Please use this identifier to cite or link to this item: https://rinacional.tecnm.mx/jspui/handle/TecNM/5315
Title: PRONÓSTICO DE SERIES DE TIEMPO PARA EL MERCADO DE ENERGÍA MEXICANO
Authors: Rodriguez Moya, Lemuel
Issue Date: 2022-05-01
Publisher: Tecnológico Nacional de México
metadata.dc.publisher.tecnm: Instituto Tecnológico de Ciudad Madero
Description: Resumen La combinación de métodos de pronóstico es una técnica muy extendida que ha sido útil para diseñar métodos híbridos en varias áreas. Sin embargo, en los tiempos modernos se requieren cada vez más aplicaciones más precisas, y nuevas técnicas de hibridar. Muchos enfoques han surgido para resolver este problema. La principal dificultad de esta técnica es encontrar la metodología más adecuada para combinar métodos de pronóstico. Este trabajo presenta una nueva metodología denominada FCTA (Método de combinación de pronósticos con Threshold Accepting). Esta metodología ensambla un conjunto d métodos de pronóstico y utiliza un algoritmo Treshold Accepting para optimizar la ponderación de cada pronostico en la combinación. FCTA parte de una ponderación inicial y tiene como objetivo encontrar la mejor ponderación de cada método con el objetivo de mejorar precisión del pronóstico global. Para probar FCTA se usan conjuntos de datos tomados de la competencia M4- Makridakis además FCTA se compara con los mejores métodos de pronóstico individuales y otros exitosos métodos de la actualidad. Los Resultados de la experimentación muestran que FCTA supera a los mejores métodos individuales además es equivalente o mejor que las mejores metodologías del área de pronóstico.
metadata.dc.type: info:eu-repo/semantics/doctoralThesis
Appears in Collections:Doctorado en Ciencias de la Ingeniería

Files in This Item:
File Description SizeFormat 
D09070427_donacion_tesis_bib.pdf2.63 MBAdobe PDFView/Open
D09070427_LICENCIA.pdf
  Until 2050-01-01
120.69 kBAdobe PDFView/Open Request a copy


This item is protected by original copyright



This item is licensed under a Creative Commons License Creative Commons