



0 1 0 0 −1 1
1 1 0 0 −1 0
0 0 0 1 0 0
0 0 1 0 0 0

−1 0 0 0 1 0
0 −1 0 0 1 0


×10−3, N21 = N22 =



0 0 0 0 0 0
0 0 0 0 0 0
0 −0.089 0 −0.47 0.0089 0
0 0 0 0 0 0

−0.4642 0 0 0 0.4642 0
0 −0.4642 0 0 0.4642 0
0 0.0089 0 0.4740 −0.0089 0
0 0 0 0 0 0
0 0 0 0 0 0


×10−4,
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N3 =



0.0010 0 0 0 −0.0010 0
0 0.0010 0 0 −0.0010 0
0 0 0 0 0 0
0 0 0 0.0010 0 0

−0.0010 −0.0010 0 0 0.0020 0
0 0 0 0 0 0
0 0 0 −1 0 0
1 0 0 0 −1 0
0 1 0 0 −1 0


× 10−3.

3. By using the YALMIP toolbox Lofberg (2004) we solve LMIs (5.29) and (5.30) to obtain

X =



4.07 −1.36 0.39 0 −1.36 0 4.07 −1.36 0.39 0 −1.36 0 0
−1.36 4.07 0.39 0 −1.36 0 −1.36 4.07 0.39 0 −1.36 0 0
0.39 0.39 2.59 0 0.39 0 0.39 0.39 2.59 0 0.39 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
−1.36 −1.36 0.39 0 4.07 0 −1.36 −1.36 0.39 0 4.07 0 0

0 0 0 0 0 14.92 0 0 0 0 0 14.92 0
4.07 −1.36 0.39 0 −1.36 0 15.05 −1.24 0.14 0 −1.24 0 0

−1.36 4.07 0.39 0 −1.36 0 −1.24 15.05 0.14 0 −1.24 0 0
0.39 0.39 2.59 0 0.39 0 0.14 0.14 12.96 0 0.14 0 0

0 0 0 0 0 0 0 0 0 11.87 −0 0 0
−1.36 −1.36 0.39 0 4.07 0 −1.24 −1.24 0.14 0 15.05 0 0

0 0 0 0 0 14.92 0 0 0 0 0 26.70 0
0 0 0 0 0 0 0 0 0 0 0 0 0.10



,

Z =



0.73 0.73 0 0.73 0 0 0 0 0.73
0.73 0.73 0 0.73 0 0 0 0 0.73
0.05 0.05 0 0.05 0 0 0 0 0.05

361.34 361.34 0 361.34 0 0 0 0 361.34
0.73 0.73 0 0.73 0 0 0 0 0.73
0.07 0.07 0 0.07 0 0 0 0 0.07


, and γ = 11.87.

4. Considering R = I12 × 10 and L = ones12,9 × 0.1, satisfying the following conditions ||L|| < 1,
and R > 0 such that Vi > 0.
5. Taking matrix Z = 0 we obtain matrix Yi as in equation (5.34).
6. We deduce all the matrices of the generalized nonlinear observer and we obtain

N1 =



−19.54 8.08 0 0.01 9.08 0
8.09 −19.54 0 0.01 9.08 0
0.79 0.79 −2.37 0 0.79 0

−15.36 −15.54 0 −1.61 30.90 0
8.09 8.08 0 0.01 −18.54 0
0.35 0.47 0 −0.12 −0.82 −0.09


,

N2 =



−19.61 8.01 0 0.01 9.10 0
8.02 −19.61 0 0.01 9.10 0
0.83 0.83 −2.50 0 0.85 0

−15.37 −15.56 0 −1.61 30.93 0
8.02 8.01 0 0.01 −18.53 0
0.35 0.47 0 −0.12 −0.83 −0.09


,
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H1 =



9.06 −0.15 −2.08 −0.61 −0.15 −0.61
−0.15 9.06 −2.08 −0.61 −0.15 −0.61
0.47 0.47 13.10 0.07 0.47 0.07

−26.52 −26.52 −25.30 −16.62 −26.52 −25.91
−0.15 −0.15 −2.08 −0.61 9.06 −0.61
0.61 0.61 0.58 0.60 0.61 9.29


,

H2 =



9.05 −0.16 −2.20 −0.65 −0.16 −0.65
−0.16 9.05 −2.20 −0.65 −0.16 −0.65
0.46 0.46 13.24 0.05 0.46 0.05

−26.54 −26.54 −25.26 −16.62 −26.54 −25.91
−0.16 −0.16 −2.20 −0.65 9.05 −0.65
0.61 0.61 0.58 0.60 0.61 9.29


,

S1 =



5.59 −3.62 0 0.01 −1.97 0
−3.62 5.58 0 0.01 −1.97 0
−0.23 −0.24 0 0.01 0.47 0
−0.49 −0.50 0 0.01 0.99 0
−3.62 −3.62 0 0.01 7.24 0
−0.42 −0.54 0 0.13 0.96 0


, F1 =



−4.06 −15.82 0
−4.06 −15.82 0
0.48 0 −15.82

757.58 0 0.89
−4.06 0 0
155.84 0 0


,

S2 =



5.59 −3.63 0 0.01 −1.96 0
−3.62 5.58 0 0.01 −1.96 0
−0.22 −0.22 0 0.01 0.45 0
−0.49 −0.50 0 0.01 0.99 0
−3.62 −3.63 0 0.01 7.25 0
−0.42 −0.54 0 0.13 0.96 0


, F2 =



−4.33 −15.82 0
−4.33 −15.82 0
0.34 0 −15.82

757.58 0 0.89
−4.33 −15.82 0
155.84 1.78 0


,

J =



2372.36 0
2372.36 0

0 0
0 47.40

2372.36 0
0 0


, L1 =



−9.91 −0.71 −0.84 −0.72 −0.71−0.72
−0.71 −9.91 −0.84 −0.72 −0.71−0.72
−1.03 −1.03 −10.87 −0.71 −1.03−0.70
−0.85 −0.85 −0.81 −9.27 −0.85−0.83
−0.71 −0.71 −0.84 −0.72 −9.91−0.72
−0.72 −0.72 −0.69 −0.71 −0.72−9.31


,

L2 =



−9.91 −0.71 −0.83 −0.72 −0.71 −0.72
−0.71 −9.91 −0.83 −0.72 −0.71 −0.72
−1.02 −1.02 −10.88 −0.70 −1.02 −0.70
−0.85 −0.85 −0.81 −9.27 −0.85 −0.83
−0.71 −0.71 −0.83 −0.72 −9.91 −0.72
−0.72 −0.72 −0.69 −0.71 −0.72 −9.31


, P =



0 1 0 0 −1 1
1 1 0 0 −1 0
0 0 0 1 0 0
0 0 1 0 0 0

−1 0 0 0 1 0
0 −1 0 0 1 0


× 10−3,

M1 =



−4.79 0 0
−4.79 0 0
−4.68 0 0
−5.75 0 0
−4.79 0 0
−63.07 0 0


, M2 =



−4.76 0 0
−4.76 0 0
−4.63 0 0
−5.75 0 0
−4.76 0 0
−63.07 0 0


and Q =



0 0 0
0 0 0

0.5 0 0
0 0 0
0 1 0
0 0 1


.

The input is considered as u(t) =
[
T0,h T3,c

]
=
[
77.9◦C 21.2◦C

]
, the fault behavior is given in

(5.111). The initial conditions for the nonlinear system (5.54) - (5.55) are x(0) = [10, 60, 15, 55]T ,
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and for the observer (5.3)-(5.5) the initial conditions are x̂(0) = [0, 0, 0, 0]T . The performance
of the proposed observer is shown in Figures 5.2 - 5.7. Figures 5.2 to 5.5 show the estimation
of the system dynamic states and Figures 5.6 and 5.7 are the algebraic system states and their
estimations. Figure 5.8 shows the fault and its estimate.
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Fig. 5.2. Comparison of state estimate T1,c(t).
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Fig. 5.3. Comparison of state estimate T1,h(t).
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Fig. 5.4. Comparison of state estimate T2,c(t).
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Fig. 5.5. Comparison of state estimate T2,h(t).

The first fault occurs at the time t = 80s and disappears at t = 120s. In a real context, the fault
can be due to problems in the cold water inlet valve. From the simulation results, we can see that
the proposed observer manages to estimate the simultaneous unmeasured states and actuator fault
of the system with a reduced convergence time.
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Fig. 5.6. Comparison of state estimate Q(t).

0 20 40 60 80 100 120 140 160 180 200

time(s)

400

600

800

1000

1200

Q
2

Q
2
 NL

Q
2
 Estimate

Fig. 5.7. Comparison of state estimate Q2(t).

To evaluate the performance of the states and fault observer, the integral of the absolute error
(IAE) is computed in Table 5.1. It can be concluded that the proposed observer successfully
achieves notably accurate state and fault estimation, indicating a good performance for states and
fault estimation. The definition of performance analysis can be found in the appendix
A.
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Fig. 5.8. Comparison of fault estimate f(t).

Table 5.1. States and Fault observer performance index

States/Fault IAE
x̂1(t) − x1(t) 10043
x̂2(t) − x1(t) 2468
x̂3(t) − x3(t) 55.7
x̂4(t) − x4(t) 4652.5
x̂5(t) − x5(t) 2161.1
x̂6(t) − x6(t) 1673
f̂(t) − f(t) 828.13

5.3 Generalized dynamic learning observer design for S-
NLPV systems

5.3.1 Preliminaries
Consider the following D-NLPV system in its polytopic form.

Eẋ(t) =
k∑

i=1
µi(ϱ(t))

[
Aix(t) +Biu(t) +Dif(t, FLx)

]
+Gfa(t),

y(t) = Cx(t),
(5.61)
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where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the known input, y(t) ∈ Rp is the measurement
output vector and fa(t) ∈ Rnfa is the actuator fault vector. Matrix E ∈ Rn×n could be singular.
Ai ∈ Rn×n, Bi ∈ Rn×m, C ∈ Rp×n, Di ∈ Rn×nf and G ∈ Rn×nfa are real matrices and f(t, FLx)
is a nonlinearity satisfying the Lipschitz constraint ||∆f (t)|| ≤ λ||FL(x1 − x2)|| where ∆f (t) =
f(t, FLx1) − f(t, FLx2), λ is a known Lipschitz constant and FL is real matrix of appropriate
dimension.
Let rank(E) = r < n and E⊥ ∈ Rs×n be a full row matrix such that E⊥E = 0, in this case
s = n− r.
Consider µi(ϱ(t)) as the membership functions formed with known variant parameters ϱ(t) ∈ Rl.
The membership functions have the following properties:

k∑
i=1

µi(ϱ(t)) = 1, µi(ϱ(t)) ≥ 0, (5.62)

for i = 1, . . . , k = 2l.

Assumption 6. It is assumed that the system described by equation (5.61) is regular (Definition
1), Impulse observable (Definition 2) and Reachable observable (Definition 4).

Assumption 7. It is assumed that system rank(Bi) = rank
[
Bi G

]
.

Assumption 8. The actuator fault behavior is assumed to be constant, i.e. ḟa(t) = 0.

5.3.2 Problem Statement.
Let us consider the following generalized nonlinear observer for system (5.61)

ζ̇(t) =
k∑

i=1
µi(ϱ(t))

[
Niζ(t) +Hiv(t) + Fiy(t) + Jiu(t) + TDif(t, FLx̂) + TGf̂a(t)

]
,

v̇(t) =
k∑

i=1
µi(ϱ(t))

[
Siζ(t) + Liv(t) +Miy(t)

]
, (5.63)

x̂(t) = Pζ(t) +Qy(t), (5.64)
f̂a(t) = f̂a(t− τ) + Φfa(Cx̂(t) − y(t)), (5.65)

where τ denotes the sampling time interval, ζ(t) ∈ Rq0 represents the state vector of the
observer, v(t) ∈ Rq1 is an auxiliary vector and x̂(t) ∈ Rn is the estimate of x(t). The matrices
Ni ∈ Rq0×q0 , Hi ∈ Rq0×q1 , Fi ∈ Rq0×p, Si ∈ Rq1×q0 , Li ∈ Rq1×q1 , Mi ∈ Rq1×p, Ji ∈ Rq0×m,
P ∈ Rn×q0 , Q ∈ Rn×p, and T ∈ Rq0×n are unknown matrices of appropriate dimensions, which must
be determined such that x̂(t) and f̂a(t) converges asymptotically to x(t) and fa(t), respectively.

Let a matrix T ∈ Rq0×n to consider the following transformed error

ϵ(t) = ζ(t) − TEx(t), (5.66)

whose derivative is
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ϵ̇(t) =
k∑

i=1
µi(ϱ(t))

[
Niϵ(t) +NiTEx(t) +Hiv(t) + FiCx(t) +

Jiu(t) + TDif(t, FLx̂) + TGf̂a(t) − TAix(t) − TBiu(t) −
TDif(t, FLx) − TGfa(t)

]
(5.67)

ϵ̇(t) =
k∑

i=1
µi(ϱ(t))

[
Niϵ(t) +Hiv(t) + (NiTE − TAi + FiC)x(t) +

(Ji − TBi)u(t) + TGef (t) + TDi∆f (t)
]

(5.68)

where ef (t) = f̂a(t) − fa(t) and ∆f (t) = f(t, FLx̂) − f(t, FLx). Equation (5.68) is independent of
x(t) and u(t), if the following equations are satisfied:

(a) NiTE + FiC − TAi = 0, (5.69)
(b) Ji = TBi. (5.70)

Then equation (5.68) becomes:

ϵ̇(t) =
k∑

i=1
µi(ϱ(t))

[
Niϵ(t) +Hiv(t) + TGef (t) + TDi∆f (t)

]
. (5.71)

By using equation (5.66), equations (5.63) and (5.64) can be written as

v̇(t) =
k∑

i=1
µi(ϱ(t))

[
Siϵ(t) + Liv(t) + (SiTE + MiC)x(t)

]
, (5.72)

x̂(t) = Pϵ(t) + (PTE + QC)x(t), (5.73)

Now if the following conditions are satisfied

(c) SiTE +MiC = 0, (5.74)
(d) PTE +QC = In, (5.75)

Convergence is ensured if the aforementioned restrictions (a) - (d) are satisfied. However, if
these restrictions are not met, the convergence of the observer cannot be guaranteed.

then, equation (5.72) becomes

v̇(t) =
k∑

i=1
µi(ϱ(t)

[
Siϵ(t) + Liv(t)

]
, (5.76)

and the state estimation error becomes

x̂(t) − x(t) = e(t) = Pϵ(t). (5.77)

If conditions (a)–(d) are satisfied, the following observer error dynamics equation is obtained from
(5.71) and (5.76)

φ̇(t) =
k∑

i=1
µi(ϱ(t))

[
Aiφ(t) + Bef (t) + Ci∆f (t)

]
, (5.78)
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where φ(t) =
[
ϵ(t)
v(t)

]
, Ai =

[
Ni Hi

Si Li

]
, B =

[
TG
0

]
and Ci =

[
TDi

0

]
.

In this case, if ef (t) = 0, ∆f (t) = 0 and
[
Ni Hi

Si Li

]
is stable, then limt→∞ e(t) = 0.

Now, the problem of the GLDO (5.63)-(5.65) design is reduced to find matrices Ni, Fi, Ji, Hi,
Li, Mi, Si, P , Q, T and Φfa, such that the error dynamic (5.78) is asymptotically stable.

5.3.3 Observer design
This section will be devoted to the parameterization of all the matrices of the observer

Observer parameterization

The parameterization of this observer can be obtained in a manner similar to that in the section.
4.2.2.

Now, by using the value of matrices Ni, Si and T given by (4.25), (4.31) and (4.20), respectively,
the observer error dynamics (5.78) can be written as

φ̇(t) =
k∑

i=1
µi(ϱ(t))

[
Āiφ(t) + Bef (t) + Ci∆f (t)

]
, (5.79)

where Āi = A1i − YiA2, A1i =
[
N1i − Z1N2i 0

0 0

]
, A2 =

[
N3 0
0 −Iq1

]
, B =

[
T1G− Z1T2G

0

]
, Ci =[

T1Di − Z1T2Di

0

]
and Yi =

[
Y1i Hi

Y2i Li,

]
,

and from (5.77) we have
e(t) = Pφ(t), (5.80)

where P =
[
P1 0

]
and Y3 = 0 for simplicity, without loss of generality. Considering equation

(5.65), f̃a(t) = fa(t − τ) − fa(t), ef (t − τ) = f̂a(t − τ) − fa(t − τ) and the definition of ef (t), we
have

ef (t) = f̂a(t− τ) + ΦfaC(x̂(t) − x(t)) − fa(t)
ef (t) = ef (t− τ) + ΦfaCe(t) + f̃a(t)

(5.81)

From Assumption 8 it is assumed that f̃a(t) can be made zero, so then, estimation error (5.81) can
be expressed as

ef (t) = ef (t− τ) + Kφ(t). (5.82)

where K =
[
ΦfaCP1 0

]
.

The observer design is obtained from the determination of matrices Z1 and Yi such that system
(5.79) is asymptotically stable.
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5.3.4 Stability analysis of the observer
This section is devoted to the stability analysis of equation (5.79).

Theorem 3. Under Assumption 6, there exist two parameter matrices Z1 and Yi such that system

(5.79) is asymptotically stable if there exists a positive definite matrix X =
[
X1 0
0 X2

]
> 0 such

that the following LMIs are satisfied

CT ⊥
[

Π1i + Π2 Π3
(∗) −γInf

]
CT ⊥T < 0, (5.83)

γ > 0, (5.84)

[
−ηI BTX + K
(∗) −I

]
< 0 (5.85)

where

CT ⊥ =
[
AT ⊥

2 0
0 I

]
,Π2 = γλ2

[
P1

TF T
L FLP1 0
0 0,

]
,Π3 =

[
X1T1Di −XzT2Di

0

]

Π1i =
[
X1N1i +NT

1iX1 −XzN2i −NT
2iX

T
z 0

0 0

]
,

(5.86)

in this case η > 0, matrix Z1 = X−1
1 Xz and parameter matrix ΦT

i is obtained as follows
ΦT

i = Br
+KiCl

+ + Z − Br
+BrZClCl

+, (5.87)

where
Yi = (ΦiX

−1
1 )T , (5.88)

Ki = −R−1Bl
T ViCr

T (CrViCr
T )−1 + S

1
2
i L(CrViCr

T )− 1
2 , (5.89)

Si = R−1 − R−1BT
l [Vi − ViCT

r (CrViCr
T )−1CrVi]BlR−1, (5.90)

Vi = (BrR−1Bl
T − Di)−1 > 0, (5.91)

where matrices Z, L, R are arbitrary matrices such that ||L|| < 1 and R > 0, with

Di =
[

Π1i + Π2 Π3
(∗) −γInf

]
,

B =
[
−I
0

]
and C =

[
A2 0

]
, such that there exist matrices Bl, Br, Cl and Cr, are such that B = BlBr

and C = ClCr, respectively.
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Proof. Consider the following Lyapunov candidate function

V (φ(t)) = φT (t)Xφ(t) +
∫ t

t−τ
eT

f (t)ef (t)dt (5.92)

such that
X =

[
X1 0
0 X2

]
> 0, X1 = XT

1 . (5.93)

The derivative of (5.92) along the trajectory of (5.79) gives

V̇ (φ(t)) ≤
k∑

i=1
µi(ϱ(t))

[
φT (t)Xφ̇(t) + φ̇T (t)Xφ(t) + eT

f (t)ef (t) − eT
f (t− τ)ef (t− τ)

]
, (5.94)

replacing (5.79) and considering (5.82) in equation (5.94), we have

V̇ (φ(t)) ≤
k∑

i=1
µi(ϱ(t))

[
φT (t)(ĀT

i X +XT Āi)φ(t)+

φT (t)XTCi∆f (t) + ∆T
f (t)CT

i Xφ(t)+
2φT (t)[XB + KT ]ef (t− τ) + φT (t)[2XB + KT ]Kφ(t)

]
,

(5.95)

taking into account the following restriction

BTX = −K (5.96)

we can obtain the following equivalence

φT (t)[2XB + KT ]Kφ(t) = −φ(t)KTKφ(t) < 0 (5.97)

It is important to note that Equation (5.97) is formed by a quadratic term and by containing
the negative sign, the condition of being defined negative will be fulfilled as long as φ(t) ̸= 0.

Now, Equation (5.95) can be written as

V̇ (φ(t)) ≤
k∑

i=1
µi(ϱ(t))

[
φT (t)(ĀT

i X +XT Āi)φ(t) + φT (t)XTCi∆f (t) + ∆T
f (t)CT

i Xφ(t)
]
, (5.98)

By using Lemma 3 we can obtain the following inequality

∆T
f (t)CT

i Xφ(t) + φT (t)XTCi∆f (t) ≤ γ∆T
f (t)∆f (t) + 1

γ
φT (t)XTCiCT

i Xφ(t),

and from the Lipschitz condition, we have

∆T
f ∆f (t) ≤ γλ2φT (t)PTF T

L FLPφ(t), (5.99)

by inserting (5.99) and (5.99) into (5.98), we obtain

V̇ (φ(t)) ≤
k∑

i=1
µi(ϱ(t))

[
φT (t)

(
ĀT

i X +XT Āi + 1
γ
XTCiCT

i X + γλ2PTF T
L FLP

)
φ(t)

]
. (5.100)
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Now, if the following LMI is satified then V̇ (φ(t)) < 0.

ĀT
i X +XT Āi + 1

γ
XTCiCT

i X + γλ2PTF T
L FLP < 0, (5.101)

By using the Schur complement (Lemma 1) and replacing matrix Āi in inequality (5.101), we
obtain [

X(A1 − YA2) + (A1 − YA2)TX + γλ2PTF T
L FLP XCi

(∗) −γInf

]
< 0, (5.102)

Now, by inserting the values of matrices A1i, P and X we obtain[
Π1i + Π2 − AT

2 Φi − ΦT
i A2 Π3

(∗) −γInf

]
< 0, (5.103)

where Φi = YT
i X and Xz = X1Z1. Π1i, Π2 and Π3 are defined in (5.86). Inequality (5.103) can

also be rewritten as

BΦT
i C + (BΦT

i C)T + Di < 0, (5.104)

where
Di =

[
Π1i + Π2 Π3

(∗) −γInf

]
, B =

[
−I
0

]
and C =

[
A2 0

]
.

According to Lemma 2, inequality (5.104) is satisfied if and only if the following inequalities verified

CT ⊥DiCT ⊥T < 0, (5.105)
B⊥DiB⊥T < 0, (5.106)

the inequalities (5.105) and (5.106) are equivalent to (5.107) and (5.108) respectively

CT ⊥
[

Π1i + Π2 Π3
(∗) −γInf

]
CT ⊥T < 0, (5.107)

γ > 0. (5.108)

with B⊥ =
[
0 I

]
and CT ⊥ =

[
AT ⊥

2 0
0 I

]
. If condition (5.96) is satisfied, conditions (5.107)

and (5.108) can be solved using a standard tool for linear matrix inequalities (LMIs). However,
condition (5.96) is a matrix equality to solve it, it can be rewritten as (Jia et al., 2016)

(BTX + K)(BTX + K)T < η2I (5.109)

where η is a positive scalar. By using the Schur complement lemma (Boyd et al., 1994), equation
(5.109) can be written as [

−η2I BTX + K
(∗) −I

]
< 0 (5.110)

The design problem can be simplified by considering a scalar η > 0 and γ > 0 to solve the
inequalities (5.83), (5.84), and (5.85), resulting in a positive definite matrix X. The parameter
matrix Yi can be obtained as (5.88), which completes the proof of the theorem. ■
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5.3.5 Simulation applied to heat exchanger
This section is devoted to the performance analysis of the observer (5.63)-(5.65) applied to the
heat exchanger model similar to that presented in Section 5.2.5. First, we can confirm that As-
sumptions 3, 4, and 5 are satisfied. Then, we can proceed to apply a procedure similar to the
algorithm outlined in Section 5.2.4.

The nonlinearity f(t, FLx) is considered as a Lipschitz function. The input signal is considered
constant u(t) =

[
77.9◦C 21.2◦C

]
. The fault signal is defined as

fa(t) =
{

8◦C 80s ≤ t ≤ 120s
0◦C otherwise (s). (5.111)

The Lipschitz constant is selected as λ = 100 and τ = 0.00001. The initial conditions for the non-
linear system are x(0) = [10, 60, 15, 55]T , and for the observer (5.63) - (5.65) x̂(0) = [0, 0, 0, 0]T .
The perfomance of the proposed observer is shown in Figures 5.9 - 5.10. The fault occurs at the
time t = 80s. In a real context, the fault can be due to problems in the cold water inlet valve.
From the simulation results shown in Figure 5.9, it can be observed that the proposed observer
successfully estimates the simultaneous unmeasured states of the system, achieving a notable re-
duction in convergence time. The estimate fault manages to reduce the convergence time due to
the learning part as seen in Figure 5.10.
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Fig. 5.9. Convergence of the states estimation errors.
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5.3.6 Conclusions
In this chapter, a GDO structure is presented to perform simultaneous estimation of state variables
and actuator faults in algebro-differential nonlinear parameter varying systems. A second design
for reducing the convergence time for fault estimation is presented. The conditions for the existence
of this observer design is given in the form of a set of LMIs. This methodology can be applied to
standard LTI formulations, considering them as particular cases. In order to illustrate the observer
performances, a heat exchanger with two countercurrent cells was considered.
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Chapter 6

Generalized dynamic adaptive observers
for parameter estimation

6.1 Introduction
This chapter presents an adaptive observer design for simultaneous estimation of system parameters
and state variables for a class of linear descriptor systems. In Section 6.2, a case where variable
parameters are present in the system is considered. The observer design is obtained in terms of
a set of linear matrix inequalities (LMI), and the conditions of existence and stability are given.
Academic examples illustrate the efficiency of the proposed approaches.

6.2 Generalized dynamic LPV adaptive observer for pa-
rameter estimation

6.2.1 Preliminaries
Let us consider the following linear algebro-differential system:

Eẋ(t) =
k∑

i=1
µi(ϱ(t))

[
Aix(t) +Biu(t)

]
+ ψ(t)θ(t),

y(t) = Cx(t),
(6.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the known input and y(t) ∈ Rp is the measurement
output vector and θ(t) ∈ Rl is the unknown parameter vector assumed to be constant. Matrix
E ∈ Rn×n, Ai ∈ Rn×n, Bi ∈ Rn×m and C ∈ Rp×n are known constant matrices. ψ(t) ∈ Rm×l

is a matrix of known signals, and it is assumed to be piecewise differentiable. Both ψ(t) and its
derivative ψ̇(t) are uniformly bounded in time. Assume that: rank(E) = r < n, and without loss
of generality: rank(C) = p.

The problem addressed in this paper involves the simultaneous estimation of x(t) and θ(t) using
measured and known signals u(t), y(t), and ψ(t). Now since rank(E) < n, there always exists a
full row rank matrix E⊥ such that:
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E⊥E = 0. (6.2)

Following (6.2), system (6.1) is equivalent to:

k∑
i=1

µi(ϱ(t))
[ [−E⊥Biu(t)

y(t)

] ]
=

k∑
i=1

µi(ϱ(t))
[ [E⊥Ai

C

]
x(t)

]
+
[
E⊥ψ

0

]
θ(t) (6.3)

Our aim is to design an adaptive observer of the form:

ζ̇(t) =
k∑

i=1
µi(ϱ(t))

[
Niζ +Hiv + Fi

([
−E⊥Biu(t)

y(t)

]
−
[
E⊥ψ

0

]
θ̂(t)

)
+

Jiu(t)
]

+ Tψθ̂(t) + Υ1
˙̂
θ(t), (6.4)

v̇(t) =
k∑

i=1
µi(ϱ(t))

[
Siζ + Liv +Mi

([
−E⊥Biu(t)

y(t)

]
−
[
E⊥ψ

0

]
θ̂(t)

) ]
, (6.5)

x̂ =
k∑

i=1
µi(ϱ(t))

[
Pζ +Q

([
−E⊥Biu(t)

y(t)

]
−
[
E⊥ψ

0

]
θ̂(t)

) ]
, (6.6)

˙̂
θ = ΓβT (t)CTΛ(y(t) − Cx̂(t)), (6.7)

where x̂(t) and θ̂(t) are the estimates of x(t) and θ(t), respectively. Matrices Ni ∈ Rq0×q0 , Hi ∈
Rq0×q1 , Fi ∈ Rq0×p, Si ∈ Rq1×q0 , Li ∈ Rq1×q1 , Mi ∈ Rq1×p, Ji ∈ Rq0×m, P ∈ Rn×q0 , Q ∈ Rn×p,
and T ∈ Rq0×n, Γ(t) and β(t) are unknown matrices of appropriate dimensions, which must be
determined such that x̂(t) converges asymptotically to x(t) and θ̂(t) converges to θ(t), respectively.
Γ ∈ Rl and Λ ∈ Rl are symmetric positive matrices which are used to adjust the evolution rate of
θ̂(t).

6.2.2 Problem statement
Let us consider the two estimation errors

ex(t) = x(t) − x̂(t).

eθ(t) = θ̇(t) − ˙̂
θ(t).

(6.8)

Now, we make the following two assumptions which are needed for the rest of the paper

Assumption 9. It is assumed that the system described by equation (6.1) is regular (Definition
1), Impulse observable (Definition 2) and Reachable observable (Definition 4).

Assumption 10. Let β(t) ∈ Rn×l be a matrix of signals generated by the stable ODE system of
the form:

β̇(t) =
k∑

i=1
µi(ϱ(t))

[
Aiβ(t) + Xi(t)

]
. (6.9)
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Assuming that input signal X are persistently exciting, so there exist two positive constants, δ and
t1 and some bounded symmetric positive definitive matrix Λ ∈ Rq×q such that for all t the following
inequality holds: ∫ t−t1

t
βT (τ)CTΛCβ(τ)dτ ≥ δI. (6.10)

Remark 1. Condition (6.10) is typically required for parameter identification.
The following theorem gives the conditions for the existence of the observer:

Theorem 4. Let Γ ∈ Rl×l be any symmetric positive definite matrix. Under Assumptions 9 and
10, and for a constant θ(t), the adaptive observer (6.4) - (6.7), is a global exponential adaptive
observer for the descriptor system (6.1) if there exist a matrix T such that:

Ji = TBi, (6.11)

NiTE + Fi

[
E⊥Ai

C

]
= TAi, (6.12)

SiTE +Mi

[
E⊥Ai

C

]
= 0, (6.13)

PTE +Q

[
E⊥Ai

C

]
= In, (6.14)

and Ai =
[
Ni −Hi

−Si Li

]
are a stable matrices.

The matrix of signals Υ (t) =
[
Υ1(t)

0

]
is obtained by linearly filtering ψ(t) through:

Υ̇ (t) =
k∑

i=1
µi(ϱ(t))

[
AiΥ (t) + Diψ(t)

]
, (6.15)

where Di =


T − Fi

[
E⊥

0

]

Mi

[
E⊥

0

]
 .

The matrix β(t) is given from equation (6.9) such that:

X (t) =
k∑

i=1
µi(ϱ(t))

AiQ

[
E⊥

0

]
+ Di

ψ(t) −Q

[
E⊥

0

]
ψ̇(t) (6.16)

or by:

β(t) = PΥ (t) −Q

[
E⊥

0

]
ψ(t), (6.17)
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with P =
[
P 0

]
.

Proof. Let us define the transformation error ϵ(t) as:

ϵ(t) = TEx(t) − ζ(t) (6.18)

its derivative is given by

ϵ̇(t) =
k∑

i=1
µi(ϱ(t))

[
Niϵ(t) −Hiv(t)

−
(
NiTE − TAi + Fi

[
E⊥Ai

C

])
x(t) + (TBi − Ji)u(t)

+
(
T − F

[
E⊥

0

])
ψ(t)eθ(t)

]
− Υ1

˙̂
θ(t), (6.19)

Using (6.11) and (6.12), we can obtain:

ϵ̇(t) =
k∑

i=1
µi(ϱ(t))

[
Niϵ(t) −Hiv(t) +

(
T − Fi

[
E⊥

0

])
ψ(t)eθ + Υ1ėθ

]
, (6.20)

Now, by utilizing (6.18), equation (6.5) can be expressed as:

v̇(t) =
k∑

i=1
µi(ϱ(t))

[
− Siϵ(t) + Liv(t) + (SiTE +Mi

[
E⊥Ai

C

]
)x(t) +Mi

[
E⊥

0

]
ψ(t)eθ(t)

]
, (6.21)

Using (6.13) we have

v̇(t) =
k∑

i=1
µi(ϱ(t))

[
− Siϵ(t) + Liv(t) +Mi

[
E⊥

0

]
ψ(t)eθ(t)

]
, (6.22)

Considering equations (6.19) and (6.21), the following observer error dynamics equation is obtained

φ̇(t) =
k∑

i=1
µi(ϱ(t))

[
Aiφ(t) + Diψ(t)eθ + Υ (t)ėθ(t)

]
, (6.23)

where φ(t) =
[
ϵ(t)
v(t)

]
.

The key step of the proof is to define the following linear combination of φ(t) and eθ(t):

η(t) = φ(t) − Υ (t)eθ(t), (6.24)
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then we have:

η̇(t) = φ̇(t) − Υ̇ (t)eθ(t) − Υ (t)ėθ(t). (6.25)

By substituting equation (6.23) into equation (6.25), we obtain:

η̇(t) =
k∑

i=1
µi(ϱ(t))

[
Aiη(t) +

(
Diψ(t) + AiΥ (t) − Υ̇ (t)

)
eθ(t)

]
(6.26)

From linear equation (6.15), equation (6.26) its reduced to its homogeneous part:

η̇(t) =
k∑

i=1
µi(ϱ(t))

[
Aiη(t)

]
, (6.27)

Matrices Ai must be stability matrices to ensure convergence of η(t) to 0.

Now and since the parameter vector θ(t) is constant, we have:

θ̇(t) = 0, (6.28)

and

ėθ(t) = − ˙̂
θ(t),

= −ΓβT (t)CT Λ(y(t) − ŷ(t)),
= −ΓβT (t)CT ΛCex(t). (6.29)

On the other hand, by taking (6.14), we can easily prove that

ex(t) = Pφ(t) −Q

[
E⊥

0

]
ψeθ(t), (6.30)

where P =
[
P 0

]
.

Then, by replacing φ(t) from (6.24), and using (6.30) in (6.29), we obtain:

ėθ = −ΓβT (t)CT ΛC
[
Pη(t) + [PΥ (t) −Q

[
E⊥ψ(t)

0

]
]eθ(t)

]
, (6.31)

by choosing β(t) as in (6.17), equation (6.31) becomes:

ėθ = −ΓβT (t)CT ΛC [Pη(t) + β(t)eθ(t)] , (6.32)

Looking to the homogeneous part of system (6.32) leads to:

ėθ = −ΓβT (t)CT ΛCβ(t)eθ(t). (6.33)
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As ψ(t) and ψ̇(t) are bounded, β(t) generated from the exponentially stable system (6.9) is also
bounded. From the persistent excitation condition (6.10), and since Γ and Λ are positive, the global
exponential stability of system (6.33) can be easily proved. From the exponential convergence of
η(t) and of system (6.33), we obtain the global and exponential convergence to 0 of eθ(t) generated
from system (6.32) (see Zhang (2002), Alma and Darouach (2014) and Alma et al. (2018) for more
details).

Now, from η(t) → 0, eθ(t) → 0 and the fact that Υ (t) is bounded, we conclude that φ(t) =∑k
i=1 µi(ϱ(t))

[
ηi(t) + Υ (t)eθ(t)

]
converges to 0, with global and exponential convergence.

Finally, from the convergence of eθ(t) and φ(t) to 0, and from (6.30), the global and exponential
convergence of ex(t) → 0 is guaranteed.

6.2.3 Observer design
This section will be devoted to the parameterization of all the observer matrices and the stability
analysis.

Observer parameterization

This section will focus on parameterizing all observer matrices. The full parameterization of the
observer can be achieved by following the steps outlined in section 4.2.2.

Now, with the matrices Ni and Si values obtained from section 4.2.2, matrix Ai can be formu-
lated as

Ai =
k∑

i=1
µi(ϱ(t))(A1i − YiA2) (6.34)

where A1i =
[
N1i 0
0 0

]
, Yi =

[
Y1i −Hi

−Y2i Li

]
and A20 =

[
N2 0
0 −I

]
.

without loss of generality, Y3i = 0 is taken for simplicity.
The problem of the observer design is reduced to determine matrix Yi such that system (6.34)

is asymptotically stable.

6.2.4 Stability analysis of the observer
This section is devoted to the stability analysis of the observer. The following theorem gives the
condition for the stability in a LMI.

Theorem 5. Under Assumptions 9 and 10, there exist a matrix Yi such that system (6.34) is

asymptotically stable if there exists a positive definite matrix X =
[
X1 0
0 X2

]
> 0 such that the

following LMI is satisfied
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NT ⊥
2 [NT

1iX1 +X1N1i]NT ⊥T
2 < 0, (6.35)

matrices N1i and N2 are defined in section 4.2.2. Then, the parameter matrix Yi is obtained
as shown below

Yi = X−1(−σBT +
√
σLΓ1/2)T , (6.36)

where

σBBT − Q > 0 (6.37)

Matrix Q =
[
NT

1iX1 +X1N1i 0
0 0

]
, B = −AT

20 and Ξ = Φ. L is a matrix with arbitrary elements

such that ||L|| < 1 and σ is a positive scalar such that Γ > 0.

Proof. Consider the following Lyapunov candidate function

V (η(t)) = ηT (t)Xη(t), (6.38)

The derivative of (6.38) along the trajectory of (6.27) gives

V̇ (η(t)) ≤ ηT (t)
[
AT

i X +XAi

]
η(t), (6.39)

or

AT
i X +XAi < 0, (6.40)

replacing (6.34) in equation (6.40) we have

AT
1iX − AT

20Φ +XA1i − ΦTA20 < 0, (6.41)

with Φi = YT
i X.

by incerting A1i and X into (6.41) we have

Qi − AT
20Φi − ΦT

i A20 < 0, (6.42)

Equation (6.42) can be written as

Qi + BΞ + (BΞ)T < 0, (6.43)
According to the elimination lemma (Skelton et al., 1997), there exists a matrix Ξ that satisfies

(6.43) if and only if the following inequality is verified:

B⊥QiB⊥T < 0, (6.44)
with B⊥ = −AT ⊥

20 =
[
−NT ⊥

2 0
]
. Using the definition of Qi, (6.35) is obtained. If (6.44) is

satisfied, the parameter matrix Yi is obtained as in (6.36) which complete the proof of the theorem.
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Finally, the generalized adaptive observer can be obtained with the following algorithm.

1. Select a matrix R ∈ Rq0×n such that rank(Σ) = n.

2. Compute matrices N1i, N2, F1i, F2, Q1, T , K and P1 defined in Section 6.2.3.

3. Solve LMI (6.35) to find matrices X and Φi.

4. Choose matrix ||L|| < 1 and a scalar σ > 0 such that Γ > 0.

5. Determine matrix Yi using (6.36), to obtain Y1i, Y2i, Hi and Li.

6. Compute different observer matrices Ni, Si, Mi, P , Q, Fi and Ji, by using (4.25) to compute
Ni, (4.31)-(4.34) to compute Si, Mi, P and Q taking matrix Y3i = 0. The matrix Fi are
given by (4.27) and matrix Ji from (6.11).

7. Compute in real time Υ (t) and β(t) using (6.15) and (6.9).

6.2.5 Numerical example
The following numerical example is chosen to illustrate the above Theorem 5 for a system with
unknown input. Consider the descriptor system (6.1) with one unknown parameter θ(t) to estimate,
described by:

E =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , A =


0 0 ρ(t) 0
1 0 0 0

−1 0 0 1
0 1 1 1

 , B =


0
0
0

−1

 ,

G =


1
0
0
1

 ,Ψ =


0
ϕ(t)

0
0

 and C =
[
1 0 0 0
0 1 0 0

]
.

(6.45)

Matrix E⊥ such that E⊥E = 0 is obtained as:

E⊥ =
[
0 0 1 0
0 0 0 1

]
(6.46)

We select matrix R =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

× 102, such that rank(Σ) = 4.

Defining ρ(t) ∈ Rn as the variant parameters were its maximum value is ρ = 3 and its minimum
value ρ = 1. By applying the above results to this system and computing N1i, N2, F1i, F2, Q1,
T , K and P1. after resolving LMI (76), Considering L = ones12,8 × 0.1 and σ = 1000 satisfying
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the following conditions ||L|| < 1, and Γ > 0. Matrices Ni, Hi, Fi, Si, Li, Mi, and Ji are computed.

N1 =


−1.060 0.484 0.522 1.148
0.945 −0.809 −0.694 −0.935

−0.054 −0.809 −0.744 −0.935
1.505 −1.294 −1.116 −2.084

, N2 =


−1.060 0.484 1.972 1.148
0.945 −0.809 −0.694 −0.935

−0.054 −0.809 −2.194 −0.935
1.505 −1.294 0.3331 −2.0844

,

F1 =


−5 5 16.711 −3.088
0 0 14.793 5.778
5 −5 −32.711 8.278

−5 5 −31.920 3.866

, F2 =


−150 150 −55.78 −75.58

0 0 14.79 5.77
150 39.78 39.78 80.77

−150 150 104.42 −68.63

,

S1 = S2


0.002 −0.484 −0.239 −0.486
0.002 −0.484 −0.239 −0.486
0.002 −0.484 −0.239 −0.486
0.002 −0.484 −0.239 −0.486

× 10−3, M1 = M2


0 0 0.012 0.012
0 0 0.012 0.012
0 0 0.012 0.012
0 0 0.012 0.012

, J =


0
0
0
0

,

In order to simulate the considered linear descriptor system and the proposed adaptive observer,
the input ϕ(t) is chosen to be a square impulses as shown in Figure 6.1. For clearness reasons,
only the first 100 seconds are presented. This signal is rich and satisfies the persistent excitation
condition.

The true parameter to estimate θ(t) switches between 1 and 2. The initial values for the state
vector, its estimate and parameter estimate are: x(0) =

[
−1 −1 −1 2

]T
; x̂(0)

[
0 0 0 0

]T
;

θ̂(0) = 0. The adaptive observer parameters are: Λ = ones12×8 and Γ = 100.

Fig. 6.1. Input signal ϕ(t) for LPV systems.
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Fig. 6.2. Convergence behavior of parameter estimate θ(t) for LPV systems
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Fig. 6.3. Convergence behavior of state estimation error x1(t) for LPV systems

Fig. 6.4. Convergence behavior of state estimation error x2(t) for LPV systems
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Fig. 6.5. Convergence behavior of state estimation error x3(t) for LPV systems

Fig. 6.6. Convergence behavior of state estimation error x4(t) for LPV systems
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Figure 6.2 presents the parameter estimation in relation to its original value. One can see that
the estimate converges fastly to its real value. he rate has been adjusted with a good choice of
parameters Λ and Γ. Figures 6.3-6.6 shows the states estimation errors evolutions ex(t) for all
the state vector. The observer permits a successful convergence to the states of the system. It
can be shown that the state estimation error converges fastly to 0 after each change in θ(t) which
demonstrate the effectiveness of the proposed approach.

6.2.6 Conclusions
In this chapter we propose a novel generalized adaptive observer design for joint estimation of states
and parameters for algebro-differential linear and algebro-differential linear parameter varying
systems. The designs are given in term of LMIs. these approaches represents a generalization
of PIO and PO methods, enabling the concurrent estimation of some system parameters and
state variables, given that specific rank relations and a persistent condition are fulfilled. In order
to illustrate the efficiency of the proposed approach, A numerical example has been included to
illustrate the performance of the proposed adaptive observer design.
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Chapter 7

Conclusions and perspectives

This thesis has contributed to algebro-differential parameter-varying systems in different categories
as state estimation, parameter estimation and fault diagnosis. Based on these categories, a bibli-
ographical review is presented to guide the direction of this work.

Chapter 3 focuses on the GDO synthesis for algebro-differential parameter-varying systems sys-
tems. It is introduced the GDO structure considering the case for state estimation. This type of
structure takes into account a wider range of systems by combining it with a more general observer
structure, allowing for a more comprehensive methodology. In the case of variable parameters, con-
ditions for the existence of the GDO are provided, and its stability has been demonstrated to tackle
this issue. The stability conditions are formulated in terms of LMIs, utilizing the bounded real
lemma and other mathematical complements. Additionally, the designs include detailed parame-
terizations of the algebraic constraints.

In the same way, Chapter 4 concerns simultaneous state variables and unknown inputs estimations
for algebro-differential parameter-varying systems through the design of a generalized observer.
Additionally, the design of a generalized learning observer is presented, which allows reducing the
convergence time for fault estimation applied to the same class of systems.

The state and parameter estimation are addressed in Chapter 5 for algebro-differential linear sys-
tems, using the GDO structure, allowing for the simultaneous estimation of system parameters
and state variables once some rank relations and persistent conditions are satisfied. Additionally,
the case for algebro-differential LPV systems is presented for a broader operational range.

Different applications are presented in each observer design to demonstrate the performance of
each one. It can be noted that the performance of the GDO achieves a better performance index
in comparison to their particular structures (PO, PIO).

Along with this research work, many open problems were detected, giving opportunities for more
contributions to the topics encompassed in this thesis. Some of the open problems are presented
below :
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• The algebro-differential nonlinear parameter-varying systems are a very interesting class of
systems studied in this research. The solutions provided in the designs could be conservative if
there is a considerable amount of noise in the system, in addition to considering an estimation
of time-varying unknown inputs. It can take into account those scenarios, improving upon
the observer designs previously demonstrated.

• The design of adaptive observers in Chapter 5 requires a persistent excitation condition,
which must be satisfied by specific signals to estimate the unknown parameters. A case
where this condition is not taken into account for parameter estimation applied to the same
type of systems can be considered.
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Appendix A

Performance index IAE, ISE, and ITAE

A performance index is a quantitative measure of a system’s behavior and is chosen in a way that
highlights the system’s important specifications (Dorf et al. (2005)).

A system is considered optimal when its parameters are adjusted in such a way that the index
reaches an extreme value, typically a minimum value. For a performance index to be useful, it must
always be a positive number or zero, such that the best behavior is defined as minimizing this index.

Various performance indices (Dorf et al. (2005)) are employed in the literature, and the selection
of such indices depends on the type of behavior to be analyzed and the characteristics of the system.

The Integral Squared Error (ISE) is expressed as:

ISE =
∫ t

0
e2(t)dt (A.0.1)

This index penalizes large errors and discriminates between excessively overdamped and under-
damped responses. The minimum value of the integral occurs for a critical damping value.
Another index used to reduce the contribution of the initial error and highlight errors occurring
after the response (Graham and Lathrop (1953)) is the value of the integral of time multiplied by
the absolute error (ITAE), defined as follows:

ITAE =
∫ t

0
t|e(t)|dt (A.0.2)

Another particularly useful index for simulation studies is the value of the integral of the absolute
error (IAE). It is a more sensitive index than ISE, and therefore, IAE tends to give longer settling
times and higher overshoots. IAE is defined as:

IAE =
∫ t

0
|e(t)|dt (A.0.3)

There are other performance indices besides those described above. However, for the purposes of
this work, the aforementioned ones are employed.
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Appendix B

Generalized dynamic adaptive observer
design for parameter estimation

B.1 Preliminaries

Let us consider the following linear time invariant descriptor system:

Eẋ(t) = Ax(t) +Bu(t) + ψ(t)θ(t), (B.1.1)
y(t) = Cx(t),

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the known input, y(t) ∈ Rp is the measurement
output vector and θ(t) ∈ Rl is the unknown parameter vector assumed to be constant. Matrix
E ∈ Rn×n could be singular. Matrices A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are known constant
matrices. ψ ∈ Rn×l is a matrix of known signals, and it is assumed to be piecewise differentiable.
Both ψ(t) and its derivative ψ̇(t) are uniformly bounded in time. Let rank(E) = r < n and
E⊥ ∈ Rs×n be a full row matrix such that E⊥E = 0, in this case s = n − r. Without loss of
generality: rank(C) = p.

The problem addressed in this paper involves the simultaneous estimation of x(t) and θ(t) using
measured signals u(t), y(t), and ψ(t).

Considering the aforementioned, system (B.1.1) is equivalent to:

[
−E⊥Bu(t)

y(t)

]
=
[
E⊥A
C

]
x(t) +

[
E⊥ψ(t)

0

]
θ(t) (B.1.2)

Our aim is to design an adaptive observer of the form:
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ζ̇(t) = Nζ(t) +Hv(t) + F

([
−E⊥Bu(t)

y(t)

]
−
[
E⊥ψ(t)

0

]
θ̂(t)

)
+

Ju(t) + Tψθ̂(t) + Υ1
˙̂
θ(t), (B.1.3)

v̇(t) = Sζ(t) + Lv(t) +M

([
−E⊥Bu(t)

y(t)

]
−
[
E⊥ψ(t)

0

]
θ̂(t)

)
, (B.1.4)

x̂(t) = Pζ(t) +Q

([
−E⊥Bu(t)

y(t)

]
−
[
E⊥ψ(t)

0

]
θ̂(t)

)
, (B.1.5)

˙̂
θ(t) = ΓβT (t)CTΛ(y(t) − Cx̂(t)), (B.1.6)

where x̂(t) and θ̂(t) are the estimates of x(t) and θ(t), respectively. The matrices N , H, F , S,
L, M , J , P , Q, T , Γ and β(t) are unknown matrices of appropriate dimensions, which must be
determined such that x̂(t) converges asymptotically to x(t) and θ̂(t) converges to θ(t), respectively.
Γ and Λ are symmetric positive matrices which are used to adjust the evolution rate of θ̂(t).

B.2 Problem statement
Let us consider the two estimation errors

ex(t) = x(t) − x̂(t).
eθ(t) = θ(t) − θ̂(t).

(B.2.1)

Now, we make the following two assumptions which are needed for the rest of the paper

Assumption 11. It is assumed that the system described by equation (B.1.1) is regular (Definition
1), Impulse observable (Definition 2) and Reachable observable (Definition 4).

Assumption 12. let β(t) ∈ Rn×l be a matrix of signals generated by the stable ODE system:

β̇(t) = Aβ(t) + X (t). (B.2.2)

Assuming that X is persistently exciting, there exist two positive constants, δ, t1 and some
bounded symmetric positive definite matrix Λ ∈ Rq×q such that for all t the following inequality
holds:

∫ t−t1

t
βT (τ)CTΛCβ(τ)dτ ≥ δI. (B.2.3)

Remark 2. Condition (B.2.3) is typically required for parameter identification.
The following theorem gives the conditions for the existence of the observer:
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Theorem 6. Let Γ ∈ Rl×l be any symmetric positive definite matrix. Under Assumption 11,
and for a constant θ(t), the adaptive observer (B.1.3) - (B.1.6), is a global exponential adaptive
observer for the descriptor system (B.1.1) if and only if there exists a matrix T such that:

J = TB, (B.2.4)

NTE + F

[
E⊥A
C

]
= TA, (B.2.5)

STE +M

[
E⊥A
C

]
= 0, (B.2.6)

PTE +Q

[
E⊥A
C

]
= In, (B.2.7)

and A =
[
N −H
−S L

]
is a stable matrix.

The matrix of signals Υ (t) =
[
Υ1(t)

0

]
is obtained by linearly filtering ψ(t) through:

Υ̇ (t) = AΥ (t) + Dψ(t), (B.2.8)

where D =


T − F

[
E⊥

0

]

M

[
E⊥

0

]
.

The matrix β(t) is given from equation (B.2.2) such that :

X (t) = [AQ
[
E⊥

0

]
+ D]ψ(t) −Q

[
E⊥

0

]
ψ̇(t), (B.2.9)

or by:

β(t) = PΥ (t) −Q

[
E⊥ψ(t)

0

]
, (B.2.10)

with P =
[
P 0

]
.

Proof. Let us define the transformation error ϵ(t) as:

ϵ(t) = TEx(t) − ζ(t), (B.2.11)
Its derivative is given by

ϵ̇(t) = Nϵ(t) −Hv(t) −
(
NTE − TA+ F

[
E⊥A
C

])
x(t)+

(TB − J)u(t) +
(
T − F

[
E⊥

0

])
ψ(t)eθ(t) − Υ1

˙̂
θ(t),

(B.2.12)
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Using (B.2.4) and (B.2.5), we can obtain:

ϵ̇(t) = Nϵ(t) −Hv(t) +
(
T − F

[
E⊥

0

])
ψ(t)eθ(t) + Υ1ėθ(t), (B.2.13)

Now, by utilizing (B.2.11), equation (B.1.4) can be expressed as:

v̇(t) = −Sϵ(t) + Lv(t) + (STE +M

[
E⊥A
C

]
)x(t) +M

[
E⊥

0

]
ψ(t)eθ(t), (B.2.14)

Using (B.2.6) we have

v̇(t) = −Sϵ(t) + Lv(t) +M

[
E⊥

0

]
ψ(t)eθ(t). (B.2.15)

Considering equations (B.2.12) and (B.2.14), the following observer error dynamics equation is
obtained

φ̇(t) = Aφ(t) + Deθ(t) + Υ (t)ėθ(t), (B.2.16)

where φ(t) =
[
ϵ(t)
v(t)

]
.

The key step of the proof is to define the following linear combination of φ(t) and eθ(t):

η(t) = φ(t) − Υ (t)eθ(t), (B.2.17)

then we have:

η̇(t) = φ̇(t) − Υ̇ (t)eθ(t) − Υ (t)ėθ(t). (B.2.18)

By substituting equation (B.2.16) into equation (B.2.18), we obtain:

η̇(t) = Aη(t) +
(
Dψ(t) + AΥ (t) − Υ̇ (t)

)
eθ(t). (B.2.19)

From linear equation (B.2.8), equation (B.2.19) is reduced to its homogeneous part:

η̇(t) = Aη(t). (B.2.20)

Matrix A must be a stability matrix to ensure convergence of η(t) to 0.
The first result of the proof is that, since Υ (t) is generated by (B.2.8) and under above conditions
for matrices A and D, system (B.2.19) generating η(t) is globally exponentially stable, so η(t)
converges to 0 with global and exponential convergence.

Now and since the parameter vector θ(t) is constant, we have:

θ̇(t) = 0, (B.2.21)

and
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ėθ(t) = θ̇(t) − ˙̂
θ(t),

= −ΓβT (t)CT Λ(y(t) − ŷ(t)),
= −ΓβT (t)CT ΛCex(t). (B.2.22)

On the other hand, by taking (B.2.7), we can easily prove that

ex(t) = Pφ(t) −Q

[
E⊥

0

]
ψ(t)eθ(t), (B.2.23)

Then, by replacing φ(t) from (B.2.17), and using (B.2.23) in (B.2.22), we obtain:

ėθ = −ΓβT (t)CT ΛC
[
Pη(t) + [PΥ (t) −Q

[
E⊥ψ(t)

0

]
]eθ(t)

]
, (B.2.24)

by choosing β(t) as in (B.2.10), equation (B.2.24) becomes:

ėθ = −ΓβT (t)CT ΛC [Pη(t) + β(t)eθ(t)] , (B.2.25)
Looking to the homogeneous part of system (B.2.25) leads to:

ėθ = −ΓβT (t)CT ΛCβ(t)eθ(t). (B.2.26)
As ψ(t) and ψ̇(t) are bounded, β(t) generated from the exponentially stable system (B.2.2) is

also bounded. From the persistent excitation condition (B.2.3), and since Γ and Λ are positive,
the global exponential stability of system (B.2.26) can be easily proved. From the exponential
convergence of η(t) and of system (B.2.26), we obtain the global and exponential convergence to 0
of eθ(t) generated from system (B.2.25) (see Zhang (2002), Alma and Darouach (2014) and Alma
et al. (2018) for more details).

Now, from η(t) → 0, eθ(t) → 0 and the fact that Υ (t) is bounded, we conclude that φ(t) =
η(t) + Υ (t)eθ(t) converges to 0, with global and exponential convergence.

Finally, from the convergence of eθ(t) and φ(t) to 0, and from (B.2.23), the global and expo-
nential convergence of ex(t) → 0 is guaranteed.

B.3 Observer design
This section will be devoted to the parameterization of all the observer matrices and the stability
analysis.

Observer parameterization

This section will be devoted to the parameterization of all matrices observers. The subsequent
derivation of the observer parametrization follows a similar approach to that presented in the sec-
tion 4.2.2.
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Now, by using the values of matrices N and S provided by the previous parametrization, the
matrix A can be expressed as

A = (A1 − YA2) (B.3.1)

where A1 =
[
N1 0
0 0

]
, Y =

[
Y1 −H

−Y2 L

]
and A2 =

[
N2 0
0 −I

]
.

without loss of generality, Y3 = 0 is taken for simplicity.

The problem of the observer design is reduced to determine matrix Y such that system (B.3.1)
is asymptotically stable.

B.4 Stability analysis of the observer
This section is devoted to the stability analysis of the observer. The following theorem gives the
condition for the stability in a LMI.

Theorem 7. Under Assumptions 11, there exists a matrix Y such that system (B.2.20) is asymp-

totically stable if there exists a positive definite matrix X =
[
X1 0
0 X2

]
> 0 such that the following

LMI is satisfied

NT ⊥
2 [NT

1 X1 +X1N1]NT ⊥T
2 < 0 (B.4.1)

matrices N1 and N2 are defined in section 4.2.2. Then, the parameter matrix Y is obtained as
shown below

Y = X−1(−σBT +
√
σL∆1/2)T , (B.4.2)

where

σBBT − Q > 0 (B.4.3)

Matrix Q =
[
NT

1 X1 +X1N1 0
0 0

]
, B =

[
−NT

2 0
0 I

]
and Ξ = Φ. L is a matrix with arbitrary

elements such that ||L|| < 1 and σ is a positive scalar such that ∆ > 0.

Proof. Consider the following Lyapunov candidate function

V (η(t)) = ηT (t)Xη(t), (B.4.4)

The derivative of (B.4.4) along the trajectory of (B.2.20) gives

V̇ (η(t)) ≤ ηT (t)
[
ATX +XA

]
η(t), (B.4.5)
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or

ATX +XA < 0, (B.4.6)

replacing (B.3.1) in equation (B.4.6) we have

AT
1X − AT

2 Φ +XA1 − ΦTA2 < 0, (B.4.7)

with Φ = YTX.
by inserting A1 and X into (B.4.7) we have

Q − AT
2 Φ − ΦTA2 < 0, (B.4.8)

Equation (B.4.8) can be written as

Q + BΞ + (BΞ)T < 0. (B.4.9)

According to the elimination lemma (Skelton et al., 1997), there exists a matrix Ξ that satisfies
(B.4.9) if and only if the following inequality is verified:

B⊥QB⊥T < 0, (B.4.10)

with B⊥ = −AT ⊥
2 =

[
NT ⊥

2 0
]
. Using the definition of Q, (B.4.1) is obtained. If (B.4.10)

is satisfied, the parameter matrix Y is obtained as in (B.4.2) which complete the proof of the
theorem.

Finally, the generalized adaptive observer can be obtained with the following algorithm.

1. Select a matrix R ∈ Rq0×n such that rank(Σ) = n.

2. Compute matrices N1, N2, F1, F2, Q1, T , K and P1 defined in Section B.3.

3. Solve LMI (B.4.1) to find matrices X and Φ.

4. Choose matrix ||L|| < 1 and a scalar σ > 0 such that Γ > 0.

5. Determine matrix Y using (B.4.2), to obtain Y1, Y2, H and L.

6. Compute different observer matrices N , S, M , P , Q, F and J , by using (4.25) to compute
N , (4.31)-(4.34) to compute S, M , P and Q taking matrix Y3 = 0. The matrix F are given
by (4.27) and matrix J from (B.2.4).

7. Compute in real time Υ (t) and β(t) using (B.2.8) and (B.2.2).
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B.5 Numerical example
The following numerical example is chosen to illustrate the proposed design. Les us consider the
descriptor system (B.1.1) with one unknown parameter θ(t) to estimate, described by:

E =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , A =


0 0 1 0
1 0 0 0

−1 0 0 1
0 1 1 1

 , B =


0
0
0

−1

 ,

G =


1
0
0
1

 , ψ(t) =


0
ϕ(t)

0
0

 and C =
[
1 0 0 0
0 1 0 0

]
.

(B.5.1)

Matrix E⊥ such that E⊥E = 0 is obtained as:

E⊥ =
[
0 0 1 0
0 0 0 1

]
(B.5.2)

We select matrix R =


1 0 1 1
0 1 0 0
0 0 1 0
0 0 0 1

× 102, such that rank(Σ) = rank

( R
E⊥A
C

) = 4.

By applying the above results to this system we can compute matrices N1, N2, F1, F2, Q1, T ,
K and P1. After resolving LMI (B.4.1), considering L = ones12,8 × 0.1 and σ = 1000 satisfying
the following conditions ||L|| < 1, and ∆ > 0. Matrices N , H, F , S, L, M , and J are computed.

N =


−0.5587 0.0588 1.0585 0.5582
0.5151 −0.0531 −0.5199 −0.5246

−0.4715 0.0475 −0.0187 0.4911
−0.0436 0.0057 0.5386 0.0335

 ,

F =


−50 50 −47.0486 −27.9492

0 0 24.4800 2.4176
50 −50 −1.9114 23.1154

−50 50 −22.5686 −25.5329

 ,

S =


−0.0021 −0.1345 −0.0645 −0.1317
−0.0021 −0.1345 −0.0645 −0.1317
−0.0021 −0.1345 −0.0645 −0.1317
−0.0021 −0.1345 −0.0645 −0.1317

× 10−3,

M =


0 0 0.0035 0.0034
0 0 0.0035 0.0034
0 0 0.0035 0.0034
0 0 0.0035 0.0034

 , J =


0
0
0
0

 ,
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In order to simulate the considered linear descriptor system and the proposed adaptive observer,
the input ϕ(t) is chosen to be a square impulses as shown in Figure B.5.1. For clearness reasons,
only the first 100 seconds are presented. This signal is rich and satisfies the persistent excitation
condition.

The true parameter to estimate θ(t) switches between 0.5 and 1.5. The initial values for the
state vector are: x(0) =

[
−1 −1 −1 2

]T
; x̂(0)

[
0 0 0 0

]T
; θ̂(0) = 0. The adaptive observer

parameters are: Λ = ones12×8 and Γ = 100.

Fig. B.5.1. Simulated input ϕ(t).

100



Fig. B.5.2. State estimation error x1(t) convergence.

Fig. B.5.3. State estimation error x2(t) convergence.
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Fig. B.5.4. State estimation error x3(t) convergence.

Fig. B.5.5. State estimation error x4(t) convergence.
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Fig. B.5.6. Convergence of parameter estimate θ(t).

Figures B.5.2-B.5.5 presents the state estimation error ex(t) for all the state vector. Figure
B.5.6 presents the parameter estimation in relation to its original value. The observer successfully
converges to the states of the system. It can be shown that the state estimation errors converge 0
after each change of θ(t) with a good rate.
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