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A B S T R A C T

This thesis presents the design of novel robust control strategies for dy-
namics systems with input saturation and state constraints affected by
disturbances. The problem considers both linear and nonlinear systems
taking into account some systems constraints, i.e., state, input, and com-
munications constraints. To develop the new robust control algorithms for
both linear and nonlinear systems, several tools are used. These tools in-
clude the model predictive control, the attractive ellipsoid method, and the
barrier Lyapunov function, which effectively handle input and state con-
straints. Additionally, integral sliding–mode control can counteract the
effects of some class of external perturbations, while event–triggered con-
trol theory addresses communication constraints. Numerical simulations,
over some academic examples, and experimental results, using the unicy-
cle mobile robot, validate the effectiveness of the proposed robust control
strategies.
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A C R O N Y M S

AEM Attractive Ellipsoid Method
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IP Interval Predictor

ISMC Integral Sliding–Mode Control

ISS Input–to–State Stability
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Part I

I N T R O D U C T I O N A N D P R E L I M I N A R I E S





1
I N T R O D U C T I O N

This chapter contains the motivation of this work, which serves as the founda-
tion for the main problem formulation. The contribution section outlines the novel
aspects of this work in addressing the stated problem. Finally, the structure of the
document is also presented.

1.1 motivation

In control theory, the mathematical models are normally used to repre-
sent physical systems and design controllers. However, if the controller
is applied to a real dynamical system, there exist some restrictions due to
structural limitations such as saturation in the control input and state con-
straints, (see, e.g., [1], [2], and [3]). Nevertheless, this class of restrictions
is rarely included in most of the mathematical models. On the other hand,
the behavior and the stability of the systems can be affected by parameter
uncertainties and external perturbations. Moreover, in most cases, the dy-
namical systems are managed through a digital platform, and then, there
is limited bandwidth and it is necessary to restrict the frequency of control
input updates to save communication resources.

Therefore, the control strategies must consider these challenges during
their design. In this sense, it is essential to ensure that the designed con-
troller does not violate the system constraints. To achieve this, control
techniques need to take into account these constraints and be capable of
compensating the effects of external perturbations.

Fig. 1, illustrates some examples of dynamical systems for which it is
required to take into account possible state, input, and communication
constraints as well as external perturbations. For instance, the wheeled
mobile robots operate in a confined workspace, i.e., they are restricted by
obstacles, terrain, and workspace boundaries. On the other hand, aerial
robots, also have workspace limitations and limited flight time due to the
battery capacity, i.e., they have input and state constraints.

Figure 1: Constrained dynamic systems
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4 introduction

With this in mind, the main problem statement is presented below.

1.2 problem statement

Consider a general class of nonlinear system

ẋ(t) = f(t, x(t),u(t),w(t)), t > 0, (1)

where x(t) ∈ Rn is the state, f : R+ ×Rn ×Rp ×Rq → Rn is a locally
Lipschitz function in x and u, and piecewise continuous in t, u(t) ∈ Rp is
the control input, and w : R+ → Rq is the disturbance term.

Then, it is considered that the control signals are constrained, i.e.,

u(t) ∈ U := {u ∈ Rp|− umaxj 6 uj 6 umaxj ,∀ j = 1,p}, (2)

where 0 < umaxj is the maximum amplitude value that uj can take. More-
over, the control signal could possess sampling communication constraints,
i.e., u(t) = u(tk), for all t ∈ [tk, tk+1) and k ∈ N, where the sampling in-
stants tk monotonously increase, so that limk→∞ tk = +∞. Additionally,
the solutions of the system (1) must be constrained inside the polytope

X := {x ∈ Rn|bx 6 1kx}, (3)

where b = (b1, . . . ,bkx)
> ∈ Rkx×n, with bi ∈ Rn being some given vec-

tors that characterize the state constraints, kx ∈ Z is the number of the
polytope faces, and 1kx = (1, . . . , 1)> ∈ Rkx .

Thus, the general objective is to develop new robust control strategies
for stabilizing some classes of perturbed dynamical systems taking into
account state, input, and/or communication constraints. Specifically, the
particular goals of this work are listed below:

1) To design a robust control strategy to regulate the output of a class
of uncertain linear systems, with state and input constraints, affected
by external perturbations.

2) To design a robust control strategy to stabilize a particular class of
uncertain nonlinear systems, taking into account state and input con-
straints, and external perturbations.

3) To design a sampled robust control strategy to stabilize a particular
class of uncertain nonlinear systems, taking into account state, input,
and communication constraints, and external perturbations.

1.3 contribution

Motivated by the aforementioned challenges, i.e., external perturbations,
state, input, and communications constraints, this document presents a
solution to the controller design problem for some classes of uncertain
linear and nonlinear systems with state, input, and/or communication
constraints. Specifically, this thesis contributes with



1.3 contribution 5

1) The design of a robust output–regulation control for a class of uncer-
tain linear systems. The proposed algorithm is composed of a linear
and nonlinear part, with the following features:

• The linear control part is designed based on the BLF and the
AEM approach.

• The nonlinear control part is based on an ISMC approach.

• Characterization of safe set where the system trajectories do not
transgress the system constraints.

This contribution is reflected in the works given in [4], [5], [6], [7],
[8], and [9].

2) The design of a robust sampled controller to stabilize a particular
class of uncertain nonlinear systems, taking into account state and
input constraints, affected by external perturbations. The proposed
controller possesses the following features:

• The controller is based on a discrete–time IP–based state–feedback
controller and a MPC approach.

• The measurements of the system states are not required.

• Characterization of safe set where the system trajectories do not
transgress the state constraints.

• Low computational cost.

This contribution is reflected in the works given in [10], [11], [12],
and [13].

3) The design of a sampled control strategy to stabilize a particular class
of uncertain nonlinear system, taking into account communication,
state and input constraints, affected by external perturbations. The
proposed control scheme is composed of an aperiodic and a periodic
sampled controller, with the following features:

• The aperiodic sampled controller is based on a state–feedback
event–triggered controller designed through the AEM and the
BLF.

• The periodic sampled control part is based on a state–feedback
controller designed using a Lyapunov–Krasovskii function ap-
proach.

• Characterization of a safe set, where the state constraints are
not transgressed.

This contribution is reflected in the works given in [14], [15], and
[16].

A schematic diagram of the academic contribution is presented in Fig.
2.



6 introduction

Figure 2: Schematic diagram of the academic contribution

1.4 thesis structure

The rest of the document is organized as follows. In Chapter 2, the
mathematical preliminaries along with some useful results are given. The
second part of the thesis focuses on designing control strategies for con-
strained systems. Chapter 3 introduces the design of an ISM–based control.
Chapter 4 presents the design of an interval predictor–based robust con-
trol. Chapter 5 presents the development of a sampled robust control. In
the third part of the thesis, the applications of the algorithms presented
in the second part are shown. Chapter 6 contains the application of ISM–
based robust control to solve the trajectory tracking in an omnidirectional
mobile robot. Chapter 7 shows the application of the ISM–based robust
control algorithm to solve the trajectory tracking problem in an unicycle
mobile robot. Chapter 8 presents the application of sampled robust control
in an unicycle mobile robot. Finally, Chapter 9 provides the concluding re-
marks.



2
P R E L I M I N A R I E S

In this chapter, it is described the notation that will be used throughout the rest
of the document, as well as fundamental definitions and concepts necessary for the
development of the control algorithms.

2.1 notation

The sets of real and integer numbers are defined by R and Z, respec-
tively; R+ := {s ∈ R : s > 0} and Z+ := {s ∈ Z : s > 0}. The matrix
A† = (A>A)−1A> ∈ Rm×n denotes the left pseudoinverse of a matrix
A ∈ Rn×m. The term He{A} denotes A+A>, for a matrix A ∈ Rn×n. For
a matrix A, it is defined that A+ = max{0,A} and A− = A+ −A (similarly
for vectors), where the operation max is understood in an element–wise
sense. For two vectors x1, x2 ∈ Rn or matrices A1,A2 ∈ Rn×n, the re-
lations x1 6 x2 and A1 6 A2 are understood in an element–wise sense.
The relation P ≺ 0 (P � 0) means that a symmetric matrix P ∈ Rn×n is
negative (positive semi–) definite. For a matrix A ∈ Rm×n, the induced
norm is the spectral norm, i.e., ||A|| =

√
λmax(A>A).

The set E (R) := {x ∈ Rn|x>Rx 6 1} is an ellipsoid characterized by a
matrix 0 < R> = R ∈ Rn×n centered at the origin. The set E (P, xc) :=

{x ∈ Rn|(x − xc)
>P(x − xc) 6 1} is an ellipsoid characterized by a ma-

trix 0 < P> = P ∈ Rn×n and centered at xc ∈ Rn. For any θ ∈ Rn,
‖θ‖E := infη∈E ‖θ− η‖, is the distance from θ to the set E . The Mink-
ouski addition of two subsets A,B ∈ R is defined by A+ B = {a+ b|a ∈
A,b ∈ B}. The set P := {x ∈ Rn|bx 6 1kx} is a polytope, where b =

(b1, . . . ,bkx)
> ∈ Rkx×n, with bi ∈ Rn being some given vectors that char-

acterize the state constraints, kx ∈ Z is the number of the polytope faces,
and 1kx = (1, . . . , 1)> ∈ Rkx .

For a Lebesgue measurable function w : R+ → Rq, define ‖w‖(t0,t1) :=

ess supt∈(t0,t1)
‖w(t)‖; then, ‖w‖∞ = ‖w‖(0,+∞) and the set of all the func-

tions w with the property ‖w‖∞ < +∞ is denoted as L
q∞. A continuous

function α : R+ → R+ belong to class K if it is strictly increasing and
α(0) = 0. A continuous function β : R+ → R+ belongs to class KL if, for
each fixed s, β(r, s) ∈ K with respect to r, and for each fixed r, β(r, s) is
decreasing to zero with respect to s. A matrix is called Metzler when all
its non–diagonal coefficients are non–negative. Let us denote a sequence
of integers 1, ...,n as 1,n, for any n ∈N.

Denote the trigonometric functions sin(θ), cos(θ), and sinc(θ) as s(θ),
c(θ), and sc(θ), respectively. The OR operation is denoted by the symbol
∧.

7



8 preliminaries

2.2 definitions and supporting lemmas

Consider the following nonlinear system

ẋ(t) = f(x(t),w(t)), (4)

where x(t) ∈ Rn is the state vector, w : R+ → Rq is the external input;
f : Rn ×Rq → Rn is a locally Lipschitz function. The solution of system
(4) for an initial condition x0 ∈ Rn and w ∈ L

q∞ is denoted as x(t, x0,w),
for any t > 0 for which the solution exists.

Definition 1 [17]. The system (4) is said to be Input–to–State practically Sta-
ble (ISpS) if there exist some functions β ∈ KL and γ ∈ K, and a constant
κ ∈ R+, such that for any w ∈ L

q∞, and any x0 ∈ Rn

||x(t, x0,w)|| 6 β(||x0||, t) + γ(||w||∞) + κ, ∀t > 0. (5)

If κ = 0, the system (4) is said to be Input–to–State Stable (ISS).

The next lemma gives the interval upper and lower bounds for product
of matrix and vector variables.

Lemma 1 [18]. Let x ∈ Rn be a vector variable, x 6 x 6 x for some x, x ∈ Rn,
then

If A ∈ Rm×n is a constant matrix then

A+x−A−x 6 Ax 6 A+x−A−x. (6)

If A ∈ Rm×n is a variable matrix and A 6 A 6 A for some A,A ∈
Rm×n, then

Am 6 Ax 6 AM, (7)

with Am = A+x+ − A
+
x− − A−x+ + A

−
x− and AM = A

+
x+ −

A+x− −A
−
x+ +A−x−.

A variant of Grönwall–Bellman inequality is formulated in the next
lemma:

Lemma 2 [19]. Let λ : [a,b]→ R be a continuous function and µ : [a,b]→ R

be a continuous and non–negative function. If a continuous function y : [a,b]→
R satisfies

y(t) 6 λ(t) +
∫t
a

µ(s)y(s)ds,

for a 6 t 6 b, then, on the same interval, it holds that

y(t) 6 λ(t) +
∫t
a

λ(s)µ(s)e
∫t
s µ(r)drds.
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2.3 barrier lyapunov function

Consider the following system

ẋ(t) = f(x(t)), x(0) = x0, (8)

where x(t) ∈ Rn is the state and f : Rn → Rn is a continuous function
with respect to x(t). The solution of system (8) for an initial condition
x0 ∈ Rn is denoted as x(t, x0), for any t > 0 for which the solution exists.

Definition 2 [20]. A barrier Lyapunov function is a scalar function V(x), de-
fined with respect to the system (8) on an open region D containing the origin,
that is continuous, positive definite, has continuous first–order partial derivatives
at every point of D , has the property V(x)→∞ as x approaches the boundary of
D , and satisfies V(x(t)) 6 b, for all t > 0, along the solution of system (8), for
x0 ∈ D and some positive constant b.

Note that if V̇ 6 0 and x0 ∈ D , then b = V(x0), and any trajectory will
be bounded inside D .

A graphical representation of a Lyapunov barrier function is depicted in
Fig. 3.

V

x
0

Figure 3: Barrier Lyapunov Function

Let us consider the input vector u = (u1, . . . ,up)> ∈ Rp, then it is
possible to apply the saturation function to each element of u ∈ Rp, i.e.,

σj(uj) =


umaxj , if umaxj 6 uj,

uj, if −umaxj < uj < umaxj ,

−umaxj if uj 6 −umaxj .

(9)

where umaxj > 0, for j = 1,p, is the maximum amplitude value that uj
can take. Due to the structure of this function there exists a linear control
region, where σ(uj) = uj, is characterized by the set U := {u ∈ Rp| −

umaxj 6 uj 6 umaxj , ∀ j = 1,p}. Define the function φj : R→ R as φj(uj) :=
σj(uj) − uj and φ(u) := (φ1(u1), . . . ,φp(up))>. For the multiple input
case, let us introduce the following lemma.
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Lemma 3 [21]. If ᾱ− β̄ is an element of U , then the function φj(α) satisfies
φ>(ᾱ)∆

[
φ(ᾱ) + β̄

]
6 0, with ∆ = diag(δ1, . . . , δp), for any δj > 0, j = 1,p.

The conditions to get an asymptotic attractive ellipsoid are given by the
following definition.

Definition 3 [22]. The set E (P̃) = {x ∈ Rn|x>P̃x 6 1} is an asymptotically
attractive ellipsoid for the system (8), if ‖x(t, x0)‖E → 0, when t → ∞, for any
x0 ∈ Rn.
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C O N T R O L S T R AT E G I E S F O R C O N S T R A I N E D
S Y S T E M S





3
A N I S M – B A S E D R O B U S T C O N T R O L F O R U N C E RTA I N
L I N E A R S Y S T E M S

This chapter presents a robust control for uncertain linear systems with input
saturation, state constraints, and external perturbations. The control design con-
sists of a nominal and a robust part, both independently designed using an ISMC
approach. The proposed scheme guarantees asymptotic convergence to zero of the
output regulation error coping with the system constraints and perturbations.

3.1 introduction

The mathematical models are normally used to represent physical sys-
tems and design controllers. However, if the controller is applied to a real
dynamical system, there exist some restrictions due to structural limita-
tions such as saturation in the control input and state constraints. Never-
theless, this class of restrictions is rarely included in most of the mathe-
matical models. On the other hand, the behavior and the stability of the
systems can be affected by parameter uncertainties and external pertur-
bations. Therefore, robust control techniques, e.g., SMC, are necessary to
design a controller that counteracts the effect of external perturbations. In
particular, the ISMC technique is capable of compensating the effect of
these perturbations without the presence of a reaching phase [23]. More-
over, the ISMC allows to independently design the control law in two parts,
i.e., a nominal and a robust part. Each part of the control could deal with
different constraints and perturbations.

Regarding the control design for systems with state constraints, the BLF
appears as a possible solution [20]. For instance, based on the BLF tech-
nique, in [24], a feedback control is proposed for nonlinear switched sys-
tems with state constraints. The proposed scheme ensures that the output
tracking error converges to zero asymptotically. The BLF can be combined
with other different techniques, e.g., the AEM, adaptive control techniques,
and backstepping, to solve the problem of the control design for systems
with state constraints. The BLF combined with the AEM allows an el-
lipsoid to characterize a region where none of the system constraints are
transgressed. For instance, in [25], considering that the state constraints
are described by a polytope, a robust state feedback controller is proposed
for uncertain linear systems. The proposed scheme ensures asymptotic
convergence of the system trajectories to a region around the origin. In
the context of the adaptive control, in [26], a robust adaptive control based
on an asymmetric BLF is proposed for a class of strict–feedback nonlinear
systems in presence of state constraints. However, in some of the previ-

13



14 an ism–based robust control for uncertain linear systems

ously mentioned works, the external perturbations are not contemplated
and only sate constraints are considered.

On the other hand, in the control design for systems with input satura-
tion, in [27], an output feedback control is proposed for a chain of integra-
tors with input saturation. The proposed approach guarantees asymptotic
convergence to zero of the closed–loop dynamics. However, parameter un-
certainties and external perturbations are not taken into account. In [4], a
robust output–based control, based on the AEM and the BLF, is proposed
for uncertain linear systems with input saturation and external perturba-
tions. The proposed algorithm guarantees asymptotic convergence to a
certain set. However, in the above–mentioned works only input saturation
is considered.

Concerning the control design for constrained systems, i.e., systems with
input saturation and state constraints, different techniques have been used
to solve this problem. For instance, in [28], an output feedback control is
proposed for linear systems with external perturbations. The proposed
controller ensures that the regulation error converges to a neighborhood
around the origin. On the other hand, in [29], a controller based on a high–
order BLF and the Nussbaum gain technique is proposed for high–order
nonlinear systems. In absence of external perturbations, the closed–loop
signals are bounded. Also, in [30], a constrained adaptive robust control is
proposed for MIMO systems with parameter uncertainties and perturba-
tions. The proposed algorithm guarantees finite–time convergence of the
tracking error to a region around the origin. Notwithstanding, in most of
the above–mentioned works, external perturbations are not contemplated,
and when they are considered, only convergence to a region around of the
origin is guaranteed.

Motivated by the above–mentioned issues, this chapter aims to design
a robust controller to regulate the output of a class of uncertain linear
systems, with input saturation and state constraints, affected by external
perturbations. The proposed robust control is composed of a linear and
a nonlinear part. Each part of the control can be designed independently
due to the use of an ISMC approach. Then, the proposed control approach
contributes with the following features:

1) The linear control, whose design is based on the BLF and the AEM
approach, considers the input saturation, the state constraints, and
the parameter uncertainties.

2) The nonlinear part is based on an ISMC approach and it can com-
pensate the effect of some matched perturbations.

3) A safe set where the system trajectories do not transgress the state
constraints and input saturation, is provided.

4) The proposed scheme guarantees asymptotic convergence to zero of
the output regulation error coping with the system constraints and
perturbations.
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5) A constructive and simple method, based on LMIs, is proposed to
compute the controller gains.

3.2 problem statement

Consider the following class of uncertain linear systems with input sat-
uration

ẋ(t) = (A+∆)x(t) +B(u(t) +w(t)), t > 0, (10a)

yr(t) = Cx(t), (10b)

where x(t) ∈ Rn is the state, u(t) ∈ R is the control input, yr(t) ∈ R

is the output to be regulated, w : R → Rq is the external perturbation,
and ∆ ∈ Rn×n represents some parameter uncertainties. The matrices
A,B, and C are known and they have suitable dimensions. It is assumed
that the controllability of the system is not affected by the presence of the
parameter uncertainties, i.e., the pair (A+∆,B) is controllable.

It is considered that u ∈ [−umax,umax], where umax > 0 is the maximum
value that the control signal can take. The solutions of the system (10)
must be constrained inside the polytope

Px := {x ∈ Rn|bx 6 1kx}. (11)

Let us define a desired constant reference as r ∈ R. Thus, the problem
is to design the control input u, for the system (10), such that

lim
t→∞ r− yr(t) = 0 subject to u ∈ [−umax,umax],

where r ∈ R is the desired constant reference, despite some class of exter-
nal perturbations w(t) and parameter uncertainties ∆x.

3.3 robust control design

The following assumption is imposed on system (10).

Assumption 1 The unknown input w is bounded, i.e., w ∈ W := {w ∈ L∞ :

||w||∞ 6 w}, with w a positive known constant; and the unknown matrix ∆ is
norm bounded, i.e., ||∆|| 6 δ, with δ a positive known constant.

Since the external perturbation w is bounded, and due to the fact that
the system (10) is linear; then, the solutions of the system exist and they
do not escape to infinity in finite time, i.e., ||x||(0,t1) <∞, for any t1 <∞.

Define the regulation error ey := r− yr and the following variable

xr :=

∫t
0

(r− yr(τ))dτ =

∫t
0

ey(τ)dτ.

Then, the following extended system is introduced

ż(t) = (Ā+ ∆̄)z(t) + B̄(u(t) +w(t)) + Fr, (12)
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where z :=
(
x>, xr

)> ∈ Rn+1 is the extended state and the system matrices
have the following structure

Ā =

(
A 0

−C 0

)
, B̄ =

(
B

0

)
, F =

(
0

1

)
, ∆̄ =

(
∆ 0

0 0

)
.

The following assumption is imposed on the extended system (12).

Assumption 2 The pair (Ā+ ∆̄, B̄) is stabilizable.

The Assumption 2 characterizes the type of outputs that can be regu-
lated. Note that, due to (11), the solutions of the system (12) are con-
strained inside the polytope

P := {z ∈ Rn+1|bz 6 1k}, (13)

with k = kx + 1 and b = (b>i , . . . , b>k )
> ∈ Rn+1, where bk is an arbitrary

vector. For simplicity, bk can be considered as 0 since the variable xr has
no constraints. It is possible to approximate the state–constrained set (13)
by an ellipsoidal set completely contained in it [31]. Thus, there exists a
family of ellipsoids E (R), parameterized by 0 ≺ R = R> ∈ R(n+1)×(n+1),
contained in P, if b̄>i R

−1b̄i 6 1, for i = 1,k, where the ellipsoid E (R) is
the safe set in which the state constraints and the input saturation are not
violated.

Note that it is possible to compute the projection of the ellipsoid E (R) ∈
R(n+1)×(n+1) into the plane Rn×n, i.e., a new ellipsoid E (Rp), parame-
terized by 0 ≺ Rp = R>p ∈ Rn×n, in the coordinates of the original state
x. Then, it is possible to obtain a matrix Rp by partitioning R into the
following matrices

R =

(
R11 R>21

R21 R22

)
,

where R11 ∈ Rn×n, R21 ∈ R1×(n−1) and R22 ∈ R. Therefore, the matrix
Rp is computed as Rp = R11 − R

>
21R

−1
22 R21. Then, the ellipsoid E (Rp)

fulfills the condition b>i R
−1
p bi 6 1, and it is completely contained in (11).

The proposed controller is given as follows

u(t) = σ(u0(t)) + uI(t). (14)

The controller (14) is divided into two parts. The nonlinear element uI
is the ISMC that can compensate the effect of the matched perturbations;
whereas u0 is the linear control part that takes into account the system
constraints, i.e., the input saturation and the state constraints, and parame-
ter uncertainties. Due to the fact that |u| 6 umax, each part of the controller
can be upper bounded as |uI| 6 uImax and |σ(u0)| 6 u0max , with constants
u0max ,uImax > 0, such that u0max + uImax 6 umax.

Remark 1 The value of umax is fixed due to the physical properties of the ac-
tuators. In order to fulfill the condition u0max + uImax 6 umax, it is possible
to select uImax according to the upper bound of the matched perturbations; then,
u0max = umax − uImax .
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Therefore, the closed–loop system dynamics, taking into account (14), is
given as:

ż(t) = (Ā+ ∆̄)z(t) + B̄(σ(u0(t)) + uI(t) +w(t)) + Fr. (15)

Now, define the sliding variable as follows

s(z) = G (z(t) − z(0)) −G

∫t
0

(Āz(τ) + B̄σ(u0(τ)) + Fr)dτ, (16)

where G ∈ R1×n is such that det(GB̄) 6= 0. The optimal way to design
the matrix G is G = B̄> [32] or G = B̄† [33], these selections of G minimize
the effect of the unmatched perturbations on the sliding mode dynamics
[33], i.e., G = B̄> or G = B̄† = arg minG∈R1×n ||(I− B̄(GB̄)

−1G)∆̄z||.
Hence, the dynamics of the sliding variable is given as

ṡ = GB̄(uI(t) +w(t)) +G∆̄z. (17)

The methodology to design the robust controller can be described in
two steps: the design of the ISMC and the design of the linear control.
The ISMC is designed in order to ensure the existence of the sliding–mode,
taking into account the input saturation and matched perturbations. On
the other hand, once the sliding–mode existence is guaranteed, the linear
control part is designed in order to guarantee the convergence to zero of
the regulation error considering the input saturation, state constraints, and
parameter uncertainties.

3.3.1 Integral Sliding–Mode Control Design

The ISMC uI is proposed as

uI(t) = −ρ(z(t))sign(s), (18)

where the state–dependent gain ρmust be positive, i.e., ρ(z) > 0, for all z ∈
Rn+1. Consider the ellipsoid E (R), parameterized by R ∈ R(n+1)×(n+1),
that it is computed further on, as a safe set, which is an approximation of
the region of attraction of system (12), where the state constraints are not
violated. The following lemma provides the conditions to design ρ and
ensures the existence of the sliding–mode.

Lemma 4 [32] Let Assumptions 1 and 2 be satisfied, and the ISMC (18) be
applied to the system (17), for a given uImax > 0. If the gain ρ is designed as

ρ(z) = α+w+
δ||G||||z||

||GB̄||
, (19)

for some α > 0, such that

0 < α 6 uImax −w−
δ||G||

||GB̄||λ
1
2
max{R}

, (20)

holds for some uImax and 0 ≺ R> = R ∈ R(n+1)×(n+1); then, s = 0 is Finite–
Time Stable.
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Note that the
selection of the

state–dependent
gain ρ depends on

the bound of the
perturbation, the

bound of the
parameter

uncertainties, and
the convergence rate,

i.e., w, δ, and α,
respectively.

In order to fulfill the saturation constraint uImax 6 umax − u0max , α must
be selected such that (20) holds, which is explicitly related to the safe set
E (R), where the system constraints are not violated, i.e., u ∈ [umax,−umax]

and z ∈ P. Moreover, note that the design of the gain ρ ensures the
existence of the integral sliding–mode guaranteeing the fulfillment of the
input constraint. Once on the sliding surface, the linear control design will
deal with the state and input constraints.

The following subsection presents the design of the linear controller u0
for the dynamics on the sliding–mode.

3.3.2 Linear Control Design

Once on the sliding–mode, it follows that s = 0; and thus, based on the
equivalent control method, the dynamics on the sliding surface is given by

ż(t) = (Ā+ Γ∆̄)z(t) + B̄σ(u0(t)) + Fr, (21)

with Γ = (I− B̄(GB̄)−1G). Then, the linear part of the control, i.e., u0, is
proposed as follows

u0(t) = Kz(t), (22)

where K ∈ Rn+1 is a feedback gain to be designed, which can be designed
considering the state constraints (13) and the input saturation, by means
of the AEM and the BLF approach.

The following lemma provides the safe set E (R) and a way to design K.

Lemma 5 Let Assumptions 1 and 2 be satisfied, and the control (22) be applied to
the system (21), for a given u0max > 0. Suppose that there exist a positive–definite
matrix X1 = X>1 ∈ R(n+1)×(n+1), some matrices Y ∈ R(n+1)and Z ∈ R(n+1),
and some constant δ,γ > 0, such that the following set of LMIs

χ1 =


ψ1 B̄δ− Y> +Z> F X1

? −2δ 0 0

? ? −γ 0

? ? ? −X2

 ≺ 0, (23a)

ψ1 = ĀX1 +X1Ā+ ΓδX1 +X1δΓ
> + B̄Y + Y>B̄>,

χ2 =

(
X1 Z

Z> u20max

)
� 0, (23b)

χ3 = b̄
>
i X1b̄i 6 1, for i = 1,k, (23c)

r2X2 ≺ X1, (23d)

is feasible for some vectors b̄i and a fixed constant δ. If z(0) ∈ E (R), with R =

X−1
1 , and K is designed as K = YR; then, the trajectories of the system (21)

converge asymptotically to E (Pr), with P = X−1
2 and Pr := 1

r2
P, and the state

and input constraints are not violated.
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An outline of the proof is provided in the section 3.6, and for more
details please see [5].

Since r 6= 0 the system trajectories converge to an equilibrium point
zc = −(Ā + Γ∆̄ + B̄K)−1Fr; then, it is only necessary to verify that this
equilibrium is contained in the ellipsoid E (Pr).

Remark 2 Note that (23d) guarantees that E (Pr) ⊂ E (R). Since, in the set
E (R)\E (Pr), V̇ < 0, with V(z) = ln

(
1/(1− z>Rz)

)
(please, refer to the proof of

Lemma 5, section 3.6); then, there is no equilibrium point in such a set. Therefore,
z>c Pzc 6 r

2 is always fulfilled.

Finally, considering the results of Lemma 4 and 5, the main result is
presented in the following theorem.

Theorem 1 Let Assumptions 1 and 2 be satisfied, and the control (14), with
uI(t) = −ρ(z(t))sign(s) and u0(t) = Kz(t), be applied to the system (12), for a
given umax > 0. If z(0) ∈ E (R), K is computed as in Lemma 5, i.e., K = YR, and
ρ is designed as in (19), i.e.,

ρ(z) = α+w+
(δ||G||||z||)

(||GB̄||)
,

for some α > 0, such that

α+w+
δ||G||

||GB̄||λ
1
2
max{R}

6 uImax 6 umax − u0max ,

then, the trajectories of the system (12) converge asymptotically to the equilibrium
point zc; thus, limt→∞ ey(t) = 0, and the state and input constraints are not
violated.

Note that it is desirable that the safe set E (R), where the system con-
straints are not violated, is as large as possible. Thus, it is possible to
establish an optimization problem in order to maximize its volume.

Corollary 1 Let Assumptions 1 and 2 be satisfied, and the control (14), with
uI(t) = −ρ(z(t))sign(s) and u0(t) = Kz(t), be applied to the system (12), for a
given umax > 0. If z(0) ∈ E (R), the gain K = YX−1

1 is computed by solving the
following optimization problem

max
X1,Y,Z,δ,γ

log{det(X1)} subject to (23), (24)

and ρ is designed as in (19), i.e.,

ρ(z) = α+w+
(δ||G||||z||)

(||GB̄||)
,

for some α > 0, such that

α+w+
δ||G||

||GB̄||λ
1
2
max{R}

6 uImax 6 umax − u0max ,

then, the trajectories of the system (12) converge asymptotically to the equilibrium
point zc; thus, limt→∞ ey(t) = 0, and the state and input constraints are not
violated.
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Regarding the proof of Lemma 4, this is omitted due to it is a standard
result in the sliding–mode control theory, for more details, please refers to
[32].

Remark 3 Since uI is selected as in (18), i.e., uI(t) = −ρ(z(t))sign(s), a dis-
continuous control signal is obtained. However, it is possible to approximate the
sign function as [32]

sign(s) ≈ s

|s|+ τ
,

where τ is a small positive constant, i.e., τ � 1. Then, a continuous control
signal is obtained as

uI(t) = −ρ(z(t))
s

|s|+ τ
. (25)

The following algorithm gives some insight on the implementation of
the robust controller (14).

Algorithm 3.1:

Input: r, b̄i, umax, w,δ, B̄, G, α, ε ν;

Output: R, K, ρ;

01: ν ∈ (0, 1);

02: uImax = umax;

03: u0max = umax − uImax ;

04: while χ1 � 0 ∧ χ2 � 0 ∧ χ3 � 0 ∧ uImax > 0

∧ λ
1/2
max{R} >

||GB̄||

δ||G||
(uImax −w−α)

05: uImax = uImax − νuImax ;

06: u0max = umax − uImax ;

07: end

08: R = X−1
1 ;

09: P = X−1
2 ;

10: K = YR;

11: uImax = uImax ;

12: u0max = u0max ;

Note that if the algorithm ends and no feasible solution is obtained; then,
it is not possible to design a gain K for the desired reference r, the given
parameter uncertainties ∆, and external perturbations w.

To better illustrate the algorithm presented in this chapter, a block dia-
gram of the closed–loop dynamics, considering the system (10a) and the
controller (14), is presented in Fig. 4.
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Figure 4: Closed–loop diagram

3.4 simulation results

Consider the pendulum system dynamics:

ẋ1(t) = x2(t), (26a)

ẋ2(t) =
1

J
σ(u(t)) −

(
mgl

2J
+ δp

)
sin(x1(t)) +w(t), (26b)

yr(t) = x1(t), (26c)

where x1 is the angular position of the pendulum, x2 is the angular veloc-
ity, and w represents some external perturbations. The system parameters
are given as follows: m = 1[kg] is the pendulum mass, l = 0.707[m] is the
pendulum longitude, J = 0.5[kg ·m2] is the arm inertia, g = 9.815[m/s2] is
the gravitational constant, and δp = 0.1734[1/s2], which represents 10% of
parameter uncertainties. Then, linearizing (26) around the unstable equi-
librium point (x1, x2) = (0, 0), the system matrices, as in (10), are given
as

A =

(
0 1

−mgl2J 0

)
,∆ =

(
0 0

−δp 0

)
,B =

(
0
1
J

)
,

C =
(
1 0

)
,D =

(
0 1

)>
.

It can be verified that system (26) satisfies Assumptions 1 and 2. The
external perturbation is taken as w(t) = 2 sin(2t) + 2, therefore w = 4, and
then, Qw = 0.0625. The initial conditions are x(0) = (−15π/180, 12π/45)>

and xr(0) = 0. The desired reference is selected as r = π/18 [rad]. The
vectors b̄1 and b̄4 are equivalent to the maximum and minimum values
for x1, i.e., x1 ∈ (−x̄1, x̄1) with x̄1 = 10π/45 [rad]. Similarly, for state x2, the
vectors b̄2 and b̄5 are equivalent to x̄2 = 10π/35 [rad/s] and −x̄2, i.e., x2 ∈
(−x̄2, x̄2). Since x3 = xr is the integral action no constraints are considered.
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For simulation purposes, sufficiently large constraints are considered for
the state xr. Given the previous statements, the state constraints are b̄1 =

(45/10π, 0, 0)>, b̄2 = (0, 35/10π, 0)>, b̄3 = (0, 0, 10/25)>, b̄4 = −b̄1 ,
b̄5 = −b̄2 and b̄6 = −b̄3.

To compute the control gains, let us apply Algorithm 3.1. Consider
umax = 6, α = 0.1, ν = 0.2, then, the following feasible solution is obtained:

R =

 41.4277 5.1529 −45.8358

5.1529 1.9253 −4.9642

−45.8358 −4.9642 63.3021

 ,

P =

 3.2452 1.0895 −3.2507

1.0895 0.5252 −1.0206

−3.2507 −1.0206 3.6626

 ,

K =
(

−20.5211 −7.4427 20.2369
)

,

uImax = 4.1761, u0max = 1.8239, γ = 50, δ = 0.6809.

Once the matrix R is obtained, it is possible to compute the matrix Rp,
which is the projection of the ellipsoid in the plane x1 − x2, according to
equation Rp = R11 − R

>
21R22R21, the following matrix Rp is obtained

Rp =

(
8.2389 1.5585

1.5585 1.5360

)
.

Taking into account Remark 3, it is possible to apply the ISMC (14), with
the approximation (25), fixing τ = 0.02 and using the same gain computed
for the ISMC (14), i.e., K = (−3.2637 −2.0919 1.7694). For comparison
purposes, and in order to show the benefits of introducing the ISMC, let
us consider a linear control u as the linear control u0, i.e., u = Kz.

The corresponding simulations have been done in MATLAB, using the
explicit Euler method with a sampling time equal to 0.001 [s]. The LMIs
solutions are obtained through the SDPT3 solver. In order to simplify the
nomenclature in the simulation results the sub–indexes ISM, ISMc and u0
are introduced for the results obtained through the proposed control law
(14), the continuous ISMC with the approximation (25), and u as the linear
control, respectively.

The system trajectories are depicted by Figs. 5–7. Fig. 5 illustrates
the trajectories of the state x1 and its constraints. For the case when the
ISM–based controllers are applied, the output system follows the desired
reference even in the presence of external perturbations. Whereas for the
case when only the linear controller is applied, i.e., when u = Kz, the out-
put system converges to a certain neighborhood of the desired reference.
However, in both cases, the state constraints are not transgressed. Fig. 6

depicts the trajectories for the state x2 and its constraints. It is shown that
for the linear case, i.e., when u = Kz, the state trajectory transgresses the
upper state constraint due to the presence of the external perturbations,
while the ISM–based controllers ensure that the state trajectory does not
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transgress the restricted zone. Fig. 7 depicts the trajectories of the variable
xr, it can be seen that only when the ISM–based controllers are applied,
the trajectory converges to the equilibrium point z̄c. The output regula-
tion errors are depicted by Fig. 8. It is shown that, for the case when the
ISM–based controllers are applied, the regulation error converges to zero,
while for the linear case, the regulation error converges to a neighborhood
close to the origin. For the case with the ISM–based controller, the linear
control u0, the nonlinear control uI, the control signal, and the satura-
tion constraints are depicted by Fig. 9. The linear control signal, i.e., u0,
remains in the non–saturated region all the time, while the nonlinear con-
trol signal is bounded, i.e., uI < uImax ; thus, the control signal u remains
in the non–saturated region. Similarly, in Fig. 10 the control signals are
presented for the case in which the approximation (25) is applied to the
ISM–based controller (14), it can be seen that the nonlinear control part is
continuous. However, with both ISM–based controllers, the tracking task
is achieved. Fig. 11 illustrates the linear case, i.e., u = Kz. It is observed
that the control signal is not saturated. Nevertheless, the tracking task
is not achieved due to the control is not able to compensate the external
perturbations.

The states trajectories and the corresponding ellipsoid are depicted by
Fig. 12, for the three cases, i.e., the ISM–based controllers and the lin-
ear case. It is shown that the system trajectories, when the ISM–based
controllers are applied, remain in the ellipsoid E (R), and converge asymp-
totically to ellipsoid E (Pr). The projection of the ellipsoids E (R) and E (Pr)

in the x1–x2 plane and the polytope Px are depicted by Fig. 13. It is clear
that, for the case when the ISM–based controllers are applied, the trajecto-
ries of the system are always inside E (Rp), which is completely contained
in the polytope (11). Nevertheless, for the linear case it is noticed that the
states trajectories leave the ellipsoid E (Rp), violating the state constraints.
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Figure 5: State x1 and its constraints
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Figure 6: State x2 and its constraints
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Figure 9: Control signals u0, uI and u for the discontinuous ISMC

0 5 10 15 20 25 30
-3

-1.5

0

1.5

3

0 5 10 15 20 25 30
-9

-4.5

0

4.5

9

0 5 10 15 20 25 30
-12

-6

0

6

12

Figure 10: Control signals u0, uI and u for the continuous ISMC
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Figure 12: State trajectories and ellipsoid E (R)
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3.5 remarks

This chapter contributes with a solution to the output regulation prob-
lem for uncertain linear systems with input saturation, state constraints,
and external perturbations. The controller is split in two parts, the linear
and nonlinear part. Due to the ISMC approach, both parts of the controller
can be designed independently. Based on the BLF and AEM approach, the
linear control considers the input saturation, state constraints, and param-
eter uncertainties, whereas the nonlinear control compensates the effect
of matched perturbations through the ISMC technique. A safe set is pro-
vided where the state constraints and the input saturation are satisfied.
The proposed scheme guarantees asymptotic convergence to zero of the
output regulation error coping with the system constraints. The synthesis
of the controller gains is given in terms of LMIs providing a constructive
method for the design.

3.6 proof of the results

Proof of Lemma 5: Consider the function φ(u0) = σ(u0) − u0; thus, the
dynamics on the sliding–mode (21) can be rewritten as

ż(t) = (Ā+ Γ∆̄+ B̄K)z(t) + B̄φ(u0(t)) + Fr. (27)

Let us take into account the following BLF candidate

V(z) = ln
(

1

1− z>(t)Rz(t)

)
,

where 0 < R = R> ∈ R(n+1)×(n+1) is a matrix that parametrizes the ellip-
soid E (R). Then, introducing the extended vector η> := (z>(t),φ>(u0(t)), r)>,
the time derivative of V along the trajectories of system (27) is given by

V̇(z) = Sz(t)η
>

 He{Ak} RB̄ RF

? 0 0

? ? 0

η,

where Sz(t) = 1/(1− z>(t)Rz(t)) and Ak = R(Ā+ Γ∆̄+ B̄K). Then, adding
and subtracting the terms γr2Sz and γSzz>(t)Pz(t), with γ > 0, and taking
into account Assumption 1, where Āk = R(Ā+ Γδ+ B̄K). and according to
Lemma 3, with ᾱ = Kz, β̄ = Kz−G0z, and G0 ∈ R1×(n+1), the inequality
δ−1φ> [φ+ (K−G0) z] 6 0 is satisfied. In order to ensure that G0z belongs
to the set U , it is sufficient that ‖G0z‖2 6 u20max

z>Rz holds. Using the
Schur’s complement, the previous inequality can be written as in LMI
(23b) with Z = R−1G0. Therefore, the LMI (23b) guarantees the fulfillment
of the input constraint.

Then, V̇ can be rewritten as

V̇(z) 6 γSz(t)(r
2 − z>(t)Pz(t)) + Sz(t)η

>Ω1η,
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where

Ω1 =

 He{Āk}+ γP RB̄− δ−1[K−G0]
> RF

? −2δ−1 0

? ? −γ

 .

Pre and post–multiplyingΩ1 by T = diag(R−1, δ̄, I), it follows thatΩ1 ≺
0 is equivalent to χ1 in (23a), with the change of variables X1 = R−1,
Y = KR−1 and Z = R−1G0.

Hence, if χ1 ≺ 0, then

V̇(z) 6 γSz(t)(r
2 − z>(t)Pz(t)).

Note that, for all z>(t)Pz(t) > r2 and z>(t)Rz(t) < 1, V̇ < 0; and thus,
any solution of the system starting in E (R), remains in E (R) and converges
asymptotically to E (Pr); and hence, it follows that limt→∞ ey(t) = 0. Fi-
nally, if the LMI (23c) holds; then, E (R) is also the safe set in which the
state constraints and the input saturation are not violated. Moreover, LMI
(23d) ensures that E (Pr) ⊂ E (R). This concludes the proof. �





4
A N I P – B A S E D R O B U S T C O N T R O L F O R U N C E RTA I N
N O N L I N E A R S Y S T E M S

This chapter presents a robust sampled–time controller for stabilizing a class
of uncertain nonlinear systems. The proposed strategy consists of two key compo-
nents: an IP–based state–feedback controller and an MPC approach. The switched
control strategy guarantees ISpS of the nonlinear systems with respect to external
perturbations.

4.1 introduction

Real dynamical systems are restrained due to the structural limitations
of the system, i.e., the system dynamics have state and input constraints
(see, e.g. [34], [35], and [36]). These kinds of systems can generally be rep-
resented by nonlinear models. Furthermore, the systems may be subject to
external perturbations and/or parameter uncertainties that may have an
impact on their behavior. To design a controller, which is able to counter-
act the effects of external perturbations while considering state and input
constraint, robust control techniques are required. For instance, the MPC
is a technique that obtains the current control action through the on–line
solution of a finite horizon open–loop optimal control problem, at each
sampling instant, using the current state of the plant as the initial state.
The first control signal, obtained in the optimal control sequence, is ap-
plied to the system [37].

Concerning the control design for constrained systems affected by exter-
nal perturbations, in [38], an MPC for constrained uncertain linear systems
is proposed, which guarantees the robustness of the system constraints
and ISS of the closed–loop system. Also, the MPC approach is widely
used for LPV systems. For instance, output feedback robust MPC for un-
certain LPV systems with external perturbations is proposed in [39] and
[40]. In [39] the algorithm single–step dynamic output feedback robust
MPC, where the infinite–horizon control moves, is parameterized as a dy-
namic output feedback law. However, to accomplish the control task, this
method requires a heavy computational burden. While, in [40] the esti-
mated state and estimation error converges to the corresponding invariant
sets. In both works, recursive feasibility and robust stability are ensured.
For discrete time systems, the MPC can also be applied, for instance, in
[41], an output feedback MPC for discrete–time linear systems affected
by bounded state and output perturbations is considered. The controller
is composed by a stable state estimator and an MPC. Meanwhile, an on-
line solution of a standard quadratic optimization program is required.
The closed–loop system renders a specified invariant set robustly exponen-
tially stable. In [42], an output–feedback MPC algorithm for discrete–time

31



32 an ip–based robust control for uncertain nonlinear systems

constrained linear systems affected by additive noise is presented. The al-
gorithm ensures convergence of the state to a suitable neighborhood of the
origin. Note that most MPC results in the literature are devoted to linear
systems, and this could be restrictive.

Regarding the application of the MPC approach to nonlinear systems,
in [43], a robust learning–based MPC is proposed for nonlinear systems
subject to input and output constraints. The prediction model is esti-
mated by a nonparametric machine learning technique; thus, an MPC,
without terminal constraint, is obtained, then the closed–loop is asymp-
totically stable. The MPC can also be applied to nonlinear discrete–time
systems. For instance, in [44], an MPC with a composite self–triggered
mechanism is proposed to reduce the communication and computational
burden while maintaining the desired control performance for this kind
of systems. However, the algorithm has a relatively low perturbation tol-
erance. Meanwhile, in the previous works, a heavy computational burden
is required because the MPC is active during the control task.

It is also possible to combine the MPC with other techniques, e.g., adap-
tive control, SMC and interval observer techniques, to improve its perfor-
mance. For instance, in [45], an adaptive MPC for linear systems with ex-
ternal perturbations is proposed. In [46], an MPC algorithm is developed
for discrete–time constrained linear–time invariant systems with parame-
ter uncertainties. An adaptive controller is used to handle the parameter
uncertainties, and it is combined with an MPC algorithm guaranteeing
the constraints satisfaction. On the other hand, an MPC is proposed in
[47] for nonlinear systems based on a terminal cost function character-
ized by an implicit SMC law. However, a linearized model is required
to guarantee the asymptotic stability of the closed–loop system. In [48],
an interval observer and predictor are incorporated into the classic MPC
scheme for discrete–time constrained linear systems with bounded state
perturbations. Nevertheless, most of the above–mentioned works do not
consider sampled control.

Motivated by these issues, this chapter proposes the design of a robust
sampled controller to stabilize continuous–time nonlinear systems, taking
into account state and input constraints, and external perturbations. The
robust controller is based on a discrete–time IP–based state–feedback con-
troller and an MPC approach. The proposed control method possesses the
following features:

1) Due to the use of an IP, the measurements of the system states are
not required for the proposed scheme.

2) Characterization of a safe set where the state constraints are not
transgressed using the IP–based state–feedback controller.

3) Low computational cost since the MPC is only activated out of the
safe set, and it can be pre–computed in advance.

4) Local Input–to–State practical Stability of the constrained nonlinear
systems with respect to external perturbations.
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5) The synthesis of the controller is constructive since it is based on
LMIs.

The fact that the proposed scheme does not require the measurement
of the system state represents an advantage in real–world applications
(e.g., the blood glucose regulation and the anesthesia regulation in deliv-
ery machines, and some trajectory–tracking problems in mobile robots)
that could be solved by using the proposed framework. Therefore, the
proposed method can be interpreted as a tool to design robust feedfor-
ward inputs.

4.2 problem statement

Consider the following class of nonlinear system

ẋ(t) = f(x(t)) +Bu(t) +Dw(t), t > 0, (28)

where x(t) ∈ Rn is the state, f : Rn → Rn is a locally Lipschitz function,
u(t) ∈ Rp is the control input, and w : R+ → Rq is the perturbation term.
The matrices B and D are known of suitable dimensions. It is considered
that u ∈ U := {u ∈ Rp|− umaxj 6 uj 6 umaxj , j = 1,p}, where 0 < umaxj
is the maximum value for each control signal. In this chapter, the control
signal must be sampled, i.e., u(t) = u(tk), for t ∈ [tk, tk+1) and k ∈ Z+,
where tk = kh form a strictly growing sequence of time instants for some
h > 0.

Moreover, the solutions of the system (28) must be constrained inside
the polytope

X := {x ∈ Rn|bx 6 1kx}, (29)

where b = (b1, . . . ,bkx)
> ∈ Rkx×n. It is assumed that the origin belongs

to the interior of the set X. Before proceeding, the following assumptions
are imposed on the system (28).

Assumption 3 There exist a known Metzler matrix A0 ∈ Rn×n and known
matrices Aj ∈ Rn×n, j = 1,N for some N ∈ Z+, such that the following
relations are satisfied

f(x) =

A0 + N∑
j=1

αj(x)Aj

 x,

N∑
j=1

αj(x) = 1, αj(x) ∈ (0, 1), j = 1,N.

Assumption 4 There exist known signals w,w ∈ L
q∞, wmax > 0, and known

vectors x0, x0 ∈ Rn, such that w(t) 6 w(t) 6 w(t), ||w||∞ 6 wmax, and
x0 6 x(0) 6 x0, respectively.

Assumption 3 characterizes the class of nonlinearities of the system (28),
i.e., those that can be expressed by a sum of a linear term, A0x, and a con-
vex nonlinear function,

∑N
j=1 αj(x)Ajx. On the other hand, Assumption 4
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and the condition that A0 must be Metzler are required to design an MPC
and an IP for the system (28).

The aim of this chapter is to design a sampled control law to ensure
the stabilization of the system (28), taking into account the input and state
constraints, i.e., x ∈ X and u ∈ U , under Assumptions 3 and 4.

4.3 control design

The proposed controller comprises the design of a robust control law,
composed of an IP–based state–feedback controller and the MPC, which
deals with state and input constraints. It will be demonstrated that there
exists a safe set for the IP based state–feedback controller, where the state
constraints are not transgressed, that characterizes the regions where each
controller is activated: the MPC is activated outside the safe set while
the state–feedback controller is applied inside of it. Since the control is
sampled, a sampled–time IP is designed for the continuous–time system
(28), which considers the error of discretization and guarantees a careful
treatment of the constraints.

The following section addresses the design of the IP for the nonlinear
system (30), satisfying Assumptions 3 and 4.

4.3.1 Interval Predictor

According to Assumption 3, the system (28) has the following represen-
tation

ẋ(t) =

A0 + N∑
j=1

αj(x)Aj

 x(t) +Bu(t) +Dw(t). (30)

Based on [49], assuming that x 6 x 6 x and applying (7) to αj(x)x, the
relation −x− 6 αj(x)x 6 x+ holds. Thus, according to (6), the following
inequalities can be obtained

−∆A+x− −∆A−x+ 6
N∑
j=1

αj(x)Ajx 6 ∆A
+x+ +∆A−x−,

where ∆A+ =
∑N
i=1A

+
i and ∆A− =

∑N
i=1A

−
i . Then, a continuous–time

IP for (30) can be stated as follows [50]:

ż(t) = A0z(t) +A1z
+(t) +A2z

−(t) +Bu(t) + δ(t), (31)

where z = [x>, x>]> ∈ R2n is the extended state vector of the predictor,
the extended system matrices A0 ∈ R2n×2n, A1 ∈ R2n×2n, A2 ∈ R2n×2n,
and B ∈ R2n×p are given as

A0 =

(
A0 0

0 A0

)
, A1 =

(
0 −∆A−

0 ∆A+

)
,

A2 =

(
−∆A+ 0

∆A− 0

)
, B =

(
B

B

)
,
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and the term δ ∈ R2n is defined as follows

δ(t) = D

(
w(t)

w(t)

)
=

(
D+ −D−

−D− D+

)(
w(t)

w(t)

)
.

Being properly initialized by x(0) = x0 and x(0) = x0, this IP ensures
the desired interval inclusion property x(t) 6 x(t) 6 x(t), ∀t > 0 [50].
Note that, based on Assumption 4, δ is known. Then, for any t > t0 > 0,
the solution of system (31) is given by

z(t) = eA0(t−t0)z(t0) +

∫t
t0

eA0(t−τ)Bu(τ)dτ

+

∫t
t0

eA0(t−τ)δ(τ)dτ+

∫t
t0

eA0(t−τ)g(z(τ))dτ, (32)

where g(z(t)) = A1z
+(t) +A2z

−(t). The expression (32), with a sampled
control u(t) = u(tk), for t ∈ [tk, tk+1), and k ∈ Z, generates a discrete–
time sequence:

z(tk+1) = e
A0hz(tk) +

∫h
0

eA0(h−s)Bds · u(tk) + δk

+

∫tk+1
tk

eA0(tk−s)g(z(s))ds,

where h = tk+1 − tk is the sampling interval, tk is the sampling time
instant, and δk =

∫tk+1
tk

eA0(tk+1−s)δ(s)ds. Adding and subtracting the

term
∫h
0 e

A0(h−s)ds · g(z(tk)), it follows that

z(tk+1) = e
A0hz(tk) +

∫h
0

eA0(h−s)Bds · u(tk) + δk

+

∫h
0

eA0(h−s)ds · g(z(tk)) +ϕk, (33)

with ϕk =
∫tk+1
tk

eA0(tk+1−s)[g(z(s)) − g(z(tk))]ds. Let us consider the no-

tation z(tk) = zk, u(tk) = uk, and G =
∫h
0 e

A0(h−s)ds ∈ R2n×2n. Thus,
(33) can be rewritten as

zk+1 = A0zk +Buk + δk + Gg(zk) +ϕk, (34)

with A0 = eA0h ∈ R2n×2n and B = GB ∈ R2n×p. Note that the IP (34)
cannot be implemented since ϕk, which characterizes the discretization
accuracy and depends on z(t) with t ∈ [tk, tk+1], cannot be computed.
Thus, consider the following predictor

ẑk+1 = A0ẑk +Buk + dk + Gg(ẑk), (35)

with dk = δk +ϕ, where ϕ> = (−ϕmax1>n ,ϕmax1>n) and ϕk 6 ϕmax, the
bound ϕmax is obtained later during the proof. This parameter evaluates
the error of discretization of (31), and taking it into account allows us to
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guarantee that the constraints will not be violated due to numeric errors.
To stabilize the nonlinear dynamics (28), it is necessary to design uk to
take the trajectories of the system (35) to a vicinity of zero dealing with
the state and input constraints. Let us propose the following control law
for the system (34)

uk =

{
ūk if ẑk 6∈ R,

ûk if ẑk ∈ R,
(36)

where R ⊂ R2n is the safe set, ūk is the control signal computed by the
MPC algorithm and ûk is the state–feedback control law. Notice that ûk
is applied only inside the safe set R, defined further on, where the state
constraints are not transgressed.

4.3.2 State–Feedback Control

Let us propose the following nonlinear state–feedback control

ûk = K0ẑk +K1ẑ
+
k +K2ẑ

−
k + S1dk. (37)

The next theorem provides a way to compute the controller gains K0,K1,
K2,S1 ∈ Rp×2n.

Lemma 6 Let Assumptions 3 and 4 be satisfied, and the control law (37) be
applied to the system (34). Suppose that there exist diagonal matrices 0 ≺ X1 ∈
R2n×2n, 0 ≺ Q̃0 ∈ R2n×2n, 0 � Q̃1 ∈ R2n×2n, 0 � Q̃2 ∈ R2n×2n, 0 ≺ R̃0,
R̃1, R̃2 ∈ R2n×2n, R̃3 ∈ R2n×2n, and matrices Y0, Y1, Y2, Y3 ∈ R2n×p, such
that the following set of LMIs

−X1 + Q̃0 R̃1 R̃2

? Q̃1 R̃3

? ? Q̃2

? ? ?

? ? ?

? ? ?

? ? ?

0 0 0 X1A
>
0 + Y0B

>

0 0 0 X1A
>
1 G
> + Y1B

>

0 0 0 X1A
>
2 G
> + Y2B

>

−R̃0 0 0 X1 + Y3B
>

? −γI 0 X1

? ? −γI Y3B
>

? ? ? −X1


� 0, (38a)

Q̃0 + min{Q̃1, Q̃2}+ 2min{R̃1, R̃2} � αX1, (38b)

holds, with fixed α,γ > 0. Additionally, suppose that the inequality

qbX1b
>
6 12kx , (39)
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holds with b = (b>, b>), q = αε−1, ε = λmax{R0}δ
2
k + q1δk + q2, δk =

2||D||wmax, and

q1 = 2c3ẽ, (40a)

q2 = 2(c1ζ+ c2ẽ+ (c4 +
√
2nc5)ϕmax)ẽ

+ c23λmax{R0}+ 4γ(1+ 2n)(c
2
6 + c

2
7)ζ+ ke2 ||B||2ū2max (40b)

ζ =

√
2kxλ

−1
max{b>b}, umax = ||umax||,

ẽ = [ke1(ξ+ 1) + kξ(||A1||+ ||A2||)]ζ+ kξ[||B||umax + λ
−1/2
max {R0}],

ϕmax = (c6 + c7)ζ+ c8(||B||ūmax + λ
−1/2
max {R0}),

for given R0 = X1R̃0X1, b = (b1, . . . ,bkx)
> ∈ Rkx×n, ξ,umax > 0, and

c1 = (||Ã0||+ ||Ã1||+ ||Ã2||)||PB||K, (41a)

c2 = (0.5||K0||+ ||K1||+ ||K2||)||PBK0||+ (||K0||+ 0.5||K1||+ ||K2||)||PBK1||

+ (||K0||+ ||K1||+ 0.5||K2||)||PBK2||, (41b)

c3 = ||S̃>1 PB||K, c4 = ||PB||K, (41c)

c5 = ||S>1 B
>
PB||K, (41d)

c6 = (1+
√
2n)−1 (ke1ξ− ||A0||− L||G||+ ||A1||+ ||A2||), (41e)

c7 = (1+
√
2n)−1(ke1 − ||A0||− L||G||), (41f)

c8 = (1+
√
2n)−1ke1kξ, (41g)

where ke1 = 1+ξν
−1ekξkξ, ke2 = ke1kξ, kξ = (1−e−νh), ν = |Re{λmax{A0}}|,

Ã0 = A0 +BK0, Ã1 = GA1 +BK1, Ã2 = GA2 +BK2, S̃1 = I+BS1, and
K = ||K0||+ ||K1||+ ||K2||. If the IP (35) is initialized as ẑ0 = (x>0 ,x>0 )

>, and the
controller gains are selected as K0 = Y>0 X

−1
1 , K1 = Y>1 X

−1
1 , K2 = Y>2 X

−1
1 , and

S1 = Y
>
3 X

−1
1 , then the origin of the system dynamics (35) is ISpS, with respect to

δk, and the system trajectories fulfill the state constraints, i.e., x ∈ X. Moreover,
the safe set is given as

R = {ẑk ∈ R2n : ẑ>kX
−1
1 ẑk 6 α

−1ε}, (42)

with some α > 0 satisfying (38b).

Remark 4 Note that it is desirable that the safe set R is as large as possible.
Thus, it is possible to establish an optimization problem in order to maximize
its volume. For example, let assumptions 3 and 4 be satisfied and the control
law (37) be applied to the system (34). If the controller gains K0 = Y>0 X

−1
1 ,

K1 = Y>1 X
−1
1 , K2 = Y>2 X

−1
1 , and S1 = Y>3 X

−1
1 are computed by solving the

following optimization problem

max
X1,Y0,Y1,Y2,Y3

log det(X1) subject to (38a), (43)

then the origin of the system dynamics (35) is ISpS with respect to δk with opti-
mized perturbation attenuation.
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4.3.3 Design of the Model Predictive Control

For the design of the MPC, the following assumption is considered.Assumption 5
implies that the
invariant set R,

which is the safe set
of system (28), is

completely
contained inside the

polytope (29), i.e.,
the constrained

region X.

Assumption 5 There exist gains K0,K1,K2,S1 ∈ Rp×2n, satisfying the condi-
tions of Lemma 6, and ûk(t) = K0ẑk(t) +K1ẑ+k (t) +K2ẑ

−
k (t) + S1dk ∈ U , for

all ẑk ∈ R and t > 0.

Let us consider that the prediction can be performed in a receding hori-
zon fashion with a window length N > 1. The IP (35) has a sequence of
inputs SN = {s0, . . . , sN−1}, with sm ∈ U for all m = 0,N− 1, the values
ẑk,m+1 will be calculated for m = 0,N− 1 under substitution uk+m = sm.
Let us define ẑk+j = ẑk,j, for j = 0,N. Thus, the optimal control problem
to be solved by the MPC is given as follows:

Problem 1 For given matrices 0 ≺ W = W> ∈ R2n×2n, 0 ≺ H = H> ∈
R2n×2n, and M =M> ∈ R2p×2p, find the control signals

SkN = argminVN(ẑk,0, . . . , ẑk,N, SN), (44)

with the cost function VN(ẑk,0, . . . , ẑk,N, SN) = Vf(ẑk,N)+
∑N−1
m=0 `(ẑk,m, sm),

where Vf(ẑ) = ẑ>Wẑ, `(ẑ, s) = ẑ>Hẑ + s>Ms, such that the following con-
straints are satisfied: i) ẑk+j ∈ X, for j = 0,N are computed by (35). ii) uk ∈ U .
iii) ẑk,N ∈ R.

Finally, considering the results of Lemma 6 and the solution of the Prob-
lem 1, the following theorem is presented.

Theorem 2 Let Assumptions 3–5 be satisfied, the conditions of Lemma 6 be also
satisfied, and Problem 1 be feasible. If the control law (36), given by (37) and (44),
is applied to the system (28) and designed according to Lemma 6 and the solution
of Problem 1; then, the origin of the system dynamics (34) is ISpS, with respect to
δk, in the safe set R.

The proof of the results are postponed to section 4.6.

Remark 5 The proposed scheme does not require the measurement of the system
state, i.e., the control (37) is only based on the IP (35). This can represent an ad-
vantage in real–world applications such as many problems in biological systems,
e.g., the blood glucose regulation and the anesthesia regulation in delivery ma-
chines, and some trajectory–tracking problems in mobile robots, where the state
measurements are complicated or subject to significant perturbations and delays.

Remark 6 An LPV representation of the nonlinear function f(x(t)) is used, and
since x(t) is not measured while in general the scheduling parameters have to be
dependent on the state in such a case, the values of these parameters are not used
in the design. Thus, the presented approach can be applied to uncertain contin-
uous LPV systems, without measured scheduling parameters, in the presence of
perturbations and constraints.

To better illustrate the algorithm presented in this chapter, a block dia-
gram of the proposed control law is presented in Fig. 14.
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𝑢𝑘

𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑆𝑦𝑠𝑡𝑒𝑚

ሶ𝑥 𝑡 = 𝑓 𝑥 𝑡 + 𝐵𝑢 𝑡 + 𝐷𝑤 𝑡

𝑢 𝑡 = 𝑢 𝑡𝑘 , ∀𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1 )

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 (35)

𝑀𝑃𝐶 (44)

𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 
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𝑆𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 
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Figure 14: Closed–loop diagram

4.4 simulations results

Consider the following nonlinear system

ẋ1(t) = −x1(t) + (1+ 0.01x1(t))x2(t) +w(t),

ẋ2(t) = (0.2x1(t) − 1)x2(t) + u(t) +w(t),

withw(t) = 0.2 sin (3t)+0.05, thus,w(t) = −0.15,w(t) = 0.25, andwmax =

0.25. This system satisfies Assumptions 3 and 4. The matrices A0 and Aj
can be obtained by the convex polythopic method [51], as follows

A0 =

(
−1 1

0 −1

)
, A1 =

(
0 0.07

0.14 0

)
, A2 =

(
0 0.07

−0.14 0

)
,

A3 =

(
0 −0.07

0.14 0

)
, A4 =

(
0 −0.07

−0.14 0

)
,

Let us consider that umax = 3.5, x1 ∈ (−7, 7) and x2 ∈ (−7, 7), and hence
b1 = (1/7, 0)>, b2 = −b1, b3 = (0, 1/7)>, and b4 = −b3. The initial
conditions for the system are x(0) = (5, 5)>. It is possible to show that this
nonlinear system, for such initial conditions, is unstable (see, please Fig.
15).

All the simulations are done in MATLAB, with the Euler discretization
method, and an integration step equal to 0.001 [s]. In order to show the
efficiency of the algorithm, the following values for the sampled control
are considered h = 0.1 [s], h = 0.2 [s], h = 0.3 [s], and h = 0.5 [s]. The
solution for the LMIs is found by means of SDPT3 solver, among YALMIP,
while the MPC is implemented using the nlmpc MATLAB toolbox.

The controller gains are obtained looking for the solutions of the LMIs
given in Lemma 6, for each value of h, with γ = 1× 102 and α = 1× 104.



40 an ip–based robust control for uncertain nonlinear systems

For illustrative purposes, numerical results are provided for the case h =

0.2 [s], which are:

P = diag(0.1778, 0.1211, 0.2446, 0.2565),

Q̃0 = diag(0.0059, 0.0019, 0.0086, 0.0074),

Q̃1 = diag(−0.0630,−0.0642,−0.0871,−0.0772),

Q̃2 = diag(−0.0862,−0.0769,−0.0602,−0.0621),

R̃0 = (4.0175, 4.1258, 3.9378, 3.8402)103,

R̃1 = diag(0.0894, 0.0737, 0.0431, 0.0541),

R̃2 = diag(0.2254, 0.1771, 0.1173, 0.0891),

K0 = (−0.206,−1.5403,−0.2802,−3.0885),

K1 = (0.0004, 0,−0.1880,−0.0082),

K2 = (0.0938, 0.0069, 0.0015, 0.0016),

S1 = (0.0102, 0.0678, 0.0216, 0.1717).

Then, it is possible to verify that the condition (38b) is fulfilled. For the
MPC, it is considered W = I, H = 1× 103I, M = 1× 10−4, and N = 10.

The initial conditions for the IP are set in ẑk(0) = (3.2, 3.2, 6.8, 6.9)>.
For comparison purposes, the simulation results for the case when the
MPC is active during all the control task have been added. The system
trajectories, the IP (35) trajectories, and the corresponding state constraints
are depicted in Fig. 16, for h = 0.2. Note that both the IP and the system
trajectories never transgress the system constraints despite the external
perturbations. On the other hand, Fig. 17 shows that the trajectories of
the system are inside of the potytope X, all the time and despite to the
external perturbations, for each value of h. Meanwhile, when only the
MPC is applied, it can be seen that, under the same initial conditions,
the system trajectories converge toward a region farther from the origin.
Additionally, Fig. 18 depicts the behavior of the control signals that never
transgress the input constraints. While for the case in which only the MPC
is applied, the control signal remains saturated most of the time during the
control task.

In order to illustrate, through simulations, that the computational bur-
den is relaxed in our control algorithm, with respect to a classic MPC,
then, it is sufficient to determine the time required to simulate the pro-
posed switched scheme and the scheme when the MPC is active all the
time. Considering that the simulations have been done in MATLAB with
the Euler discretization method, sampling–time equal to 0.001 [s], simula-
tion time equal to 10 [s], while the MPC has been implemented using the
nlmpc toolbox in MATLAB, the proposed switching scheme takes around
5 seconds to perform the simulation, while the scheme when the MPC is
active all the time takes more than 14 seconds to perform the same simu-
lation for the same initial conditions.
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Figure 15: System trajectories in open–loop and state constraints

Figure 16: System trajectories and state constraints for h = 0.2

4.5 remarks

This chapter proposed the design of a robust sampled–time controller
for stabilizing continuous–time nonlinear systems, considering state and
input constraints, and external perturbations. The proposed strategy is
based on two essential components: an IP–based state–feedback controller
and an MPC approach, which deals with the state and input constraints.
The IP–based state–feedback controller is designed such that a safe set
was provided, where the state constraints are not violated. Such a safe set
characterizes the region where the MPC is activated, guaranteeing the ful-
fillment of the state and input constraints. The proposed switched control
strategy ensures the ISpS of the considered nonlinear systems with re-
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Figure 18: Control signals

spect to external perturbations, by means of a constructive method based
on LMIs without using the system states.

4.6 proof of the results

Proof of Lemma 6: Define the error between the IP (34) and (35) as ek =

zk− ẑk. Then, considering the state–feedback control (37), the closed–loop
system dynamics is given as

zk+1 = Ã0zk + Ã1z
+
k + Ã2z

−
k + S̃1δk +ϕk

+BS1ϕ−BK0ek −BK1e
+
k −BK2e

−
k , (45)
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where Ã0 = A0 + BK0, Ã1 = GA1 + BK1, Ã2 = GA2 + BK2, and S̃1 =

I+BS1.
Let us propose the following candidate Lyapunov function

V(zk) = z
>
k Pzk, (46)

with a diagonal matrix P � 0 ∈ R2n×2n and the extended vectors η> =

(z>k , z+>k , z−>k , δ>k ,ϕ>k ,ϕ>)> and η̄> = (η>, e>k , e+>k , e−>k )>. Then, the in-
crement of the candidate Lyapunov function is

V(zk+1) − V(zk) = η
>Ση+ η̄>Γ η̄− z>k Pzk, (47)

with Σ = Ω>PΩ, where Ω = (Ã0, Ã1, Ã2, S̃1, I,BS1), and

Γ =



0 0 0 0 0 0 −Ã0
>
PBK0

? 0 0 0 0 0 −Ã1
>
PBK0

? ? 0 0 0 0 −Ã2
>
PBK0

? ? ? 0 0 0 −S̃1PBK0

? ? ? ? 0 0 −PBK0

? ? ? ? ? 0 −K>0 B
>
PBS1

? ? ? ? ? ? K>0 B
>
PBK0

? ? ? ? ? ? ?

? ? ? ? ? ? ?

−Ã0
>
PBK1 −Ã0

>
PBK2

−Ã1
>
PBK1 −Ã1

>
PBK2

−Ã2
>
PBK1 −Ã2

>
PBK2

−S̃1PBK1 −S̃1PBK2

−PBK1 −PBK2

−K>1 B
>
PBS1 −K>2 B

>
PBS1

2K>0 B
>
PBK1 2K>0 B

>
PBK2

K>1 BPBK1 2K>1 B
>
PBK2

? K>2 BPBK2



. (48)

Let us add and subtract the following terms γϕ>kϕk, γϕ>ϕ, δ>k R0δk,
z>kQ0zk, z+>k Q1z

+
k , z−>k Q2z

−
k , 2z>k R1z

+
k , 2z>k R2z

−
k , 2z+>k R3z

−
k , with sym-

metric matrices R0, Q0, Q1, Q2 ∈ R2n×2n, and diagonal matrices R1,R2,
R3 ∈ R2n×2n, to the right–hand side of (47), i.e.,

V(zk+1) − V(zk) = η
>Σ1η+ η̄

>Γ η̄+ γϕ>kϕk + γϕ
>ϕ

− z>kQ0zk − z
+>
k Q1z

+
k − z−>k Q2z

−
k + δ>k R0δk

− 2z>k R1z
+
k − 2z>k R2z

−
k − 2z+>k R3z

−
k , (49)
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where

Σ1 =



Ã>0 PÃ0 − P+Q0 Ã>0 PÃ1 + R1 Ã>0 PÃ2 + R2

? Ã>1 PÃ1 +Q1 Ã>1 PÃ2 + R3

? ? Ã>2 PÃ2 +Q2

? ? ?

? ? ?

? ? ?

Ã>0 PS̃1 Ã>0 P Ã>0 PBS1

Ã>1 PS̃1 Ã>1 P Ã>1 PBS1

Ã>2 PS̃1 Ã>2 P Ã>2 PBS1

S̃>1 PS̃1 − R0 S̃>1 P S̃>1 PBS1

? P− γI PBS1

? ? S>1 B
>
PBS1 − γI


.

Note that, it is possible to represent the matrix Σ1 in the following form
Σ1 = ψ1 +ψ

>
2 P

−1ψ2, with

ψ1 =



−P+Q0 R1 R2 0 0 0

? Q1 R3 0 0 0

? ? Q2 0 0 0

? ? ? −γR0 0 0

? ? ? ? −γI 0

? ? ? ? ? −γI


,

ψ2 =
(
PÃ0 PÃ1 PÃ2 PS̃1 P PBS1

)
.

We look for the conditions providing Σ1 � 0. Then, applying Schur’s
complement Σ1 � 0 is equivalent to

Σ2 =



−P+Q0 R1 R2 0 0

? Q1 R3 0 0

? ? Q2 0 0

? ? ? −R0 0

? ? ? ? −γI

? ? ? ? BP

? ? ? ? ?

0 Ã>0 P

0 Ã>1 P

0 Ã>2 P

0 S̃>1 P

0 P

−γI S>1 BP

? −P


� 0.
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Pre– and post–multiplying Σ2 by T = diag(P−1,P−1, P−1,P−1,P−1,P−1),
it is obtained that Σ3 = TΣ2T is given as

Σ3 =



−P−1 + P−1Q0P
−1 P−1R1P

−1 P−1R2P
−1

? P−1Q1P
−1 P−1R3P

−1

? ? P−1Q2P
−1

? ? ?

? ? ?

? ? ?

? ? ?

0 0 0 P−1A
>
0 + P−1K>0 B

>

0 0 0 P−1A>1 G
> + P−1K>1 B

>

0 0 0 P−1A>2 G
> + P−1K>2 B

>

−P−1R0P
−1 0 0 P−1 + P−1S>1 B

>

? −γI 0 P−1

? ? −γI P−1S>1 B
>

? ? ? −P−1


. (50)

Considering the following change of variables X1 = P−1, Q̃0 = P−1Q0P−1,
Q̃1 = P−1Q1P

−1, Q̃2 = P−1Q2P
−1, R̃0 = P−1R0P

−1, R̃1 = P−1R1P
−1,

R̃2 = P
−1R2P

−1, R̃3 = P−1R3P−1, Y0 = P−1K>0 , Y1 = P−1K>1 , Y2 = P−1K>2 ,
and Y3 = P−1S>1 , Σ3 � 0 is equivalent to (38a). Hence, if Σ3 � 0; then
Σ � 0 and it follows that

V(zk+1) − V(zk) 6 η̄
>Γ η̄+ γϕ>kϕk + γϕ

>ϕ+ δ>k R0δk

− z>kQ0zk − z
+>
k Q1z

+
k − z−>k Q2z

−
k

− 2z>k R1z
+
k − 2z>k R2z

−
k − 2z+>k R3z

−
k . (51)

In order to obtain an upper bound of (51), first note that ||ϕk||2 6 ϕ2max
and ||ϕ||2 6 2nϕ2max. Then, is needed to obtain an upper bound ϕmax.
With this aim in mind, first, consider that

||g(z(s)) − g(zk)|| 6 L||z(s) − zk||, (52)

holds for L = 2max{||A1||, ||A2||}. It is possible to put (33) now in terms
of g(ẑk) adding and subtracting the term

∫h
0 e

A0(h−s)dsg(ẑk) in the right–
hand side of (32). Then, considering (33), in terms of g(ẑk), and (52), it
follows that

||z(t) − zk|| 6 λ(t, z(tk),uk) + L
∫t
tk

||eA0(t−s)||||z(s) − zk||ds, (53)
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with

λ(t, z(tk),uk) = ||eA0(t−tk) − I||||zk||+

∫t
tk

||eA0(t−τ)B||||u(τ)||dτ

+

∫t
tk

||eA0(t−τ)||||δ(τ)||dτ

+

∫t
tk

||eA0(t−τ)||||g(ẑ(τ))||dτ. (54)

Thus, applying Lemma 2 to (53), it is obtained that

||z(t) − zk|| 6 λ(t, z(tk),uk)

+

∫t
tk

λ(s, z(tk),uk)||eA0(t−s)||ρ(t, s)ds =W(t, zk,uk), (55)

with ρ(t, s) = e
∫t
s ||e

A0(t−r)||dr. It is worth mentioning that (55) represents
the error between the continuous trajectory of the IP (32), and the discrete–
time version (35).

Then, the step forward error between the IP (34) and (35) is given as

||zk+1 − ẑk+1|| = (||A0||+ L||G||)||zk − ẑk||+ ||ϕk||+ ||ϕ||. (56)

Considering (55), it is possible to obtain an upper bound for (56), i.e.,

(||A0||+ L||G||)||zk − ẑk||+ ||ϕk||+ ||ϕ|| 6 λ(t, z(tk),uk)

+

∫t
tk

λ(s, z(tk),uk)||eA0(t−s)||ρ(t, s)ds.

Taking into account that ||ϕk||+ ||ϕ|| 6 (1+
√
2n)ϕmax. Hence, is possi-

ble to accomplish that

ϕmax 6 (1+
√
2n)−1(W(tk+1, zk,uk) − (||A0||+ L||G||)||zk − ẑk||). (57)

Thus, since A0 is Hurwitz; one can take into account that ||eA0(t−tk)|| 6
ξe−ν(t−tk), with ν = |Re{λmax{A0}}| and ξ > 0, for all t ∈ [tk, tk+1); thus,
(54) with t = tk+1 can be upper bounded as

λ(tk+1, z(tk),uk) 6 ξ||zk||+ ||ẑk||+ kξ[||B||umax

+ ||g(z(tk))||+ ||δk||] = λc, (58)

with umax = ||umax|| and kξ = ξν−1(1 − e−νh). Then, taking into ac-
count that

∫tk+1
s ||eA0(tk+1−r)||dr 6 ξν−1(1− e−νh) and considering (58),

W(tk+1, zk,uk) is upper bounded as W(tk+1, zk,uk) 6 ke1λc =Wc, with
ke1 = 1+ e

kξkξ. Therefore, (57) can be upper bounded as follows

ϕmax 6 (1+
√
2n)−1

[
(ke1ξ− ||A0||− L||G|| + ||A1||+ ||A2||)||zk||

+ (ke1 − ||A0||− L||G||)||ẑk||+ ke1kξ(||B||ūmax +||δk||)] . (59)
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Considering (59), the term ϕ2max can be upper bounded as follows

ϕ2max 6 4(1+
√
2n)−1

[
(ke1ξ− ||A0||− L||G|| + ||A1||+ ||A2||)

2||zk||
2

+ (ke1 − ||A0||− L||G||)
2||ẑk||

2 + k2e2(||B||2ū2max +||δk||
2)
]

, (60)

with ke2 = ke1kξ. Note that, from (29), it can be obtained that ||x|| 6

||1kx||||b||−1 =
√
kxλ

−1
max{b>b}. Recalling that zk = [x>k , x>k ]

>, then ||zk|| 6√
2kxλ

−1
max{b>b} = ζ. Moreover, after some algebraic manipulations, it

is possible to prove that η̄>Γη, with η̄ = (η>, e>k , e+>k , e−>k )> and (48) is
upper bounded as

η̄>Γ η̄ 6 2[ζc1 + c2ẽ+ ||δk||c3 + ||ϕk||c4 + ||ϕ||c5]ẽ, (61)

with c1, c2, c3, c4, and c5 given as in (41a)–(41d). where K = ||K0||+ ||K1||+

||K2||. By definition, ||ek|| 6 ẽ =Wc and, ||ϕk|| 6 ϕmax = ϕc with

Wc = [ke1(ξ+ 1) + kξ(||A1||+ ||A2||)]ζ+ kξ[||B||umax + λ
−1/2
max {R0}],

ϕc = (c6 + c7)ζ+ c8(||B||ūmax + λ
−1/2
max {R0}),

with c6, c7, and c8 given as in (41e)–(41g). Then, according to (61) and
taking into account that δ>k R0δk 6 λmax{R0}||δk||

2 holds, it follows that

V(zk+1) − V(zk) 6 −z>kQ0zk − z
+>
k Q1z

+
k − z−>k Q2z

−
k

− 2z>k R1z
+
k − 2z>k R2z

−
k − 2z+>k R3z

−>
k

+ λmax{R0}||δk||
2 + q1||δk||+ q2, (62)

with q1 and q2 given as in (40a) and (40b). Thus, ifQ = Q0+min{Q1,Q2}+
2min{R1,R2} � αP is satisfied, and since, by definition z+>k R1zk > 0 and
(−z−k )

>R2zk > 0, z+>k R3z
−
k = 0, for any diagonal matrices R1,R2 and

R3; then, it follows that V(zk+1) − V(zk) 6 −αz>k Pzk + λmax{R0}||δk||
2 +

q1||δk||+ q2. Note that pre– and post–multiplying Q by P−1, Q � αP is
equivalent to (38b). Therefore, the system (45) is ISpS, with respect to δk.

Moreover, we have that ||δk|| 6 2||D||wmax = δk. Then, the increment of
the candidate Lyapunov function is negative definite outside the invariant
convergence set

R = {zk ∈ R2n : z>k Pzk 6 α
−1ε}, (63)

with ε = λmax{R0}δ
2
k + q1δk + q2. Remark that the error (55) is taken into

account in the LMI (38a), i.e., the error between the continuous trajectory
of the IP (32), and its discrete–time version (34). Finally, if the matrix
inequality (39) is satisfied, then the set R belongs to the polytope (29).
Moreover, if the IP (35) is initialized as ẑ0 = (x>0 , x>0 )

>, since Assumptions
3 and 4 hold; then, the trajectories of the system (28) will also fulfill the
state constraints, i.e., x ∈X . This concludes the proof. �

Proof of Theorem 2: Note that the proof is based on a classical result
for MPC [37]. Recall that the controller is composed of an IP–based state–
feedback controller and the MPC law, which will deal with state and input
constraints. Thus, the following can be established:
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1) First, note that the IP (35) generates an estimation ẑk such that the
relation x(t) 6 x(t) 6 x(t) is satisfied. Then, consider the control ûk
and note that, for some t > 0, if the initial conditions ẑk(0) ∈ R ⊂
X× X; then, the control (36) equals to (37). According to (63) and
Assumption 5, ẑ(t) ∈ R and ûk ∈ U , for all t > 0, and the origin of
the system dynamics (35) is ISpS, with respect to δk due to the result
of Lemma 6.

2) Now, let ẑk(0) /∈ R and recall that Problem 1 is assumed to be fea-
sible. Then, applying the control (44), for t ∈ [0, T), one has that
ẑk(t) ∈ X × X, and u(t) ∈ U , on this time interval. Note that X

is a neighborhood of the origin, and the cost function is given by
VN, with positive definite matrices W, H, and M, and it is mini-
mized inside X× X. Using these arguments, due to Assumption 4

and [wk+1,wk+1] ⊆ [wk,wk] hold, and since ẑk(ti + T) ∈ X × X

provided that the control uk in (44) is applied and [z>(ti), z>(ti)] ⊂
[z>(ti−1 + T), z>(ti−1 + T)], for all i > 1, there is a finite time in-
stant t > T such that (z>(t), z>(t))> ∈ R; and then, the control law
(36) switches from the control signal uk computed by the MPC to
the state–feedback control law ûk, which provides that the system
trajectories are ISpS with respect to δk.

3) As a result of the previous statements, the system constraints are
satisfied.

This concludes the proof. �



5
A S A M P L E D R O B U S T C O N T R O L F O R U N C E RTA I N
N O N L I N E A R S Y S T E M S

This chapter presents a sampled robust controller for a certain class of uncertain
nonlinear systems with state, input, and communication constraints affected by
external perturbations. The proposed controller comprises the design of an ape-
riodic control law based on an event–triggered controller and a periodic control
law based on a constant sampled state–feedback controller. The proposed strat-
egy ensures the ISS of the tracking error dynamics with respect to the external
perturbations.

5.1 introduction

As mentioned above real dynamical systems can be represented by non-
linear models. It is well–known that the real systems have to operate in
confined spaces and have energy limitations, i.e., they must deal with state
and input constraints (see, e.g., [52], [53] and [54]). Moreover, in most cases,
the dynamical systems are managed through a digital platform, and then
there is limited bandwidth, so it is necessary to restrict the frequency of
control input updates to save communication resources. A well–known
technique to deal with this problem is the event–triggered control (see,
e.g., [55], [56], and [57]). Its main characteristic is that the control actions
are updated only when certain well–defined events occur, resulting in an
aperiodic sampling time [58].

Regarding the control design for constrained systems, for instance, in
[59], an MPC algorithm is proposed for trajectory tracking of constrained
linear systems. The algorithm ensures constraint satisfaction and asymp-
totic convergence of the tracking error. However, this algorithm only con-
siders linear systems and it does not take into account communication
constraints or external perturbations. Concerning the control design for
nonlinear systems under communications constraints (e.g., when the digi-
tal platform of the system imposes limitations on the control update time);
for instance, in [60], an event–triggered adaptive control algorithm is pro-
posed for a class of uncertain nonlinear systems. This algorithm guaran-
tees that all closed–loop signals are globally bounded, and the tracking er-
ror exponentially converges to a compact set. However, the previous work
does not take into account state or input constraints, and only the unper-
turbed case is considered. In [61], an event–triggered MPC is proposed
for nonlinear continuous–time systems with additive bounded perturba-
tions. The trajectory of the systems converges to a given set. In [62], an
event–triggered MPC is proposed for continuous–time nonlinear systems

49
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subject to bounded perturbations. The proposed algorithm consists of the
triggering mechanism and the dual–mode approach. The state trajectory
converge to a robust invariant set. However, in [61] and [62] the minimum
sampling time is not considered. In [63], a robust self–triggered MPC
with an adaptive prediction horizon scheme is proposed for constrained
nonlinear discrete–time systems with external perturbations. This algo-
rithm ensures that the system trajectories inside a defined set are ISS with
respect to the external perturbations. The proposed algorithm only con-
siders discrete–time systems. In the previous works, high computational
power was needed due to the nature of the MPC implementation, i.e., solv-
ing a finite time horizon optimization problem on–line. Additionally, most
of the previous works do not take into account the communication con-
straints, i.e., the limited amount of communication resources.

In this chapter, motivated by the above–mentioned issues, i.e., meaning-
ful external perturbations, system and communications constraints, and
constraint complexity, a robust sampled control strategy is proposed to
solve the stabilization problem in nonlinear systems with communication,
state, and input constraints. The proposed control scheme is composed of
an aperiodic sampled controller and a periodic sampled controller. Then,
the proposed control approach contributes with the following features:

1) The aperiodic sampled controller is based on a state–feedback event–
triggered controller designed through the AEM and the BLF , taking
into account the state and input constraints.

2) The characterization of a safe set, where the state constraints are
not transgressed, is provided, as well as a switching set defining the
region where each control part is active.

3) The periodic sampled control part is based on a state–feedback con-
troller designed using a Lyapunov–Krasovskii function approach,
this part of the controller takes into account the minimum sampling
interval.

4) The proposed approach ensures the ISS properties of the system tra-
jectory with respect to external perturbations.

5) The synthesis of the controller is constructive since it is based on
LMIs.

5.2 problem statement

Consider the following class of nonlinear system

ẋ(t) = f(x(t)) +Bu(t) +Dw(t), t > 0, (64a)

u(t) = u(tk), ∀t ∈ [tk, tk+1), (64b)

where x(t) ∈ Rn is the state, f : Rn → Rn is a locally Lipschitz function,
w : R+ → Rq is the perturbation term, u(t) ∈ Rp is the control input,



5.3 robust control design 51

which is applied at each time tk, for all k ∈ N. The sampling instants tk
monotonously increasing, so that limk→∞ tk = +∞, and h(t) := tk+1 −

tk > hmin, where hmin > 0 is the minimum sampling interval, and t0 = 0.
Note, that hmin is the minimum sampling interval allowed by the digital
platform of the system and the sampling instants tk will be determined
by the proposed sampled controller. The matrices B and D are known of
suitable dimensions. It is considered that u ∈ U := {u ∈ Rp|− umaxj 6
uj 6 umaxj , ∀j = 1,p}, with 0 < umaxj is the maximum value for each
control signal.

Moreover, the solutions of the system (64a) must be constrained inside
the polytope

X := {x ∈ Rn|bx 6 1kx}, (65)

where b = (b1, . . . ,bkx)
> ∈ Rkx×n. It is assumed that the origin belongs

to the interior of the set X.
The aim of this chapter is to design a sampled controller for a nonlinear

system affected by external perturbations and taking into account some
communication constraints, i.e., a minimum sampling time hmin in which
the control signal can be sent to the system; state and input constraints,
i.e., x(t) ∈ X ⊂ Rn and u(t) ∈ U ⊂ Rp, for all t > t0, for some given sets
X and U .

Before proceeding, the following assumption is imposed on the system
(64a).

Assumption 6 There exist a know Metzler matrix A0 ∈ Rn×n and know ma-
trices Aj ∈ Rn×n, j = 1,N for some N ∈ Z+ such that the following relations
are satisfied

f(x) =

A0 + N∑
j=1

αj(x)Aj

 x, (66a)

N∑
j=1

αj(x) = 1, αj(x) ∈ (0, 1), j = 1,N. (66b)

5.3 robust control design

According to Assumption 7, the system (64a) has the following repre-
sentation

ẋ(t) =

A0 + N∑
j=1

αj(x)Aj

 x(t) +Bu(t) +Dw(t). (67)

The proposed controller takes the following form:

u(t) =

{
ũ(t), if x(t) 6∈ E (P),

û(t), if x(t) ∈ E (P),
(68)

where ũ is an event–triggered controller, û is a constant sampled state–
feedback controller, and the ellipsoid E (P), which is defined further on, is
the switching and invariant set for system (67).
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5.3.1 Linear Control Design

The following assumption is imposed on the system (67):

Assumption 7 The pair (A0,B) is controllable.

Since the event–triggered control law is based on a linear state–feedback
controller, then the following non–sampled control law is proposed first

ũ(t) = σ(u0(t)), (69)

with u0(t) = Kx(t), where K ∈ Rp×n is a feedback gain, such that the
state and input constraints are not transgressed.

The following lemma provides a safe set E (R), the switching set E (P),
and a way to design K.

Lemma 7 Let Assumption 7 be satisfied and the control (69) be applied to the
system (67), i.e., u(t) = ũ(t). Suppose that there exist a positive–definite matrix
X1 = X>1 ∈ Rn×n, matrices Y ∈ Rp×n, Z = (Z>1 ,Z>2 ) ∈ Rp×n, M ∈
Rn×n, ∆ = diag(δ1, δ2), with δ1, δ2 > 0, Qw ∈ Rn×n such that λmax(Qw) =

0.5w2max, and a constant γ > 0, such that the following set of LMIs

χ1 =

 χ11 B∆− YT +Z> X1D

? −2∆ 0

? ? −γQw

 � 0, (70a)

χ11 = He{X1Aψ}+BY + YTB> +M, Aψ = A0 +AmaxI3,

χ2i =

(
X1 Z>i

Zi u2i

)
� 0, i = 1, 2, (70b)

χ3 =

(
M γX1

γX1 γX2

)
� 0, (70c)

X2 < X1, (70d)

χ4j = b̄
T
j X1b̄j 6 1, j = 1, 4, (70e)

is feasible for given constants xy, ||w||∞ < wmax, and Amax =
∑m
j=1 α

∗||Aj||,
where α∗ = arg maxα∈Γ

∑m
j=1 αj||Aj||, and Γ ⊂ Rm the set of all convex weight

vectors α = (α1, . . . ,αm)> ∈ Rm such that (66) holds. If x(0) ∈ E (R), with
R = X−1

1 , and K = YR, then the ellipsoid E (P), with P = X−1
2 , is asymptotically

attractive while E (R) is invariant for the system (67).

5.3.2 Event–Triggered Controller

Due to the communication restrictions, it is necessary to implement the
controller (69) in a sampled way, i.e.,

ũ(t) = σ(u0(tk)), ∀t ∈ [tk, tk+1), k ∈N. (71)

The following lemma provides a way to implement the event–triggered
controller.
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Lemma 8 Let the control (71) be applied to the system (67), i.e., u(t) = ũ(t),
with the controller parameters designed according to Lemma 7, i.e., K = YR.
Suppose that there exist positive–definite matrices P̃2 = P̃>2 ∈ Rn×n, P̃3 =

P̃>3 ∈ Rn×n, R̃1 = R̃>1 ∈ Rn×n, and S̃1 = S̃>1 ∈ Rn×n, such that the following
LMI

Θ =


Θ11 Θ12 Θ13 P̃>2 D

? Θ22 P̃>3 BK P̃>3 D

? ? Θ33 0

? ? ? −γ2I

 � 0, (72)

Θ11 = He{P̃2Aψ}+ S̃1 + 2e−2κ1hminR̃1,

Θ12 = R− P̃
>
2 + P̃3Aψ, Θ13 = e−2κ1hminR̃1 + P̃

>
2 BK,

Θ22 = −2P̃>3 + h2minR̃1, Θ33 = −e−2κ1hmin(R̃1 + S̃1),

is feasible for K and R given as in Lemma 7, some γ2 > 0, κ1 > 0, and hmin > 0.
Thus, if the event–triggered control law is designed as

ũ(t) =



σ(u0(t)), t = tk+1, if W(t,u0(tk)) > ρW(t,u0(t))

& h(t) > hmin,

σ(u0(tk)), if W(t,u0(tk)) > ρW(t,u0(t))

& h(t) < hmin,

or W(t,u0(tk)) 6 ρW(t,u0(t)),

(73)

for all t ∈ [tk, tk+1), where ρ > 0, W(t,u0) = Se(t)x
>(t)RBσ(u0), Se(t) =

1/(1− x>(t)Rx(t)), and e(0) ∈ E (R) − E (Rs), with Rs = ε−1I3 and

ε = ||e(A0+AmaxI)hmin ||λ
− 1
2

max(R) + hminε1ε2, (74)

where

ε1 = ||K||λ
− 1
2

max(R) +
√
2||D||wmax, (75)

ε2 = sup
06s6hmin

||e(A0+AmaxI)(hmin−s)||, (76)

then, the ellipsoid E (P), with P given as in Lemma 7, is asymptotically attrac-
tive while E (R) is invariant for the system (67) provided that

γ2w
2
max 6 2κ1. (77)

The following algorithm provides a way to implement the event–triggered
controller.
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Algorithm 5.1:

Input: hmin;

Output: ũ(t);

01: h(t) = t− tk;

02: k = 0;

03: if W(t,u0(tk)) > ρW(t,u0(t)) ∧ h(t) > hmin;

04: ũ(t) = σ(u0(t));

05: k = k+ 1;

06: else

07: ũ(t) = σ(u0(tk));

08: end

Note that the control (69) ensures that the tracking error converges
asymptotically to E (P). Once in this region, the control law commutes
to a constant sampled controller, which takes into account a maximum
sampling time. In the following section, a way to design this controller is
proposed.

5.3.3 Constant Sampled Controller

Let us consider the state–feedback control law

û(t) = K2x(tk), ∀t ∈ [tk, tk+1), k ∈N, (78)

with h(t) = tk+1 − tk = h̄, with some h̄ > hmin > 0. The following lemma
provides a way to design K2.

Lemma 9 Let the control (78) be applied to the system (67), i.e., u(t) = û(t).
Suppose that there exist some positive–definite matrices P1 = P>1 ∈ Rn×n, P2 =
P>2 ∈ Rn×n, R1 = R>1 ∈ Rn×n, S = S> ∈ Rn×n, and Y ∈ Rp×n, such that
the following LMI

Ψ1 =


ψ11 ψ12 ψ13 D

? ψ22 εBY εD

? ? ψ33 0

? ? ? −γ3I

 � 0, (79)

ψ11 = P
>
2 A
>
ψ +Aψ P2 + 2κ2S− e

−2κ2h̄R1,

ψ12 = P1 − P2 + εAψP2,ψ13 = e−2κ2h̄R1 +BY,

ψ22 = −2εP2 + h̄
2R1, ψ33 = −e−2κ2h̄(R1 + S),

holds for some ε, κ2,γ3 > 0, h̄ > hmin > 0, and K2 is designed as K2 = YP2,
then the system (67) is ISS, with respect to d, and x(t) ∈ E (Pc), with Pc =

2κ2γ
2
3w
2
maxP

>−1
2 P1P

−1
2 . Moreover, if

X−1
2 � Pc, (80)

holds for some wmax > 0, and X2 given as in Lemma 7, then E (Pc) ⊂ E (P).
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The following algorithm provides a way to implement the constant
sampled controller and to obtain h̄ through the bisection method, where
hmax > 0 is an auxiliary tuning variable.

Algorithm 5.2:

Input: ε << 1, hmin, hmax > hmin, X2;

Output: h̄, K2, P1, P2, R1, S, Pc;

01: hb = (hmin + hmax)/2;

02: while hb > 2εhmin;

03: hb = (hmin + hmax)/2;

04: h̄ = hb;

05: if Ψ1 � 0 ∧ X−1
2 � Pc;

06: hmax = hb;

07: else

08: hmin = hb;

09: end

10: end

11: h̄ = hb.

Note that (80) is used to verify that the convergence region, given when
the control (78) is applied, is completely contained in E (P). If this condi-
tion is not fulfilled, the parameter γ3 can be modified to recalculate K2
such that the E (Pc) contained in E (P). Finally, considering the results of
Lemmas 7 and 9, the main result is presented.

Theorem 3 Let the control (68) be applied to the system (67), with (73) and (78),
where, the controller parameters are designed according to Lemma 7, Lemma 8,
and Lemma 9, respectively. If e(0) ∈ E (R) − E (Rs), then the system (67) is ISS
with respect to w.

The proof of the previous results are postponed to section 5.6.
To better illustrate the algorithm presented in this chapter, a block dia-

gram of the closed–loop dynamics, considering the system (64a) and the
controller (68), is presented in Fig. 19.

5.4 simulation results

Consider the following nonlinear system

ẋ1(t) = −x1(t) + (1+ x1(t))x2(t) +w(t),

ẋ2(t) = (2x1(t) − 1)x2(t) + u(t) +w(t),
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Figure 19: Closed–loop diagram

with w(t) = 0.2 sin (3t) + 0.2, thus, w(t) = 0, w(t) = 0.4, and wmax = 0.4.
This system satisfies Assumptions 3 and 4. The matrices A0 and Aj can be
obtained by the convex polythopic method [51], as follows

A0 =

(
−1 1

0 −1

)
, A1 =

(
0 2

2 0

)
, A2 =

(
0 2

−2 0

)
,

A3 =

(
0 −2

2 0

)
, A4 =

(
0 −2

−2 0

)
.

Let us consider that umax = 2, x1 ∈ (−2, 2) and x2 ∈ (−1, 1), and hence
b1 = (1/2, 0)>, b2 = −b1, b3 = (0, 1)>, and b4 = −b3. The initial con-
ditions for the system are x(0) = (−1.2, 0.45)>. To compute the control
gains for the aperiodic control law, let us apply the statements of Lemma
7. Consider δ = 0.4486 and γ = 0.2, then the following feasible solution is
obtained:

R =

(
0.2502 0.0152

0.0152 1.2304

)
, P =

(
0.5004 0.0304

0.0304 2.4607

)
,

K =
(

−0.1394 −1.2693
)

.

Therefore it can be verified that that the LMI (72) is satisfied, hence, the
event–triggered control can be applied.

To compute the control gains for the periodic control law, let us apply
the statements of Lemma 9. Taking into account hmin = 0.1[s], γ2 = 0.2,
ε = 0.5, then, the following feasible solution is obtained:

P1 =

(
5.3448 −0.0281

−0.0281 3.8928

)
, P2 =

(
3.8978 0.5874

0.5874 3.4911

)
,

K2 =
(

−2.5322 −3.8710
)

, h̄ = 0.2.
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Additionally, it is given that ε = 0.0592 and thus Rs = 16.8910I3. The
system trajectories are depicted in Fig. 20, which shows that they converge
to a region close to the origin despite the external perturbations and never
transgress the state constraints. The control signal is depicted in Fig. 21.
Observe that the control signals remain inside the linear region. The ellip-
soids E (R), E (P), E (Pc), and (E (R) − E (Rs)), are depicted in Fig. 22. It
can be seen that the system trajectories in (E (R) − E (Rs)), remain inside
E (R), then converge to E (P), and finally remain inside E (Pc).
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Figure 20: System trajectories
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Figure 21: Control signals

5.5 remarks

In this chapter, a robust controller to stabilize continuous–time nonlin-
ear system is designed. The proposed control scheme comprises an aperi-
odic sampled controller and a periodic sampled controller. The proposed
aperiodic sampled controller is based on a state–feedback event–triggered
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Figure 22: Phase portrait

controller designed through the AEM and the BLF, taking into account
the state and input constraints. The characterization of a safe set, where
the state constraints are not transgressed, is provided, as well as a switch-
ing set that defines the region where each part of the control is active.
The periodic sampled control part is based on a state–feedback controller,
which takes into account the minimum sampling interval. The proposed
approach ensures the ISS properties of the system trajectories with respect
to external perturbations.

5.6 proof of the results

Proof of Lemma 7: Consider the function φ(u0(t)) = σ(u0(t)) − u0(t),
thus the closed–loop dynamics, considering the system (67) and the con-
troller (69), i.e., u(t) = σ(u0(t)), is given as

ẋ(t) = (A0 + Ã+BK)x(t) +Bφ(u0(t)) +Dw(t), (81)

where Ã =
∑m
j=1 αj(ρ1)Aj. Let us take into account the following BLF

candidate V(t) = ln
(
1/(1− x>(t)Rx(t))

)
, where 0 ≺ R = RT ∈ Rn×n is

a matrix that parametrizes the ellipsoid E (R) containing the initial condi-
tions. Then, the time–derivative of V , along the trajectories of system (81),
is given by

V̇(t) = 2Se(t)x
>(t)R

[
(A0 + Ã+BK)x(t) +Bφ(u0(t)) +Dw(t)

]
, (82)

where Se(t) = 1/(1−x>(t)Rx(t)). Introducing the extended vector η>(t) :=
(e>(t),φ>(t),w>(t))>, the time–derivative of V can be rewritten as fol-
lows

V̇(t) = Se(t)η
>(t)

 He{Ak} RB D

? 0 0

? ? 0

η(t),
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where Ak = R(A0 + Ã+ BK). Considering that ||Ã|| 6 Amax, adding and
subtracting the term γSe(t)w

>(t)Qww(t), withQw such thatw>(t)Qww(t) 6
1, i.e., λmax(Qw) = 0.5w2max, then V̇ can be upper bounded by

V̇(t) 6 Se(t)

γ+ η>(t)
 He{Āk} RB D

? 0 0

? ? −γQw

η(t)
 ,

where Āk = R(A0 +AmaxIn + BK). According to Lemma 3, with ᾱ = Kx,
β̄ = Kx−G0x, and G0 ∈ Rp×n, the inequality φ>∆−1 [φ+ (K−G0) x] 6 0
is satisfied, where ∆−1 = diag(δ−11 , δ−12 ), with δ1, δ2 > 0. In order to en-
sure that G0x(t) belongs to the set U , noting that x>(t)Rx(t) < 1, it is suffi-
cient that ‖G0x(t)‖2 6 u2i x>(t)Rx(t), for i = 1, 2, holds. Using the Schur’s
complement, the previous inequality can be written as in LMI (70b), with
Z = R−1G0. Adding and subtracting the term γSe(t)x

>(t)Px(t), then V̇
can be upper bounded as follows

V̇(t) 6 γSe(t)[1− x
>(t)Px(t)] + Se(t)η

>(t)Ση(t),

with

Σ =

 He{Āk}+ γP RB−∆−1K>G D

? −2∆−1 0

? ? −γQw

 ,

with KG = K−G0. Pre and post–multiplying Σ by T = diag(R−1,∆, I), it
follows that Σ1 = TΣT � 0 is equivalent to χ1 � 0, with the change of vari-
ables X1 = R−1, X2 = P−1, Y = KR−1, and Z = R−1G0, and introducing an
additional variable M ∈ Rn×n with constraints M � γR−1PR−1, applying
the Schur’s complement, one obtains the LMI (70c).

Hence, if χ1 � 0, then V̇(t) 6 γSe(t)[1− x>(t)Px(t)]. Note that, for all
x>(t)Px(t) > 1 and x>(t)Rx(t) < 1, V̇(x(t)) 6 0; thus, any solution of sys-
tem (81), staring in E (R), remains in E (R) and converges asymptotically
to E (P), which implies that E (R) is invariant. Therefore, if P � R, i.e., the
LMI (70d), holds then E (P) is completely contained into E (R). To ensure
that E (R) is completely contained in the state–constrained set (65), it is
sufficient that condition (70e) is satisfied. This concludes the proof. �

Proof of Lemma 8: Based on the proof of Lemma 7, it is established that

V̇(t) = 2Se(t)x
>(t)R

[
(A0 + Ã)x(t) +Bσ(u0(t)) +Dw(t)

]
.

It has been shown that V is a BLF, then it is decreasing. Therefore, the
following event–triggered condition is introduced

V̇(x(t),u0(tk)) 6 ρV̇(x(t),u0(t)), (83)

with some ρ > 0 whose satisfaction guarantees that V(t, e) keeps its decay
property. Note that (83) is equivalent to the following inequality

W(t,u0(tk)) 6 ρW(t,u0(t)). (84)
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Let us analyze the two scenarios provided by the condition (84), i.e.,
when the control input needs to be updated and when it needs to remain
constant. For the first scenario, i.e., when the condition (84) is no longer
satisfied, i.e., W(t,u0(tk)) > ρW(t,u0(t)), this indicates that W(t,u0(tk))
decreases slower than the rate ρW(t,u0(t)). This implies that the control
input needs to be updated to ensure that W(t,u0(tk)) decreases again
with rate ρW(t,u0(t)).

For the second scenario, there are two cases to analyze. For the first case,
if W(x(t),u0(tk)) 6 ρW(x(t),u0(t)), i.e., ũ(t) = ũ(tk), for all t ∈ [tk, tk+1),
the control signal remains constant. Since the minimum sampling time
is considered, an additional condition must be imposed on the event–
triggered structure to allow the control signal to be updated. Then, it
is necessary to show that the trajectories will not violate the state con-
straints for the case when (84) does not hold and h(t) < hmin, i.e., when
the control input will remain constant until h(t) = hmin. Since Lemma
7 already provides convergence conditions when the saturated control is
used, it is required to analyze the case when the control is constant out
of the saturated zone, i.e., in the linear zone u0(tk) = Ke(tk). The case
when the control passes from the saturated zone to the non–saturated one,
while h(t) < hmin, can be treated similarly, and this case is omitted for
brevity. Thus, let us take into account the closed–loop dynamics, consid-
ering the system (67) and the controller (71), i.e., ũ(t) = u0(tk), for all
t ∈ [tk, tk+1), k ∈N:

ẋ(t) = (A0 + Ã)x(t) +BKx(tk) +Dw(t), (85)

where K is given as in Lemma 7 and h(t) = hmin, i.e., the worst case
for which the constraints are not transgressed. The solution of system (85),
taking into account that x>(tk)Rx(tk) 6 1, satisfies ||x(t)|| 6 ε, with ε given
in (74), for all t ∈ [tk, tk+1]. Then, the set E (Rs) is defined, with Rs =

ε−1I3, as a threshold set. Note that the set E (Rs) considers a threshold
region inside to E (R) that ensures the states do not violate the constraints,
even when the control input is constant until h(t) = hmin. Now, based on
[64], let us consider the following Lyapunov–Krasovskii functional

V2(t) = x
>(t)Rx(t) +

∫t
t−hmin

e2κ1(s−t)x>(s)S̃1x(s)ds

+ hmin

∫0
−hmin

∫t
t+θ

e2κ1(s−t)ẋ>(s)R̃1ẋ(s)dsdθ, (86)

where κ1 > 0, 0 ≺ R̃1 = R̃>1 ∈ Rn×n, 0 ≺ S̃1 = S̃>1 ∈ Rn×n, and R is given
as in Lemma 7. Note that for this analysis the values of K and R are fixed.
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The time–derivative of V2, along the trajectories of system (85), and using
the descriptor method, satisfies

V̇2(t) + 2κ1V2(t) − γ2w
>(t)w(t) 6 2x>(t)Rx(t) + 2κ1x

>(t)Rx(t)

+ h2minẋ(t)R̃1ẋ(t) + x
>(t)S̃1x(t) − γ2w

>(t)w(t)

− x−2κ1hmin [x(t) − x(t− hmin)]
>R̃1[x(t) − x(t− hmin)]

− e−2κ1hmin [x>(t− hmin)S̃1x(t− hmin)]

+ 2[w>(t)P̃>2 + ẋ>(t)P̃>3 ][(A0 + Ã)x(t)

+Dw(t) +BKx(t− hmin) − ẋ(t)]. (87)

Then, following the same procedure as in [64], the LMI (72) is obtained
to ensure that V̇2(t) + 2κ1V2(t) − γ2w>(t)w(t) < 0. Based on Proposition
4.3 in [64], since x>(t)Rx(t) 6 V2, the system (85) is ISS with respect
to d, and this implies the asymptotic convergence of e to the ellipsoid
E (R̃c), with R̃c = 2κ1γ

−1
2 w−2

maxR. Thus, it is necessary to ensure that the
convergence region E (R̃c) is completely contained in E (R), then R ≺ R̃c,
i.e., the condition (77) must be fulfilled. Thus, if h(t) < hmin the control
signal can remain constant until h(t) = hmin, and the system trajectories
remain in E (R) if e(0) ∈ E (R) − E (Rs).

Therefore, it is established that ũ(t) = σ(u0(t)), at the instant when the
condition W1(x(t),u0(tk)) > ρW2(x(t),u0(t)) and h(t) > hmin, i.e., the
control input is updated, while it remains constant if W1(x(t),u0(tk)) 6
ρW2(x(t),u0(t)), i.e., ũ(t) = ũ(tk), for all t ∈ [tk, tk+1). Finally, due to
the nature of the event–triggered control, the same switching behaviour
occurs until the trajectories of the system (67) asymptotically converge to
the ellipsoid E (P). This concludes the proof. �

Proof of Lemma 9: The closed–loop system dynamics, taking into account
(67) and (78), i.e., u(t) = û(t), is given as

ẋ(t) = (A0 + Ã)x(t) +BK2x(tk) +Dw(t), (88)

with t ∈ [tk, tk+1). Let us propose, based on [64], the following Lyapunov–
Krasovskii functional

V3(t) = x
>(t)P̄1x(t) +

∫t
t−h̄

x2κ2(s−t)x>(s)S̄x(s)ds

+ h̄

∫0
−h̄

∫t
t+θ

e2κ2(s−t)ẋ>(s)R̄1ẋ(s)dsdθ, (89)

where κ2 > 0, 0 ≺ P̄1 = P̄>1 ∈ Rn×n, 0 ≺ R̄1 = R̄>1 ∈ Rn×n, and
0 ≺ S̄ = S̄> ∈ Rn×n. Then, the time–derivative of V3, along the trajec-
tories of system (88), is given in a similar way as in (87). Following the
same procedure as in [64], the LMI (79) is obtained in order to ensure that
V̇3(t) + 2κ2V3(t) − γ3w

>(t)w(t) < 0. Based on Proposition 4.3 in [64], the
system (88) is ISS with respect to d, and this implies the asymptotic con-
vergence of x to the ellipsoid E (Pc), with Pc = 2κ2γ3w−2

maxP̄1. Finally, since
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the control (78) is only active inside the set E (P), it is necessary to ensure
that the convergence region E (Pc) is completely contained in E (P). With
this aim, P ≺ Pc, i.e., the LMI (80) must be fulfilled. This concludes the
proof. �
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R E G U L AT I O N P R O B L E M I N A C O N S T R A I N E D O M R

This chapter proposes a solution to the regulation problem for a three–wheeled
OMR with input saturation, state constraints, parameter uncertainties, and ex-
ternal perturbations. The proposed control algorithm, designed as in Chapter 3,
consists of a nominal and a robust part, both independently designed using an
ISMC approach. The proposed scheme guarantees asymptotic convergence to zero
of the regulation error coping with the system constraints and perturbations.

6.1 introduction

Mobile robots have emerged as a solution to perform a wide range of
tasks in different fields due to their versatility, such as security, industrial
supervision, military reconnaissance, etc. (see e.g., [65] and [66]). Within
mobile robots, the OMRs have the particularity of moving in any direc-
tion without changing their orientation. Motivated by this, the algorithm
presented in Chapter 3 is applied to an OMR in order to demonstrate its
effectiveness in real applications.

6.2 problem statement

Consider the dynamic model of a three–wheeled OMR [67]

Mξ̈(t) +C(ξ̇(t))ξ̇(t) +Dξ̇(t) = σ(τ(t)) +w(t), (90)

where ξ> = (x,y, θ) ∈ R3 is the configuration variable, where x(t) and
y(t) represent the planar position of the OMR, while θ(t) represents the
orientation angle, τ> = (τ1, τ2, τ3) ∈ R3 is the vector of generalized forces,
which are limited by the saturation function σ, w> = (w1,w2,w3) ∈ R3 is
the vector of external perturbations, and the matrices are given as

M =Mr + (I2 + Jmr
2
e)EE

>, C(ξ̇(t)) =
4

r2
(I2 + Jmr

2
e)θ̇(t)B,

D = r2e

(
kakb
Ra

+ kv

)
EE>, B =

 0 1 0

−1 0 0

0 0 0

 ,

E = −
1

r


√
3

2
−
1

2
−L

0 1 −L

−

√
3

2
−
1

2
−L


>

,

where Mr = diag(m1+ 3m2,m1+ 3m2, 3m2L2+ I1+ 3I3), m1 is the mass
of the body, m2 is the mass of each wheel, I1 is the inertia of the body, I2

65
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is the inertia of the wheels over the shaft of the motor, I3 is the inertia of
the wheels perpendicular to the shaft of the motor, L is the distance from
the center of the robot to the center of the wheels, Jm is the inertia of the
shaft of the motors, kb is the back electromotive force constant, ka is the
torque constant, Ra is the armature resistance, kv is the viscous friction of
the motor, and re is the gear ratio.

The model (90) has the following state space representation

d

dt

(
ξ(t)

ξ̇(t)

)
=

(
ξ̇(t)

f(ξ̇(t)) + g(τ(t) +w(t))

)
, (91a)

yc(t) = Cc(ξ
>(t), ξ̇>(t))>, (91b)

where

f(ξ̇(t)) = −M−1(C(ξ̇(t)) +D)ξ̇(t)

=


−
3a3
2r2

M−1
1 −a2M

−1
1 θ̇(t) 0

a2M
−1
2 θ̇(t) −

3a3
2r2

M−1
2 0

0 0 −
3L2a3
r2

M−1
3

 ξ̇(t),

Cc =

 1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 ,

and g = diag(M−1
1 ,M−1

2 ,M−1
3 ), with M1 = M2 = m1 + 3m2 + 3a1/2r

2,
M3 = 3m2L

2 + I1 + 3I3 + (3a1L
2)/r2, a1 = I2 + Jmr

2
e, a2 = (2/r2)(I2 +

Jmr
2
e), and a3 = r2et[(kakb/Ra) + kv].

Due to the three–wheeled OMR has state constraints, it is assumed that
the solutions of the system (91) are constrained inside a set of allowed val-
ues. It is possible to define this set through the following set of polytopes

Pz̄j := {z̄j ∈ R2|b>j z̄j 6 12, j = 1, 3}, (92)

where z̄>1 = (x, ẋ) ∈ R2, z̄>2 = (y, ẏ) ∈ R2, and z̄>3 = (θ, θ̇) ∈ R2.
Then, the problem is to regulate the output of the system (91), to some

desired value, despite the presence of parameter uncertainties and external
perturbations, and considering state constraints and input saturation.

6.3 robust control design

Note that the dynamics (90) is nonlinear due to term C(ξ)ξ̇. Taking into
account this term as external perturbation and due to the structure of the
matrix g the control signals are decoupled, and hence, the system (91) can
be rewritten as follows for j = 1, 3

˙̄zj(t) = (Aj +∆j)z̄j(t) +Bjτj(t) +Dzw̃(t), (93a)

ycj(t) = Czz̄j(t), (93b)
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where ycj is the output to be regulated and the matrices are defined as
follows

Ai =

 0 1

0 −
3a3
2r2

M−1
i

 , Bi =

(
0

M−1
i

)
, i = 1, 2,

A3 =

 0 1

0 −
3L2a3
r2

M−1
3

 , B3 =

(
0

M−1
3

)
,

Cz =
(
1 0

)
, Dz =

(
0 1

)>
,

with w̃1(t) = −a2M
−1
1 ẏθ̇(t)+w1(t), w̃2(t) = a2M−1

2 ẋθ̇(t)+w2(t), w̃3(t) =
w3(t) as the external perturbations for each subsystem, ∆j = diag(0, 1)AjδI,
with δI ∈ R as a percentage of the parameter uncertainties. Despite ∆j is
an unknown matrix, it is assumed that it does not destroy the structural
properties of the system.

Since the control signals are decoupled; then, it is possible to indepen-
dently design a controller for each of the subsystems in the form (93).

Assumption 8 The unknown input w is bounded, i.e., w̃ ∈ W := {w̃ ∈ L∞ :

||w̃||∞ 6 w}, with w a positive known constant; and the unknown matrix ∆ is
norm bounded, i.e., ||∆|| 6 δ, with δ a positive known constant.

Considering the nature of the mechanical system and taking into ac-
count the input saturation, it can be verified that system (90) is bounded–
input bounded–state. Thus, the nonlinear part of w̃j remains bounded.

Define the regulation error e := r− yc and the following variable

xr :=

∫t
0

(r− yc(τ))dτ =

∫t
0

e(τ)dτ,

where r ∈ R is a desired reference. Then, the following extended system
is introduced

ż(t) = (Ā+ ∆̄)z(t) + B̄(σ(τ(t)) +w(t)) + Fr, (94)

where z :=
(
z̄>, xr

)> ∈ R3 is the extended state and the system matrices
have the following structure

Ā =

(
A 0

−C 0

)
, B̄ =

(
B

0

)
, ∆̄ =

(
∆ 0

0 0

)
, F =

(
0

1

)
.

Note that due to the structure of A and B, the pair (Ā+ ∆̄, B̄) is stabiliz-
able. Due to (92), the solutions of the system (94) are constrained inside
the polytope

P := {z ∈ R3|b>i z 6 13, i = 1,k}. (95)

It is possible to approximate the state–constrained set (95) by an ellip-
soidal set completely contained in it [31], i.e., E (R) := {z ∈ R3|z>Rz 6 1} is
contained in P, if b̄>i R

−1b̄i 6 1, for i = 1,k.
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Now with the system in the form given in (12), it is possible to follow
the methodology given in Chapter 3 subsection 3.3, to design the controller
for each subsystem (93).

Note that although algorithm proposed in Chapter 3 is for regulation
tasks, i.e., constant references, it is possible to track sufficiently smooth
time–varying references due to the ISMC, which is able to compensate for
the time–varying effect of the desired trajectory.

6.4 simulation results

Let us consider the dynamics (93) with the parameters given in Table 1.

Table 1: Parameters of the OMR

Value Units Value Units

m1 1.99 kg I1 6.08× 10−2 kg m2

m2 0.29 kg I2 3.24× 10−4 kg m2

r 0.05 m I3 4.69× 10−4 kg m2

L 0.11 m Jm 5.70× 10−7 kg m2

ka 0.0134 Nm/A kb 0.0133× 10−3 Vs/rad

kv 0.0001 Nms/rad Ra 1.9 Ω

re 64 -

It can be verified that system (93) satisfies Assumption 8, for j = 1, 3.
The external perturbations are taken as w1(t) = 1+ sin (2t), w2(t) = 1−

cos (3t), w3(t) = 2 + sin (t). The initial conditions are z1(0) = (1, 0)>,
z2(0) = (1, 0)>, z3(0) = (2.2, 0)>, and xr1(0) = xr2(0) = xr3(0) = 0. In
order to show the feasibility of the proposed algorithm for a tracking task
of a sufficiently smooth time–varying trajectory, the desired references are
selected as

r1(t) = 0.3[1− (1+ tanh(ωt−φ)) + (1+ tanh(ωt− 3φ))

− (1+ tanh(ωt− 6φ))],

r2(t) = r3(t) = 0.3[1− (1+ tanh(ωt− 2φ)) + (1+ tanh(ωt− 4φ))],

with ω = 20 and φ = 200. For simulation purposes, let us consider that
x,y ∈ [−1.8, 1.8] [m], ẋ, ẏ ∈ [−3, 3] [m/s], and θ̇ ∈ [−3π, 3π] [rad/s]. Note
that the orientation of the OMR does not have constraints; however, it is
known that θ ∈ (−π,π) [rad]. Given the previous statements, the state
constraints are b̄1 = (10/18, 0, 0)>, b̄2 = −b̄1, b̄3 = (0, 1/3, 0)>, and b̄4 =

−b̄3, for the systems z̄1 and z̄2, while, b̄5 = (1/π, 0, 0)>, b̄6 = −b̄5, b̄7 =

(0, 1/3π, 0)>, b̄8 = −b̄7 for system z̄3.
To compute the control gains, it is possible to solve the LMIs of lemma

5 for the j systems in the form (93). Note that systems z̄1 and z̄2 are
equal; thus, it is possible to design a single control gains for both systems.
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Considering α1 = 60, τ1max = τ1max = 314.0362, fixing τ1Imax = τ2Imax =

188.4217, thus τ1Lmax = τ2Lmax = 125.6145; then, the following feasible
solution is obtained:

R1 = R2 =

 3.9072 0.6700 −4.4833

0.6700 0.2432 −0.6121

−4.4833 −0.6121 6.5782

 ,

P1 = P2 =

 7.2234 1.5115 −7.9554

1.5115 0.5529 −1.3753

−7.9554 −1.3753 10.9782

 ,

K1 = K2 =
(

−158.9036 −1.2005 143.4761
)

,

γ1 = γ2 = 100, δ1 = δ2 = 0.0067.

While for system z̄3, considering α3 = 1, τ3max = 48.8526, fixing τ3Imax =

19.5410, thus τ3Lmax = 29.3115; then, the following feasible solution is ob-
tained:

R3 =

 0.6677 0.0477 −0.8342

0.0477 0.0153 −0.0455

−0.8342 −0.0455 1.3672

 ,

P3 =

 1.0837 0.1031 −1.3235

0.1031 0.0350 −0.0960

−1.3235 −0.0960 2.1143

 ,

K3 =
(

−18.9529 −0.2783 16.6608
)

,

γ3 = 100, δ3 = 0.0079.

Due to the similarity between subsystems z̄1 and z̄2, only the results
for systems z̄1 and z̄3 are presented. The system trajectories and the cor-
responding ellipsoids are depicted by Figs. 23-24, for the system z̄1 and
z̄3, respectively. Note that for each system, the trajectories begin in el-
lipsoid E (R), remains in it, and converges to the ellipsoid E (P), despite
the presence of external perturbations and the parameter uncertainties.
The linear control τL, the nonlinear control τI, the control signal and the
saturation constraints are depicted by Figs. 25–26, for system z̄1 and z̄3,
respectively. Note that for the z̄1, both, the linear and the nonlinear con-
trol parts remains in the non–saturated zone all the time. While, in Fig.
26 it is observed that the linear control part gets saturated for an instant
of time. Notice that for each system the control signal τ remains in the
non–saturated zone.

The system trajectories in the plane x − y, and the state trajectory for
x, y, and θ, with their desired reference, are depicted in Figs. 27, 28, 29,
and 30, respectively, where shown that the trajectories of the system track
the desired reference despite the presence of external perturbations and
parameter uncertainties.
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Figure 23: State trajectories, ellipsoids, and state constraints for x
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Figure 24: State trajectories, ellipsoids, and state constraints for θ
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Figure 25: Control signals τ1L, τ1I and τ1 for system x
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Figure 26: Control signals τ3L, τ3I and τ3 for system θ

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 27: Phase portrait x− y
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Figure 28: State trajectory for x
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Figure 29: State trajectory for y
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Figure 30: State trajectory for θ
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6.5 remarks

This chapter presents the results obtained from applying the algorithm
presented in Chapter 3 to solve the regulation problem for a three–wheeled
OMR with input saturation, state constraints, parameter uncertainties, and
external perturbations. Note that the results presented are for the case in
which a time-varying trajectory is considered. It can be seen in the simula-
tion results that the asymptotic convergence to zero of the regulation error
is ensured coping with the system constraints and perturbations.





7
T R A J E C T O RY T R A C K I N G P R O B L E M I N A
C O N S T R A I N E D U M R

This chapter presents a robust control strategy for the trajectory tracking prob-
lem in constrained and perturbed UMRs. The proposed control algorithm, de-
signed as in Chapter 3, consists of a nominal and a robust part, both independently
designed using an ISMC approach. The proposed scheme guarantees asymptotic
convergence to zero of the tracking error coping with the system constraints and
perturbations. Some experimental results, using the QBot2 unicycle mobile robot,
validate the effectiveness of the proposed robust control strategy.

7.1 introduction

The UMRs have been widely studied due to their ability to move freely
from one point to another and the wide variety of possible real–world ap-
plications. In addition, it is well–known that such UMRs must deal with
state and input constraints, i.e., they have to move in restricted workspaces
and have energy limitations (see, e.g., [52], [68], and [69]). Also, the UMRs
can be affected by external perturbations, e.g., the skidding and slipping
of wheels, and corrupt control signals, which could modify their behavior
and stability. Therefore, in order to better deal with the trajectory tracking
control problem, it is necessary to consider all these factors in the control
design. Motivated by this, an adaptation of the algorithm presented in
Chapter 3 is applied to solve the trajectory tracking problem in an UMR.
Some experimental results, using the QBot2 by Quanser, validate the effec-
tiveness of the proposed robust control strategy.

7.2 problem statement

Consider the perturbed kinematic model of an UMR (see, Fig. 31):

θ̇(t) = [1+ d1(t)]ω(t), (96a)

ẋ(t) = [1+ d2(t)]c(θ(t))v(t), (96b)

ẏ(t) = [1+ d2(t)]s(θ(t))v(t), (96c)

where x(t) ∈ R and y(t) ∈ R denote the midpoint between the wheels
and θ(t) ∈ R represents the orientation angle of the UMR. The terms v(t)
and ω(t) contain the linear and angular velocities of the UMR, and repre-
sent the control inputs. The terms d1 and d2 represent some time–varying
perturbations, which are multiplicative to the inputs and that may come
from unmodeled kinematics phenomena proportional to the control in-
puts, such as slipping of the wheels. It is assumed that such time–varying
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perturbations di(t) are unknown but bounded, i.e., −1 < di(t) 6 dmax < 1,
for all t > 0 and i = 1, 2, with a known positive constant dmax.

+

Figure 31: Schematic Diagram of the Perturbed UMR

The aim of this chapter is to solve the trajectory tracking problem for
the UMR compensating some multiplicative perturbations and reaching
the desired trajectory taking into account some state and input constraints,
i.e., x(t) ∈ X = [xmin, xmax] ⊂ R, y(t) ∈ Y = [ymin,ymax] ⊂ R, v(t) ∈ V =

[−vmax, vmax] ⊂ R and ω(t) ∈ W = [−ωmax,ωmax] ⊂ R, for all t > 0, for
some given sets X, Y, V, and W.

7.3 tracking error dynamics

Let us define the tracking errors as follows

e1(t) = θd(t) − θ(t), (97a)

e2(t) = c(θ(t))(xd(t) − x(t)) + s(θ(t))(yd(t) − y(t)), (97b)

e3(t) = c(θ(t))(yd(t) − y(t)) − s(θ(t))(xd(t) − x(t)), (97c)

where xd, yd, and θd come from a reference kinematic model for the UMR,
i.e.,

θ̇d(t) = ωd(t), (98a)

ẋd(t) = c(θd(t))vd(t), (98b)

ẏd(t) = s(θd(t))vd(t), (98c)

where vd and ωd are the linear and angular reference velocities, respec-
tively. These are assumed continuous and bounded by some positive con-
stants vd, vd and ωd, i.e., 0 < vd < vd(t) 6 vd, and ||ωd||∞ 6 ωd, and
such that vd(t) ∈ V andωd(t) ∈W, for all t > 0. Moreover, the trajectories
of the reference model also hold the state constraints, i.e., xd(t) ∈ X and
yd(t) ∈ Y, for all t > 0.

Therefore, the tracking error dynamics can be calculated as

ė1(t) = −ω(t)d1(t) + τ1(t), (99a)

ė2(t) = [1+ d1(t)]ω(t)e3(t) − vd2(t) + τ2(t), (99b)

ė3(t) = −[1+ d1(t)]ω(t)e2(t) + vd(t)s(e1(t)), (99c)
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with the virtual control inputs τ1 and τ2 satisfying

τ1(t) = ωd(t) −ω(t), (100a)

τ2(t) = vd(t)c(e1(t)) − v(t). (100b)

Note that the tracking error dynamics (99) can be rewritten as follows
[70]:

ė(t) = A(ρ1)e(t) +B[τ(t) + F(ρ2)d(t)], (101)

where e = (e1, e2, e3)> ∈ R3, τ = (τ1, τ2)> ∈ R2, d = (d1,d2)> ∈ R2 and

A(ρ1) =

 0 0 0

0 0 [1+ d1(t)]ω(t)

vdsc(e1) −[1+ d1(t)]ω(t) 0

 ,

B =

 1 0

0 1

0 0

 , F(ρ2) =

(
−ω(t) 0

0 −v(t)

)
,

with ρ1 = (vdsc(e1), [1+ d1(t)]ω)> ∈ R2 and ρ2 = (v,ω)> ∈ R2 as the
unknown and known scheduling parameters, respectively. It is clear that
system (101) is in an LPV form and the input and state constraint sets are
given now as follows:

E = {e ∈ R3 : (e1, e2, e3) ∈ R× [−xy, xy]× [−xy, xy]}, (102)

U = {τ ∈ R2 : (τ1, τ2) ∈ [−τ1, τ1]× [−τ2, τ2]}, (103)

where xy = (xmax − xmin) + (ymax − ymin), τ1 = ωd +ωmax and τ2 = vd +

vmax. Moreover, note that there always exist a Metzler matrix A0 ∈ R3×3,
and some matrices Aj ∈ R3×3, for j = 1, 4, such that the following equa-
tions

A(ρ1) = A0 +

4∑
j=1

αj(ρ1)Aj, (104a)

4∑
j=1

αj(ρ1) = 1, αj(ρ1) ∈ [0, 1], (104b)

hold for the system (101). Thus, system (101) can be expressed as follows

ė(t) =

[
A0 +

4∑
j=1

αj(ρ1)Aj

]
e(t) +B[τ(t) + F(ρ2)d(t)]. (105)

Therefore, the problem now is to design a robust control law τ such that
the trajectories of the system (101) converge to zero despite the perturba-
tions d taking into account the state and input constraints (102) and (103),
i.e., e(t) ∈ E and τ(t) ∈ U, for all t > 0.

Thus, the idea is to design a controller as in (14), i.e.,

τ(t) = σ(u0(t)) + uI(t). (106)
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7.4 robust control design

Following a similar procedure as presented in the section 3.3, the robust
control is designed as is shown in the following sections.

7.4.1 Integral Sliding–Mode Control Design

Let us define the following sliding variable

s(e(t)) = G[e(t) − e(0)] −G

∫t
0

[A0e(ρ) +Bu0(ρ)]dρ, (107)

where G ∈ R2×3 is such that det(GB) 6= 0. The optimal way to design
G is G = B> or G = (B>B)−1B>. Note that the dynamics of the sliding
variable satisfies

ṡ = GB[uI + F(ρ2)d] +G

4∑
j=1

αj(ρ1)Aje. (108)

Then, the ISMC uI is proposed as

uI(t) = −ζ(e(t))
(GB)>s

||(GB)>s||
, (109)

with some positive gain ζ(e) > 0, for all e ∈ E. The following lemma
provides the conditions to ensure the finite–time convergence of the sliding
variable to zero fulfilling the input constraint.

Lemma 10 Let the ISMC (109), with G = B>, be applied to the system (108),
for a given uImax > 0. If the gain ζ(e) is selected as

ζ(e) = κ+ Fmax +Amax||e||, (110)

with Fmax = dmax max(vmax,ωmax), Amax =
∑4
j=1 α

∗
j ||Aj||, where

α∗ = arg max
α∈Γ

4∑
j=1

αj||Aj||,

with Γ ⊂ R4 being the set of all convex weight vectors α = (α1, . . . ,α4)> ∈ R4

such that (104) holds, and some κ > 0 such that

0 < κ 6 uImax − Fmax −Amaxemax, (111)

with emax 6
√
4π2 + 2xy2, is satisfied for a given uImax > 0; then, s = 0 is

UFTS.

Therefore, the robust controller uI will deal with the perturbations F(ρ2)d
and part of the term

∑4
j=1 αj(ρ1)Aje, satisfying the input constraint ||uI|| 6

uImax. Note that the term F(ρ2)d is completely compensated from the be-
ginning since it is matched with the control uI. However, only the pro-
jection of the term

∑4
j=1 αj(ρ1)Aje into the matched space of B could be

compensated by uI.
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Remark 7 It is possible to fix uIimax, such that |uIi | 6 uIimax, according to the
upper bound of the perturbations, e.g., uIimax 6 1.1(Fimax +Aimaxemax), where
Fimax is the norm of the i–th element of F(ρ2)d and Aimax =

∑4
j=1 α

∗
j ||Aij||,

with Aij as the i–th row of the matrix Aj, i = 1, 2. Then, to assign the rest of the
control effort to u0i , i.e., u0imax 6 τi − 1.1(Fimax +Aimaxemax), with u0imax

such that |u0i | 6 u0imax.

7.4.2 Linear Control Design

In order to deal with the linear control design, the following assumption
is imposed.

Assumption 9 The pair (A0,B) is stabilizable.

Once in the sliding–mode, it follows that s = 0; and thus, based on the
equivalent control method, the dynamics on the sliding surface is given by

ė =

[
A0 + Γ

4∑
j=1

αj(ρ1)Ãj

]
e+Bu0, (112)

where Γ = (I3 − BG). Then, the linear part of the control, i.e., u0, is
proposed as follows

u0(t) = Ke(t), (113)

where K ∈ R2×3 is a feedback gain, which can be designed considering the
state constraints (102) and the input saturation, by means of the attractive
ellipsoid method and the BLF approach.

The following lemma provides the safe set E (R) and a way to design K.

Lemma 11 Let Assumption 9 be satisfied, and the control (113) be applied to the
system (112), for a given u0max > 0. Suppose that there exist a positive–definite
matrix X1 = XT1 ∈ R3×3, some matrices Y ∈ R2×3, Z = (Z>1 ,Z>2 )

> ∈ R2×3,
δ̄ = diag(δ1, δ2), with δ1, δ2 > 0 and some constant γ > 0, such that the
following set of LMIs

χ1 =

 ψ Bδ̄− YT +ZT γX1

? −2δ̄ 0

? ? −γX2

 ≺ 0, (114a)

ψ = (A0 + ΓAmax)X1 +X1(A0 +AmaxΓ
T ) + B̄Y + YT B̄T ,

χ2 =

 X1 ZTi

Zi u20
imax

 � 0, (114b)

χ3 = b̄
T
mX1b̄m 6 1, for m = 1, 4, (114c)

b̄1 = (0, xy−1, 0)>, b̄2 = −b̄1, b̄3 = (0, 0, xy−1)>, b̄4 = −b̄3,

is feasible for some constant xy, u0imax > 0, and Zi ∈ R1×3, with i = 1, 2, as
the i–th row of the matrix Z. If ||e(0)|| ∈ E (R) and K is designed as K = YR,
with R = X−1

1 ; then, the trajectories of the system (112) converge asymptotically
to zero.
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The proof of Lemma 11 follows the same methodology of the proof of
Lemma 5 presented in Chapter 3.

Finally, considering the results of Lemmas 10 and 11, the main result is
presented in the following theorem.

Theorem 4 Let Assumption 9 be satisfied, and the control (106), with uI =

−ζ(e)(GB)>s||(GB)>s||−1 and u0 = Ke, be applied to the system (105), for a
given umax > 0. If ||z(0)|| ∈ E (R), K is computed as in Lemma 11, i.e., K = YR,
and ζ is designed as in (110), i.e., ζ(e) = κ+ Fmax +Amax||e||, for some κ > 0,
such that

κ+w+ Fmax +Amaxemax 6 uIimax 6 τimax − u0imax, (115)

for i = 1, 2, then, the trajectories of the system (105) converge asymptotically to
zero.

Note that, due to its structure, the LMIs proposed in the previous results
can be solved simultaneously through the use of a specialized toolbox, e.g,
the SDPT3 solver in MATLAB®.

Remark 8 Since uI is selected as in (109), a discontinuous control signal is
obtained. In order to avoid high–frequency control signals, it is possible to approx-
imate (109) as

uI(t) = −ζ(e(t))
(GB)>s

||(GB)>s||+ ε
, (116)

where the tuning parameter ε > 0 is a small constant.

7.5 experimental results

The proposed robust strategy is applied to the QBot2 manufactured by
Quanser (see Fig. 32). The QBot2 operates with a control station with
the real–time control software QUARC®. This software creates a direct
interface with MATLAB®/Simulink® and provides a sampling time equal
to 0.001 [s]. The QBot2 position and orientation is measured and tracked
using internal sensors of the robot. Both wheels have encoders that gather
information about the wheel rotation and estimate the changes in position
over time. Using this information, the total displacement and orientation
angle can be calculated through the UMR kinematics. Note that for the
implementation of the proposed controller, the approximation presented
in Remark 8 is considered.

In order to show the effectiveness of the proposed controller two dif-
ferent trajectories are considered in the experiments: a sine and a lemnis-
cate curve. For both trajectories the perturbations are taken as d1(t) =

0.01 cos (t) + 0.01 and d2(t) = 0.02 sin (t) + 0.01, thus dmax = 0.8. The
perturbations are generated by means of software.
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Figure 32: QBot2 by Quanser

Considering the real maximum values of the UMR for the velocities ω
and v, i.e., ωmax = 3 and vmax = 0.7, the following matrices are obtained

A0 =

 0 0 0

0 0 0

1 0 0

 , (117a)

A1 =

 0 0 0

0 0 5.4

−5.4 5.4 0

 , A2 =

 0 0 0

0 0 5.4

5.4 −5.4 0

 , (117b)

A3 =

 0 0 0

0 0 −5.4

5.4 5.4 0

 , A4 =

 0 0 0

0 0 −5.4

−5.4 −5.4 0

 . (117c)

Therefore, it is possible to compute the following: F1max = ωmaxdmax =

2.4, F2max = vmaxdmax = 0.56, A1max =
∑4
j=1 α

∗
j ||A1j|| = 0, and A2max =∑4

j=1 α
∗
j ||A2j|| = 0.216. Note that, with the above–mentioned A0, Assump-

tion 9 is satisfied.

7.5.1 Lemniscate Curve Tracking

The desired trajectory is given by

ωd(t) =
ẋdÿd − ẏdẍd

ẋ2d + ẏ
2
d

,

vd(t) =
√
ẋ2d + ẏ

2
d,

xd(t) = cos(ω0t),

yd(t) = sin(2ω0t),

θd(t) =

∫t
0

ωd(τ)dτ,

and ω0 = 0.15. The initial conditions for the kinematics are x0 = 1.4 [m],
y0 = 0 [m] and θ0 = 0 [rad], and the state and input constraints sets are
given as X = [−1.5, 1.5], Y = [−1.5, 1.5], V = [−0.7, 0.7], and W = [−3, 3].
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To compute the control gains, let us apply the statements of Theorem 4.
Consider δ1 = 1.6374, δ2 = 1.2089, γ = 0.3, xy = 6, κ = 0.5, τ1max = 4.1663,
τ2max = 1.1472, and fixing uI1max = 2.64, u01max = 1.5263, uI2max = 0.831,
and u02max = 0.3162, then, the following feasible solution is obtained:

R =

 0.31 0.00 0.12

0.00 0.38 0.00

0.12 0.00 0.30

 , P =

 0.47 0.00 0.19

0.00 0.45 0.00

0.19 0.00 0.41

 ,

K =

(
−0.9988 −0.0015 −1.1312

0.0043 −0.6173 0.0056

)
.

The system trajectories are depicted in Figs. 33–34, which show that the
system trajectories converge to the desired reference despite the external
perturbations. Note that the state trajectories, x and y, never transgress
the state constraints. On the other hand, the control signals ω and v are
depicted in Fig. 35. Observe that both control signals, ω and v, remain
inside the linear region. In Fig. 40, it can be seen that the trajectories of
the tracking error are in the ellipsoid E (R), and then, converge to ellipsoid
E (P), and to the origin. Finally, in Fig. 37, it is observed that the norm
of the errors converges to a region close to the origin. Table 2 presents
the RMS of the tracking errors to better illustrate the performance of the
controller. It can be observed that the mean value is close to zero, thus, the
controller performs well despite the presence of perturbations.
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Figure 33: System Trajectories (Lemniscate Curve)
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Figure 34: System Trajectories (Lemniscate Curve)
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Figure 35: Control Signals (Lemniscate Curve)

Figure 36: Tracking Error and Ellipsoids (Lemniscate Curve)
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Figure 37: Tracking Error Norm, where ex = xd − x and ey = yd − y (Lemniscate
Curve)

Table 2: Performance indexes (Lemniscate Curve)

max min mean

eθRMS [deg] 91.6962 8.6574× 10−4 3.7128

exyRMS [m] 0.4000 3.0932× 10−6 0.0263

7.5.2 Sine Curve Tracking

The desired trajectory is given by

ωd(t) =
ẋdÿd − ẏdẍd

ẋ2d + ẏ
2
d

,

vd(t) =
√
ẋ2d + ẏ

2
d,

xd(t) = ω0t,

yd(t) = sin (2ω0t),

θd(t) =

∫t
0

ωd(τ)dτ,

and ω0 = 0.15. Be aware that, in this experiment, no restrictions are con-
sidered for the state x. Note that this type of task can simulate the mobile
robot moving along a hallway. The initial conditions for the kinematics
are x0 = 0.5 [m], y0 = 0.75 [m] and θ0 = 0 [rad], and the state and input
constraints sets are given as Y = [−1, 1], V = [−0.7, 0.7], and W = [−3, 3]. To
compute the control gains, let us apply the statements of Theorem 4. Con-
sidering δ1 = 0.8679, δ2 = 0.6184, γ = 0.3, xy = 3, κ = 0.5, τ1max = 3.4000,
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τ2max = 0.9236, and fixing uI1max = 2.64, u01max = 0.76, uI2max = 0.831,
and u02max = 0.0926, the following feasible solution is obtained:

R =

 0.54 0.00 0.21

0.00 0.70 0.00

0.21 0.00 0.51

 , P =

 0.80 0.00 0.33

0.00 0.80 0.00

0.33 0.00 0.70

 ,

K =

(
−1.0128 −0.0026 −1.1459

0.0074 −0.6554 0.0101

)
.

The system trajectories are depicted in Fig. 38, which show that the
state trajectories converge to the desired reference despite the presence of
external perturbations. Note that the state trajectories y never transgress
the state constraints. On the other hand, the control signals ω and v are
depicted in Fig. 39. Observe that ω remains inside the linear region, while
the control signal v gets saturated for some instance of time, and then,
remains in the linear region. In Fig. 40, it can be seen that the trajectories
of the tracking error are always inside E (P), which is completely contained
in E (R). Finally, in Fig. 41, it is observed that the norm of the errors
converges to a region close to the origin. Table 3 presents the RMS of
the tracking errors to better illustrate the performance of the controller. It
can be observed that the mean value is close to zero, thus, the controller
performs well despite the presence of perturbations.

0 5 10 15 20 25 30 35 40
-2
0
2
4
6

0 5 10 15 20 25 30 35 40
-3

-1.5
0

1.5
3

0 5 10 15 20 25 30 35 40
-2
-1
0
1
2

Figure 38: System Trajectories (Sine Curve)
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Figure 39: Control Signals (Sine Curve)
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Figure 40: Tracking Error and Ellipsoids (Sine Curve)

0 5 10 15 20 25 30 35 40
-0.5

0

0.5

1

1.5

0 5 10 15 20 25 30 35 40
0

0.5

1

Figure 41: Tracking Error Norm, where ex = xd− x and ey = yd−y (Sine Curve)
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Table 3: Performance indexes (Sine Curve)

max min mean

eθRMS [deg] 63.4322 2.1622× 10−5 2.7158

exyRMS [m] 0.5000 7.4721e× 10−8 0.0245

7.6 remarks

This chapter presents the results obtained from applying the algorithm
presented in Chapter 3 to solve the trajectory tracking problem in the UMR
with state and input constraints, affected by external perturbations. Note
that due to the use of the tracking error dynamic is possible to apply the
proposed algorithm to the trajectory tracking problem in the UMR. It can
be seen in the experimental results that the asymptotic convergence to
zero of the tracking error is ensured coping with the system constraints
and perturbations.





8
T R A J E C T O RY T R A C K I N G P R O B L E M I N A U M R W I T H
C O M M U N I C AT I O N C O N S T R A I N T S

This chapter presents a sampled robust controller for the trajectory tracking
problem in UMRs with state, input, and communication constraints affected by
external perturbations, e.g., the wheel slipping. The proposed controller, designed
as in Chapter 5, comprises the design of an aperiodic control law based on an
event–triggered controller and a periodic control law based on a constant sampled
state–feedback controller. The proposed strategy ensures the ISS of the tracking
error dynamics with respect to the multiplicative external perturbations.

8.1 introduction

UMRs have been widely studied due to their capability of moving freely
in the workspace and the wide variety of possible real–world applications.
However, as real systems, it is well–known that UMRs have to operate in
confined spaces and have energy limitations, i.e., they must deal with state
and input constraints. Moreover, in most cases, the UMRs are managed
through a digital platform, and then there is limited bandwidth, so it is
necessary to restrict the frequency of control input updates to save com-
munication resources. A well–known technique to deal with this problem
is the event–triggered control. Its main characteristic is that the control ac-
tions are updated only when certain well–defined events occur, resulting
in an aperiodic sampling time [58]. Motivated by this, the algorithm pre-
sented in Chapter 5 is applied to an UMR to solve the trajectory tracking
problem. Some experimental results, using the QBot2 by Quanser, validate
the effectiveness of the proposed robust control strategy.

8.2 problem statement

Consider the perturbed kinematic model of a UMR given as in (96), i.e.,

θ̇(t) = [1+ d1(t)]ω(t),

ẋ(t) = [1+ d2(t)]c(θ(t))v(t),

ẏ(t) = [1+ d2(t)]s(θ(t))v(t),

u(t) = (ω(t), v(t))> = u(tk), ∀t ∈ [tk, tk+1),

where u(t) represents the sampled control inputs, which are applied at
each time tk, for all k ∈ N; the terms v(t) and ω(t) contain the linear and
angular velocities of the UMR. The sampling instants tk are monotonously
increasing, so that limk→∞ tk = +∞, and h(t) := tk+1 − tk > hmin, where

89
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hmin > 0 is the minimum sampling interval; and t0 = 0. It is assumed
that the time–varying perturbations di(t) are unknown but bounded, i.e.,
−dmax < di(t) 6 dmax < 1, for i = 1, 2, with a known dmax > 0. The
constraint di(t) > −1 ensures that the perturbations do not cause a change
of sign in the control inputs.

The aim of this chapter is to solve the trajectory–tracking problem for
the UMR affected by multiplicative perturbations and taking into account
communication constraints, i.e., a minimum sampling time hmin in which
the control signal can be sent to the UMR; state and input constraints, i.e.,
x(t) ∈ X := [xmin, xmax] ⊂ R, y(t) ∈ Y := [ymin,ymax] ⊂ R, v(t) ∈ V :=

[−vmax, vmax] ⊂ R, and ω(t) ∈ W := [−ωmax,ωmax] ⊂ R, for all t > t0, for
some given sets X, Y, V, and W.

Following the same procedure as in subsection 7.3, and considering that
Fj ∈ R2×2, for j = 1, 4, are such that

F(ρ2) =

4∑
j=1

αj(ρ2)Fj, j = 1, 4 (118a)

4∑
j=1

αj(ρ2) = 1, αj(ρ2) ∈ [0, 1], (118b)

the following tracking error dynamics is obtained

ė(t) =

[
A0 +

4∑
j=1

αj(ρ1)Aj

]
e(t) +B

[
τ(t) +

4∑
j=1

αj(ρ2)Fjd(t)

]
. (119)

Therefore, the problem now is to design a robust sampled control law
τ such that the trajectories of the system (119) converge to zero, despite
the perturbations d, taking into account the communication constraint, i.e.,
h(t) > hmin, and the state and input constraints, i.e., e(t) ∈ E and τ(t) ∈ U,
for all t > 0.

8.3 robust control design

The proposed controller takes the following form:

τ(t) =

{
τ̃(t), if e(t) 6∈ E (P),

τ̂(t), if e(t) ∈ E (P),
(120)

where τ̃ is an event–triggered controller designed according to Lemma
8, i.e., τ̃ = σ(τ0(t)). On the other hand, τ̂ is a constant sampled state–
feedback controller designed according to Lemma 9, i.e., τ̂ = K2e(tk), ∀t ∈
[tk, tk+1), k ∈N, and the ellipsoid E (P) is the switching and invariant set
for system (119).

In order to apply the statements given in Lemmas 8 and 9, it is necessary
to take into account that ||F(ρ2)|| 6 Fmax with Fmax = dmax max(vmax,ωmax).
Then, it is consider that D = BFmax, b̄1 = (0, xy−1, 0)>, b̄2 = −b̄1, b̄3 =

(0, 0, xy−1)>, and b̄4 = −b̄3, with xy = (xmax − xmin) + (ymax − ymin), and
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Amax =
∑4
j=1 α

∗||Aj||, where α∗ = arg maxα∈Γ
∑4
j=1 αj||Aj||, and Γ ⊂ R4

the set of all convex weight vectors α = (α1, . . . ,α4)> ∈ R4 such that (104)
and (118) holds.

8.4 experimental results

The proposed robust strategy is applied to the QBot2 manufactured by
Quanser (see Fig. 32). The desired trajectory is given by

ωd(t) =
ẋd(t)ÿd(t) − ẏd(t)ẍd(t)

ẋ2d(t) + ẏ
2
d(t)

,

vd =
√
ẋ2d(t) + ẏ

2
d(t),

xd(t) = cos(ω0t),

yd(t) = sin(2ω0t),

θd(t) =

∫t
0

ωd(τ)dτ,

with ω0 = 0.15, thus, ωd = 1.1663, vd = 0.1392, and vd = 0.4472. The
initial conditions are x0 = 0.5[m], y0 = −1.4[m], and θ0 = 0[rad], thus,
e1(0) = 1.5708, e2(0) = 0.2, and e3(0) = 1.4. The state and input con-
straints sets are given as X = [−1.5, 1.5], Y = [−1.5, 1.5], V = [−0.7, 0.7], W =

[−3, 3], and thus, xy = 6, τ1 = 4.1663, and τ2 = 1.4472. Note that e(0) ∈ E

and τ(0) ∈ U. The perturbations are taken as d1(t) = 0.01 cos (t) + 0.01
and d2(t) = 0.02 sin (t) + 0.01, thus dmax = 0.03. These perturbations are
added by means of software. Note that the UMR platform has intrinsic
perturbations such as noise in the measurements. The matrices A0 and Aj
can be obtained as in (117). Therefore, it is obtained that Fmax = 1.65 and
Amax = 0.5261.

To compute the control gains for the aperiodic control law, let us apply
the statements of Lemma 7. Consider δ1 = 1.5039, δ2 = 1.2501, γ = 0.2,
τ1max = 4.1663, and τ2max = 1.1472, then the following feasible solution is
obtained:

R =

 0.33 0.00 0.14

0.00 0.37 0.00

0.14 0.00 0.32

 , P =

 0.62 −0.01 0.27

−0.01 0.66 −0.01

0.27 −0.01 0.56

 ,

K =

(
−1.6165 0.0069 −1.2105

0.0080 −0.9458 0.0022

)
.

Therefore it can be verified that the LMI (72) is satisfied, hence, the
event–triggered control can be applied.
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To compute the control gains for the periodic control law, let us apply
the statements of Lemma 9. Taking into account hmin = 0.001[s], γ2 = 0.2,
ε = 0.5, then, the following feasible solution is obtained:

P1 =

 0.57 −0.01 −0.23

−0.01 0.75 −0.01

−0.23 −0.01 0.81

 , P2 =

 0.61 0.00 −0.19

0.00 0.78 −0.01

−0.19 −0.01 0.77

 ,

K2 =

(
−2.0962 0.0110 −0.7544

0.0211 −1.9829 0.0094

)
, h̄ = 0.2.

Additionally, it is given that ε = 0.1401 and thus Rs = 7.1352I3. The
system trajectories are depicted in Figs. 42–43, which shows that they
converge to a close region of the desired reference despite the external
perturbations. Note that the trajectories x and y never transgress the state
constraints. The control signals ω and v are depicted in Fig. 44. Observe
that both control signals, ω and v, get saturated in some instants and then
remain inside the linear region. The projection of the ellipsoids E (R), E (P),
E (Pc), and (E (R) − E (Rs)), in the plane e2–e3 are depicted in Fig. 45. It
can be seen that the trajectories of the tracking error start in (E (R)−E (Rs)),
remain inside E (R), then converge to E (P), and finally remain inside E (Pc).
The projection at the coordinate e1 is not shown since e1 does not have
constraints. Finally, in Fig. 46, it is observed that the norm of the errors
converges to a region close to the origin. Table 4 presents the RMS of the
tracking errors to better illustrate the performance of the controller. It can
be observed that the mean value is close to zero, thus, that the controller
performs well despite the presence of perturbations. Also, it is evident
that in the case when communication constraints are considered, aiming
to minimize bandwidth usage results in a larger tracking error, as can be
seen in table 4 compared to the results presented in table 2. Nevertheless,
this is expected since in this case the sampling interval is 200 times greater
than when the full bandwidth is used, i.e., the sampling time used is 0.2
[s], compared to 0.001 [s] when the full bandwidth is employed.

8.5 remarks

This chapter presents the results obtained from applying the algorithm
presented in Chapter 5 to solve the trajectory tracking problem in the UMR
with state, input, and communication constraints, affected by external per-
turbations. The proposed approach ensures the ISS properties of the trajec-
tory tracking error dynamics with respect to external perturbations. Some
experimental results, using the QBot2 by Quanser, validate the effective-
ness of the proposed robust control strategy, considering the sampling
time given by the platform.



8.5 remarks 93

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
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Figure 45: Tracking Error and Ellipsoids
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Figure 46: Tracking Error Norm, where ex = xd − x and ey = yd − y

Table 4: Performance indexes

max min mean

eθRMS [deg] 90.8425 0.0061 11.7743

exyRMS [m] 1.5900 6.0274e× 10−6 0.1272



9
C O N C L U S I O N S

In this thesis, new robust control strategies were developed for stabi-
lizing some classes of disturbed dynamical systems, taking into account
state, input, and communication constraints, using a wide variety of tools,
e.g., the use of the AEM, BLF, ISMC, IP, MPC, and event–triggered control.

The particular contributions of this thesis can be summarized as follows:

1) The design of a robust control strategy to regulate the output of a
particular class of uncertain linear systems, with input saturation
and state constraints.
Proposed Solution:

• A robust output–regulation control composed of a linear and
nonlinear part. The linear control part deals with the input
saturation, the state constraints and the parameter uncertainties,
while the nonlinear part deal with the external perturbations.

• The proposed scheme guarantees asymptotic convergence to
zero of the output regulation error coping with the system con-
straints and perturbations.

• Simulation and experimental results are presented.

Academic results: [4], [5], [6], [7], [8], and [9].

2) The design of a robust control strategy to stabilize a particular class
of uncertain nonlinear systems, taking into account state and input
constraints, and external perturbations.
Proposed Solution:

• A discrete–time interval predictor–based state–feedback controller
and an MPC approach.

• The proposed scheme guarantees local ISpS of the constrained
nonlinear systems with respect to external perturbations.

• Simulation results are presented.

Academic results: [10], [11], [12], and [13].

3) The design of a sampled robust control strategy to stabilize a partic-
ular class of uncertain nonlinear systems, taking into account state,
input, and communication constraints, and external perturbations.
Proposed Solution:

• A sampled control strategy composed of an aperiodic and a
periodic sampled controller. The aperiodic control part takes
into account the state and input constraints, while the periodic
control part takes into account the minimum sampling time.
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• The proposed approach ensures the ISS properties of the trajec-
tory tracking error dynamics with respect to external perturba-
tions.

• Simulation and experimental results are presented.

Academic results: [14], [15], and [16].
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