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Abstract

This document explains the advantages of the creation of a humanoid robot
model inside the Gazebo simulator, with the help of the ROS environment
and how to load a simple sample control routine. This project pretend to ex-
plain the load of models in a free software dedicated to robots development.
This software allows to test the performance of real robots saving money.
The first chapter will give an introduction to the problem that will lead the
investigation, explains the reasons of how this project will be elaborated, the
limitations and expectations.

In chapter number two, it is briefly explained the background of the robotics,
the goals already achieved in the present days and the scopes that robotics
are expected to have in the future days. It is important to notice that the
most part of the goals achieved by the robots nowadays is done by private
companies, and the reason of this project, as explained in the first chapter,
is to boost the free development of this knowledge.

The chapters three and four talk about how the project was done and the
results of the investigation; the proceedings and its steps are explained in
the chapter three under the name "Methodology" as some of the results that
are needed to explain the following parts of the processes, the chapter four
"Results" explain the rest of the result and some test that can be made to
review the correct performance of the model.
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Chapter 1

Overview

1.1 An approach to the problem

Robotics is a discipline little present in the Instituto Tecnologico de Ciudad
Guzman curricula, even though it could be a professional and managerial de-
parture with so much presence in the future. The robot word has its origins
in a classic book of Karel Capek, RUR (Robots Universal Rossum). It makes
reference to those helpers as robota, a word in Czech that means forced job
or slave. The robots will be a product in mass when they can join the society
in the same environment we humans live. For example, it would be so much
easier to displace a robot with wheels, but then it will not reach scenes with
stairs or obstacles. To help a people to get up will be better to use a crane
robot, but it will not be able to cook or set up the table. The format which
adapts the better to our environment is humanoid, given that it has been
designed by and for the human.[UOC, 2012]

For this reasons, the need to learn and develop humanoid robotics, with man-
agerial and educational aims is a natural conclusion. Furthermore, we realize
the need of different ways of interacting with robotics, without expensive in-
vestments. Usually, the public educational centers do not have the resources
for purchase the necessary materials, so to can practice control routines in
free software, for the teachers and the students, would be very useful.



1.2 Justification

This document pretends to explain the development of the modeling the
humanoid robot Mex-One in the way of the environment ROS and simple
routines of control inside the Gazebo simulator, to be able to prove, without
actually risking the real robot, routines of control and see the reaction to
different physic properties such as gravity, friction, and damping.

The project is going to be developed using the Gazebo simulator, on which,
all robot pieces and their properties like mass are going to be loaded with
the help of CAD tools through the ROS environment. Then, the controllers
are going to be loaded in the robot ROS package and, going to be tested by
sending different commands to the robot joint.

All this will be made to achieve a simulator in which some the students of
the Automatic Control faculty of the CINVESVAV, Gdl. can prove different

theories of control, created by them.

1.3 Objective

1.3.1 General Objective

Modeling of the humanoid robot Mex-One in the Gazebo simulator with ROS
environment and simple example controls created in ROS and visualized in

Gazebo.

1.3.2 Specific Objective

e Modeling of the humanoid robot Mex-One in the Gazebo simulator.
e Create a controller for every joint of the robot.
e Can move and control every joint of the robot.

e Based in a cpp file, be able to send simple example control routines.



1.4 Scope and limitations

1.4.1 Scope

For the modeling, a prototype of the Mex-One humanoid robot is going to
be created inside the Gazebo simulator in ROS environment, it will be able
to emulate the physical reactions of the real robot, thanks to all the specifi-
cations of the robot physics (characterization of links and joints). Different
simple examples of control routines are going to be tested inside the simula-
tor, to review the correct operation of the simulated robot, and the accurate
load of all the physical properties.

1.4.2 Limitations

This project will be limited by the following causes:
e Scattered information about how to load models in Gazebo.

e Lack of time to develop complex control routines. Need of advisors in
the Gazebo subject.

e The limited economic resources to stay in the investigation center for
a longer period of time.

1.5 Hypothesis

It is possible to create a model of a humanoid robot inside a simulator,
capable of emulating the physical qualities of the real robot, developed on
free software, for control theories tests.



Chapter 2

Reference framework

2.1 Historical framework

Robotics is the branch of Engineering that deals with the application of com-
puter science to the design and use of machines with the objective that the
result can somehow substitute the people in the realization of determined
functions or tasks.

Those machines are often used nowadays in the commercial and industrial
field to effectuate exact tasks, and of course because it implies a cheaper
workforce than the human. Even it is used to carry out the most disgusting
tasks that humans refuse to do because they are very heavy, dangerous or
unbearable. In the industrial plant, it is common to see a robot to displace
and to carry out tasks such as assembly, packing, and transfers, among oth-
ers.

From the beginning a discipline and as a fundamental part of the engineering,
robotics have been tirelessly searching to construct artifacts that materialize
the wish of the humans to create beings to their likeness, to delegate to them
the heavy and disgusting tasks, works and activities. But even though no
many expect it, since immemorial, far far away from the computer, there
were a few expressions of robotics. For example, ancient Egyptians joint
mechanical arms to the statue of some of their gods and wielding that the
movement was made by work and grace of them, even the greek constructed
statues that operated with hydraulics systems, which were used to fascinate
the church lovers.[Ucha, 2009]

If human-like machines are the first images of robots both in the earlier con-



cepts, automata and in Asimov’s science fiction, in reality, humanoids are
the last kind of robots that came into existence. The pioneers in humanoid
robots are the WABOT (Figure 2.1) developed by Ichiro Kato [Kato, 1986].

Figure 2.1: WABOT-1 (1973) First humanoid robot, developed in the Waseda
University.

WABOT-1 was essentially built from 2 arms mounted atop of a WL-5 (Waseda
Leg 5) which was a continuous effort from the same group since 1967. WABOT-
1 inherited all the advances in locomotion of WL-5 including balancing and
walking. The first walking robot was still at the primary development with
only quasi-static stepping which results in a 45-second long footstep. The
robot also featured vision sensor, tactile sensors and a speech synthesizing
system and was reported to have "the mental faculty of a one-and-haft-year-
old childaAl. [Dang, 2012

Nowadays the technological advancements can be demonstrated by enumer-
ating the abilities of some of the most amazing humanoid robots abilities and
it is different capabilities, such as Sophia, developed by Handson Robotics,
the first humanoid robot in getting a citizenship (in the kingdom of Saudi
Arabia) because of its ability of logical conversations and gestures accord-
ing to the conversation, making her look almost human |[Retto, 2017]; Atlas
developed by Boston Dynamics, that has great independent movement ca-



pabilities and even can make pirouettes in the air without losing stability
when falling [Dynamics, 2018]; ASIMO by Honda Robotics, able of agile au-
tonomous mobility and interaction with their environment, making decisions
based on the same [Honda, 2018]; DRC HUBO developed by University of
Nevada, Las Vegas, that has the ability of driving a vehicle, handle dif-
ferent short of tools, climb stairs and even moving around winding terrain
[of Engineering, 2018].

2.2 Conceptual framework

2.2.1 Ubuntu

Ubuntu is a distribution of GNU/Linux, an operating system focused in
personal computers (desktop and laptops), it is one of the most important
distributions of Linux globally. The distribution’s name came to the concepts
Zulu an Xhosa of Ubuntu, that means "humanity towards other" and "I am
because we are".

Examples of operative systems are Microsoft Windows XP, MS Windows
Vista, MS Windows 98, OS X (MAC), MS-Dos, Unix and Linux in this case.
Inside Linux are some distributions, the most popular in the occidental world
are Ubuntu, RedHat, Mandriva, and SuSe.

Ubuntu includes a series of many programs: Pidgin for instant messaging
(MSN, Yahoo, Gtalk, etc.); firefox web navigator; for the creation and edition
of documents brings OpenOffice, programs to manage photography (cam-
eras), to record music, listen to music and watch videos, etc., apart from a
large list of free software that allow you to do almost any task.[Martinez, 2008]

Ubuntu 16.04

Ubuntu 16.04 is built on the 4.4 series of Linux Kernels, released in January
of 2016. Includes a native kernel module for ZFS, an advanced filesystem
originating in the 2000s at Sun Microsystems and currently developed for
Open Source systems under the umbrella of the OpenZFS project. ZFS com-
bines the traditional roles of a filesystem and volume manager, and offers
many compelling features.

The Apt tools have not changed a great deal, although Ubuntu 16.04 up-
grades to Apt 1.2, which includes some security improvements. Users mi-
grating from older releases may also wish to consider use of the apt com-
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mand in place of the traditional apt-get and apt-cache for many package
management operations. More detail on the apt command can be found in
Package Management Basics: apt, yum, dnf, pkg.

Ubuntu 16.04 includes a native kernel module for ZFS, an advanced filesys-
tem originating in the 2000s at Sun Microsystems and currently developed
for Open Source systems under the umbrella of the OpenZFS project. ZFS
combines the traditional roles of a filesystem and volume manager, and offers
many compelling features. Comes by default with Python 3.5.1 installed as
the python3 binary. [Bearnes, 2016]

2.2.2 ROS

As the full name of Robot Operating System suggests, ROS is an operating
system for robots. In the same way as operating systems for PCs, servers or
standalone devices, ROS is a full operating system for service robotics.

It provides not only standard operating system services (hardware abstrac-
tion, contention management, process management), but also high-level func-
tionalities (asynchronous and synchronous calls, centralised database, a robot
configuration system, etc.).

The main idea of a robotics OS is to avoid continuously reinventing the wheel,
and to offer standardised functionalities performing hardware abstraction,
just like a conventional OS for PCs, hence the analogous name.

ROS is developed and maintained by a Californian company, Willow Garage,
formed in 2006 by Scott Hassan. Their idea is that if we want to see robots
reach our homes, then research needs to be accelerated by providing solid
hardware and software bases that are open source.

ROS’s philosophy can be summarised in the following five main principles:

e Peer to Peer:
A peer-to-peer architecture coupled to a buffering system and a lookup
system (a name service called "master" in ROS), enables each com-
ponent to dialogue directly with any other, synchronously or asyn-
chronously as required.

e Multi-language:
ROS is language-neutral, and can be programmed in various languages.Peer-
to-peer connections are negotiated in XML-RPC, which exists in a great
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number of languages. To support a new language, either C++ classes
are re-wrapped or classes arc written enabling messages to be gener-
ated.

Tools-based:

Rather than a monolithic runtime environment, ROS adopted a micro-
kernel design, which uses a large number of small tools to build and
run the various ROS components. The advantage of this system is
that a problem with one executable does not affect the others, which
makes the system more robust and flexible than a system based on a
centralised runtime environment.

Thin:

To combat the development of algorithms that are entangled to a lesser
or greater degree with the robotics OS and are therefore hard to reuse
subsequently, ROS developers intend for drivers and other algorithms
to be contained in standalone executables. This ensures maximum
reusability and, above all, keeps its size down.

Free and open source:

We have already explained the reasons for this choice. ROS passes
data between modules using inter-process communications and, as a
result, modules do not need to be linked within a single process, thereby
making the use of different licences a possibility.

The list of ROS-compatible robots grows constantly. However, it is worth
mentioning the best-known, namely NAO, Lego Mindstorms NXT, IRobot
Roomba, TurtleBot and last but definitely not least, Willow GarageaAZs
iconic PR2.

ROS resources are organised into a hierarchical structure on disc. Two im-
portant concepts stand out:

e The package:

The fundamental unit within ROS software organisation. A package
is a directory containing nodes (nodes are explained below), external



libraries, data, configuration files and one xml configuration file called
manifest.xml.

e The stack:
A collection of packages. It offers a set of functionalities such as nav-
igation, positioning, etc. A stack is a directory containing package
directories plus a configuration file called stack.xml.

Mention should nevertheless be made of (another) interesting contribution
to robotics from ROS in the shape of URDF (Unified Robot Description
Format), an XML format used to describe an entire robot in the form of a
standardised file. Robots described in this way can be static or dynamic and
the physical and collision properties can be added to it.

Besides the standard, ROS offers several tools used to generate, parse or
check this format. URDF is used by the Gazebo simulator, for example, to
represent the robot.|Mazzari, 2016]

2.2.3 Gazebo

Gazebo is a 3D dynamic simulator with the ability to accurately and effi-
ciently simulate populations of robots in complex indoor and outdoor envi-
ronments. While similar to game engines, Gazebo offers physics simulation
at a much higher degree of fidelity, a suite of sensors, and interfaces for both
users and programs.

Typical uses of Gazebo include:

e Testing robotics algorithms.

e Designing robots.

e Performing regression testing with realistic scenarios.
A few key features of Gazebo include:

e Multiple physics engines.

e A rich library of robot models and environments.

e A wide variety of sensors.

e Convenient programmatic and graphical interfaces.[Foundation, 2014|



2.2.4 URDF

URDF is an abbreviation of Unified Robot Description Format and is a
format of a robot model described in XML notation. In the robot model
considered in URDF, joints are defined as Joints, and rigid bodies joined

by joints are defined as Links.
Benefits of URDEF:

e Open link mechanism can be described.
e [t is possible to describe the relative position relation of links.

e Ability to define geometric elements and motion elements of indepen-
dent robot.

e The description is comparatively easy.

e Convenient tool called Xacro (macro description).
Disadvantages of URDEF:

e Description of closed link mechanism is impossible (not supported).
e [t is impossible to describe the absolute position relation of the link.

e [t is impossible to define geometric elements and motion elements of
multiple robots.

e Impossible to define environment such as lighting and altitude map.
[Tanaka, 2016|

2.2.5 SDF

SDF Models can range from simple shapes to complex robots. It refers
to the <model> SDF tag, and is essentially a collection of links, joints,
collision objects, visuals, and plugins. Generating a model file can be difficult
depending on the complexity of the desired model. This page will offer some
tips on how to build your models.

o Link:
A link contains the physical properties of one body of the model. This
can be a wheel, or a link in a joint chain. Each link may contain many
collision and visual elements. Try to reduce the number of links in your
models in order to improve performance and stability.

10



— Clollision:
A collision element encapsulates a geometry that is used to colli-
sion checking. This can be a simple shape (which is preferred), or
a triangle mesh (which consumes greater resources). A link may
contain many collision elements.

— Visual:
A visual element is used to visualize parts of a link. A link may
contain 0 or more visual elements.

— Inertial:
The inertial element describes the dynamic properties of the link,
such as mass and rotational inertia matrix.

o Joints:
A joint connects two links. A parent and child relationship is estab-
lished along with other parameters such as axis of rotation, and joint
limits.

e Plugins:
A joint connects two links. A parent and child relationship is estab-
lished along with other parameters such as axis of rotation, and joint
limits.

11



Chapter 3

Methodology

The project was planned to be done with ROS Indigo, Ubuntu 14.04 and
Gazebo 2.0, but during its realization and the investigation, was found that
a newest version of the software would be more suitable, due the information
able to this kind of work was reference, mainly, to ROS Kinetic, Ubuntu
16.04 and Gazebo 7.0.

3.1

Get used to basic Ubuntu commands.

Some of the basic functions used in the realization of the investigation and
its functions are described below:

cd / direction: To move among the directories.
man [page|: Help of a specific command.
Is: Details about the current folder.

cp [dirl/file] [dir2]: Copy the file in the first direction (dirl), to the
second direction (dir2).

mv |[dirl/file] [dir2]: Move the file in the first direction (dirl), to the
second direction (dir2).

touch |[name|: Create a new file under the name given in space "name".

echo: Print text in the terminal.

12



e pwd: Print in the terminal the directory of the file under work.
e file: Print the format of a file.

e gedit: Open a window to edit a file.

3.2 Grow an SDF with Gazebo.

To grow an SDF file with Gazebo, it is assumed that you have knowledge of
how the pieces (or links, as will be referred to them in the present document)
of the model are assembled, its degrees of freedom and axis of rotation in all
the joints. It is also assumed, that you have possession of all the files of the
3D figures needed to assemble the model.

Gazebo has two known ways to charge models in the simulator (without ex-
ternal software help), the first one, is to write the code of an SDF, which
involves a good knowledge of the positions, rotations, and center of each one
of the links in a Cartesian plane, and it is made without a visual feedback
during the elaboration of the code. The knowledge necessary to successfully
create a model in the first option is easier to have if you create the 3D fig-
ures of all the links and assembled then in a software made to dressing those
figures, but as the present investigation was made without this knowledge,
the second option was the most suitable. In the second one is to change the
model in a visual way with help of a Gazebo tool called "Model Editor".
The "Model Editor" is a Gazebo tool able only in the version 6.0 and follow-
ing, it is used to assemble different links in a visual framework, and allows
the user to create links of basic figures, such as cylinders, spheres, and cubes;
allows the user to create links of 3D figures saved previously in the user com-
puter. Those figures must be saved in Stl, Obj, or Dae format to can be used
in Gazebo. The Dae and Obj formats allows the user to give textures to the
links, while the Stl format only allows the user to give color to the links. In
the present document, due to practicality, the Stl format is preferred, because
of the lightness of the format.

3.2.1 Import Links.

To start working in the model editor, you must open a Gazebo 6 or an
upper version, in the elaboration of the present document, the 7.0 version

13



was chosen because of its compatibility with ROS. In the upper tools bar,
will be found the "Edit" option, and inside this option, the "Model Editor"
is placed, as the (Figure 3.1) shows.

Bullding Editor

Model Editor

Figure 3.1: Model Editor menu Gazebo 7.0.

This option will open the "Model Editor" tool that will allow importing Stl
files as Links to Gazebo, this is achieved by directing to the left panel where
the option "Customer Shapes" and its button "Add" stands, the "Add"
button opens a window under the name "Import Link" that allows the user
to browse to a file, that will be used as a Link, and a space to change the
Link name, but unfortunately, in the version 7.0 of Gazebo this option does
not work correctly, since no matter the name given in this space, the Link
name will be set by the default procedure of Gazebo. The access to the
"Custom Shapes" and the window unfold by its "Add" button are shown in
the (Figure 3.2).

Mycel b + .'] Impaort Link
Simple Shapes

Custom Shapes

Kk

Model Database

Figure 3.2: Custom Shapes and Import Link window.
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3.2.2 Modify Link parameters.

To modify the physic parameters of each Link, the "Model Editor" has an-
other tool, called "Link Inspector" which enables the user to rewrite the
parameters of each Link with the real parameters. Those parameters can be
seen in the development software of the 3D figures as their physical proper-
ties, such as the center of mass, inertia, and weight. That window is opened
by right click the Link and choose the option "Open Link inspector" on the
unfolded submenu. The window that will pop out, shown in (Figure 3.3), on
its "Link" flange have default values for the fields to modify according to the
information of each Link.

Figure 3.3: Link flange of the Link Inspector menu.

It also allows the user to chose to activate or deactivate physic characteristics
for each link that will affect the general performance of the model, cause of
that, it is recommended to put the "Self collide" option on true, this will
allow the model to know when one of its Links is colliding with another;
"Gravity" on true, to allow the mass of the Link be affected by the gravity;
and "Kinematic" on false, to allow the Link to have movement.

In the "Visual" flange the options to set a color, a visual origin of the object,
and a general position of that origin, are not the only important parameters
to modify, the formats allowed by Gazebo do not have the format of its uni-
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ties, because of that, all the units are converted to meters, what can cause an
incorrect charge of the proportions of the model. In such cases, the "Visual"
flange has options to change the Link’s dimensions, as is shown in the menus
of the (Figure 3.4), on the z, y, and z axles; in the present document, a re-
dimension of 0,001 in all the Link axles was made, because they were made
with millimeter scale in units, an as was said before, Gazebo take each unit
as meter due the kind of format used in Gazebo, doesn’t allow information
about the type of units used.

Figure 3.4: Visual flange of the Link Inspector menu.

The "Collision" flange, as the visual, allows the user to set an origin of the Stl
used to review the collisions, re-dimension the Link, and also, use a different
3D figure for the collision review, due a well detailed figure will make the
simulation slower than a not that well-shaped figure, cause of the number of
faces in the object, the longest the number of faces in the collision figure, the
slower the relation between the real-time and the simulation-time will be.
This new object can be load by the "Uri" space in the "Geometry" options
as the (Figure 3.5) shows, where you can browse any other object in Stl, Dae
or Obj format, as when the Link was charged.

It also allows the user to set some physic properties of the material of the
real robot pieces, like the friction coefficients pl y 2, contact stiffness (Kp)
and damping (Kd) for rigid body contacts, among others.
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Figure 3.5: Collision flange of the Link Inspector menu.

3.2.3 Create Joints

Each couple of links require a "Joint" to assemble them, that is to say, if
a model has 24 Links, has to have 23 Joints. Such join can be "Fixed" for
stick the links to each other, "Revolute" to let one spin in one axis of the
other, "Revolute2" to let one to spin in two axles of the other, "Prismatic"
to allow one to displace in an axis of the other, "Screw" to make a joint with
one freedom degree and coupled displacement, "Universal" that allows the
movement between each other like a couple of magnet balls, "Ball" to move
one as a ball in its socket, being the first link the socket, and "Gearbox"
which allows setting the velocity relation between the links.

A joint can be created by going to the upper toolbar, to the last option "Cre-
ate a Joint" which will pop out a window with the same name, as the (Figure
3.6) shows, that will allow the user to chose between the different types of
joints; the link that will be the "Parent" and the "Child" which is to say
who can move with the other as a reference; the axis or axles of reference to
the movement; in necessary case, the alignments to line up the child link in
reference with the parent link; the pose (in cartesian coordinates) of the joint
regarding the parent link; and the relative pose of the child link regarding
the parent link.
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Figure 3.6: "Create a Joint" window.

To make a correct joint it is necessary that both coordinates axis are united
in the same place on the space, and well-centered so that the joint can rotate
correctly, as is shown in the (Figure 3.7), otherwise the joints will seem to
be rotating with a point out of the model as a reference. In the case of a
"Revolute" joint, the axis of rotation will appear to have a yellow arrow in
it rotation axis, in the (Figure 3.7), the axis of rotation is the y-axis.

Figure 3.7: Well-centered joint with rotation in the y-axis.
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3.2.4 SDF location.

A finished model can be stored by closing the "Model Editor" in the "File"
menu, the "Exit model editor" option, and giving the model the chosen name
at saving. This will open the model in the simulation window of Gazebo, and
create the SDF file in the folder called "model editor models" in a subfolder
called with the name you to given to the model, under the name "model.sdf".
This folder will also have a file called "model.config", that file allows Gazebo
to charge the model in the simulator, but to charge the model with ROS, the
file is unimportant.

3.3 Build a URDF.

To build a URDF without the previously mentioned knowledge of the posi-
tions, rotations, and center of each one of the links in a Cartesian plane, and
with the help of the SDF file of the model, this section will explain how to
transform the information of that file into a URDF file, that ROS can call
to Gazebo.

3.3.1 Start the URDF.

First of all, a new file with the extension .urdf is needed, in this case, a file
called "model.urdf" was created. The first code line in the file has to state
the file language, all the URDF files are created in XML; the second line must
declare the beginning of the robot statement and its name; in the present
case, a xacro statement was made at the same time to future work of it. The
before said statements are declared as follows in Listing 3.1:

Listing 3.1: First statements.

<?7xml version="1.0"7>
<robot name="mex_rb" xmlns:xacro="http://www.ros.org/wiki/xacro">

As it can be easily highly regarded, the name used for the robot in the present
document was "mex rb". It is important to highlight that the name of the
robot can not have capital letters, or it will be seen as an error in the ROS
launch stage.
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3.3.2 Links statement.

To transform the information of the SDF to the URDF format, it is necessary
to change some values and lost some qualities. The URDF format does not
allow a general position for a link, because of this, in the first link, you have to
change the values of the center of mass to be an addition of the general pose
and the pose of the center of mass in the SDF, to use as the new value of the
URDF, the second link can keep the values of the SDF without any adds,
because of the repair that should be made in the "Joint" statements; the
mass value and the inertia values can stay the same, but its format change.
The Listing 3.2 shows the inertial statements of the SDF and the Listing 3.3
shows the URDF inertial statements of the same link.

The URDF format also losses the option to activate or deactivate the "Self
Collide" , "Kinematic", and "Gravity" functions, and in both cases, a name
must be declared for each link. All the links in the robot must have different
names, and as is easy to observe, some of the ways of declaring the same
things, change; it is the case of the position, named in the SDF as pose frame
which includes in the same space the coordinates (z,y,z) and angles (7,p,y),
and named in the URDF as origin with different spaces for the coordinates
(z,y,2) and angles (r,p,y).

Listing 3.2: Inertial statements in SDF.

<link name=’link_0’>
<pose frame=’’>-0.003958 0 1.00846 0 -0 0</pose>
<inertial>
<mass>0.598008</mass>
<inertia>
<ixx>0.005</ixx>
<ixy>0.0</ixy>
<ixz>0.0</ixz>
<iyy>0.0045</iyy>
<iyz>0.0</iyz>
<izz>0.007</izz>
</inertia>
<pose frame=’’>0.003958 0 -0.00846 0 -0 0</pose>
</inertial>
<self_collide>1</self_collide>
<kinematic>0</kinematic>
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Listing 3.3: Inertial statements in URDF.

<link name="link_0">
<inertial>
<origin xyz="0 0 1.00" rpy="0 -1.5707 -1.577"/>
<mass value="0.598008"/>

<inertia

ixx="0.005"
ixy="0.0"
ixz="0.0"
iyy="0.0045"
iyz="0.0"
izz="0.007"/>

</inertial>

In the "Visual" statements, as in the "Inertial", the URDF format does not
allow a general position for a link, and in the first link, you have to change
the values of the coordinates to be an addition of the general pose and the
pose of the visual coordinates in the SDF, to use the add as the new value
of the URDF, the second link can keep the values of the SDF without any
adds, as in the inertial values, because of the repair that should be made in
the "Joint" statements.

The color of the link gets lost in the URDF, a color could be set, but it
will not be read as a Gazebo color, and therefore, do not have any effect in
the model launched by ROS to Gazebo, that is why the color statement is
not used. The Listing 3.4 shows the visual statements of the SDF, and the
Listing 3.5 shows the way the same information is declared in the URDF,
taking into account that this is the first link of the model.

Listing 3.4: Visual statements in SDF.

<visual name=’visual’>
<pose frame=’’>-0.2531 -0.0781 -0.2355 1.5707 0 1.5707</pose>
<geometry>
<mesh>
<uri>/home/miriam/.Stl/Completepartlstl.STL</uri>
<scale>0.001 0.001 0.001</scale>
</mesh>
</geometry>
<material>
<lighting>1</lighting>
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<script>
<uri>file://media/materials/scripts/gazebo.material</uri>
<name>Gazebo/White</name>
</script>
<ambient>1 1 1 1</ambient>
<diffuse>1 1 1 1</diffuse>
<specular>!l 1 1 1</specular>
<emissive>0 0 0 1</emissive>
<shader type=’vertex’>
<normal_map>__default__</normal_map>
</shader>
</material>
<transparency>0</transparency>
<cast_shadows>1</cast_shadows>

</visual>
Listing 3.5: Visual statements in URDF.
<visual>
<origin xyz="-0.257058 -0.0781 0.77296" rpy="1.5707 0 1.5707"/>
<geometry>
<mesh

filename="package://mex_rb/meshes/St1l/Completepartlstl.STL"
scale="0.001 0.001 0.001"/>
</geometry>
</visual>

The "Collision" statements, as in the statements before, in the first link, you
have to change the values of the coordinates to be an addition of the general
pose and the pose of the visual coordinates in the SDF, to use the add as
the new value of the URDF, and the second link can keep the values of the
SDF without any adds. This case is the most obvious about the loss of in-
formation because it almost loses all its statements, leaving it only with the
geometry information, but in the following procedure will be explained how
to recover some of this information to the model. The Listing 3.6 shows the
collision statements of the SDF, and the Listing 3.7 shows the URDF way to
declare the statements.
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Listing 3.6: Collision statements in SDF.

<collision name=’collision’>
<laser_retro>0</laser_retro>
<max_contacts>10</max_contacts>
<pose frame=’’>-0.2531 -0.0781 -0.2355 1.5707 0 1.5707</pose>
<geometry>
<mesh>
<uri>/home/miriam/.St1l/CCompletepartistl.STL</uri>
<scale>0.001 0.001 0.001</scale>
</mesh>
</geometry>
<surface>
<friction>
<ode>
<mu>0.61</mu>
<mu2>0.47</mu2>
<fdir1>0 0 0</fdiril>
<slip1>0</slipil>
<slip2>0</slip2>
</ode>
<torsional>
<coefficient>1</coefficient>
<patch_radius>0</patch_radius>
<surface_radius>0</surface_radius>
<use_patch_radius>1</use_patch_radius>
<ode>
<slip>0</slip>
</ode>
</torsional>
</friction>
<bounce>
<restitution_coefficient>0</restitution_coefficient>
<threshold>1e+06</threshold>
</bounce>
<contact>
<collide_without_contact>0</collide_without_contact>
<collide_without_contact_bitmask>1</collide_without_contact_bitmask>
<collide_bitmask>1</collide_bitmask>
<ode>
<soft_cfm>0</soft_cfm>

23



<soft_erp>0.2</soft_erp>
<kp>1e+09</kp>
<kd>1</kd>
<max_vel>0.01</max_vel>
<min_depth>0</min_depth>
</ode>
<bullet>
<split_impulse>1</split_impulse>
<split_impulse_penetration_threshold>-0.01</split_impulse_penetration_threshold>
<soft_cfm>0</soft_cfm>
<soft_erp>0.2</soft_erp>
<kp>1e+09</kp>
<kd>1</kd>
</bullet>
</contact>
</surface>
</collision>
</1link>

Listing 3.7: Collision statements in URDF.

<collision>
<origin xyz="-0.257058 -0.0781 0.77296" rpy="1.5707 0 1.5707"/>
<geometry>
<mesh
filename="package://mex_rb/meshes/St1l/CCompletepartlstl.STL"
scale="0.001 0.001 0.001"/>
</geometry>
</collision>
</link>

3.3.3 Joints statement.

The joints statement, as the other statements, loss some of the information,
the most remarkable change in the joints, is that the origin of the joint,
instead of stay in zero, is changed by the general position of the child link, in
the first step of the family tree. On the second and bellow steps, the parent
general position (current position) to the children general position (desired
position) is subtracted, and the result is used as the origin of the joint. In
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this case, the example is not taken of the first joint, because it is "Fixed"
and it will not show how to charge the axis values. The Listing 3.8 shows
a joint statement in an SDF, the Listing 3.9 shows the same joint in URDF
format.

Listing 3.8: Joint statements in SDF.

<joint name=’link_O_JOINT_2’ type=’revolute’>
<parent>link_0</parent>
<child>link_3</child>
<pose frame=’’>0 0 0 0 -0 0</pose>
<axis>
<xyz>0 0 1</xyz>
<use_parent_model_frame>0</use_parent_model_frame>
<limit>
<lower>-3.1416</lower>
<upper>3.1416</upper>
<effort>-1</effort>
<velocity>-1</velocity>
</limit>
<dynamics>
<spring_reference>0</spring_reference>
<spring_stiffness>0</spring_stiffness>
<damping>0.04</damping>
<friction>0.4</friction>
</dynamics>
</axis>
<physics>
<ode>
<limit>
<cfm>0</cfm>
<erp>0.2</erp>
</limit>
<suspension>
<cfm>0</cfm>
<erp>0.2</erp>
</suspension>
</ode>
</physics>
</joint>
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Listing 3.9: Joint statements in URDF.

<joint name="link_O_JOINT_2" type="revolute">
<parent link="link_0"/>
<child link="link_3"/>
<origin xyz="0.015042 0 1.05396" rpy="0 -0 0"/>
<axis xyz="0 0 1"/>
<limit effort="-1.0" velocity="1.0" lower="-3.1416" upper="3.1416"
/>
</joint>

3.3.4 Gazebo references.

To recover some of the lost information, you can write a code of Gazebo
references for both links and joints. You can almost recover all the lost
information, but the present document will just show how to recover some
of the most important information. As Listing 3.10 shows, the information
that the code is trying to recover are the friction coefficients 1 y p2, contact
stiffness (Kp) and damping (Kd) for rigid body contacts, and the link color.
On the other hand, the Listing 3.11 shows that the joints only recover the
dynamic coefficients of friction and damping, the example does not take the
first joint, because, as in the joint translation, the information is not useful
for fixed joints.

Both references need to state at the beginning of its code the name of the
subject of references and follow the structure of the fields of SDF to properly
recover the information, otherwise, the information will not be taken as a
statement for Gazebo.

Listing 3.10: Gazebo link references.

<gazebo reference="link_0">
<selfCollide>true</selfCollide>
<mul1>0.61</mul>
<mu2>0.47</mu2>
<kp>10000000 . 0</kp>
<kd>1.0</kd>
<material>Gazebo/White</material>
</gazebo>
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Listing 3.11: Gazebo joint references.

<gazebo reference="link_O_JOINT_2">
<axis>
<dynamics>
<damping>0.04</damping>
<friction>0.4</friction>
</dynamics>
</axis>
</gazebo>

3.4 Launch the URDF in Gazebo with ROS.

The present section will describe how to correctly use the file created in the
section before, because of that, you should start creating a WorkSpace to
develop ROS projects.

3.4.1 Create a WorkSpace in ROS.

To create a WorkSpace in ROS, you should execute on terminal the com-
mands in the Listing 3.12, the first one calls the setup of the ROS environ-
ment; the second creates a folder called "mex one" in the user’s folder, and
a subfolder called "src"; the third direct you to the first created folder; and
the fourth run the ROS environment in the folder, which should create a
series of folder that will help ROS to run all the projects that we will create
in this folder.

Listing 3.12: Commands to create a WorkSpace.

source /opt/ros/kinetic/setup.bash
mkdir -p ~/mex_one/src

cd ~/mex_one/

catkin_make

& hH B H

Before creating a Workspace, it is necessary to create a package, that will
contain our project. To accomplish this, you must introduce the code in
the Listing 3.13 on the terminal, the first line direct you to the "mex one"
folder; the second set the ROS environment in the folder; the third direct
you to the "src" folder, in which all the packages are created; the fourth
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create a package called "mex_rb" which will be dependent on the packages
"gazebo ros", "message generation", "roscpp", "rospy", "std msgs", "tf",
"controller manager", and "joint state controller", the fifth direct you to
the "mex one" folder; the sixth and last, compile the code created by the

new package and makes it recognizable by ROS.

Listing 3.13: Commands to create a package.

cd ~/mex_one/

source devel/setup.bash

cd src/

catkin_create_pkg mex_rb gazebo_ros message_generation roscpp
rospy std_msgs tf controller_manager joint_state_controller

cd ~/mex_one/

$ catkin_make

€ H H PH

©“

In the resultant folders of the above procedure, you must save the URDF
model, to be accurate, in the package folder named "mex rb" in a new
subfolder called "urdf".

3.4.2 Create a Gazebo world.

The next step to be able to launch a model in Gazebo from ROS is to create
a world in which our model exist, for it is necessary to create a file with
extension .world, in this case, the file will be named "model.world", which
will be placed in the folder "urdf", as the "model.urdf" file. The Listing 3.14
shows the code that must be written in the world file. The main function of
the code is to create a default world of Gazebo, with a ground plane and a
"sun", that is the source of light and reference for the cast shadows.

Listing 3.14: Code to create a Gazebo world.

<?xml version="1.0" 7>
<sdf version=’1.6°>
<world name="default">
<include>
<uri>model://ground_plane</uri>
</include>

<include>
<uri>model://sun</uri>

28



</include>

</world>
</sdf>

3.4.3 Create a launch file.

The launch file will allow you to see the model working in Gazebo, the
Listing 3.15 shows the commands that must be written in a new file called
"model.launch", placed in the "mex rb" folder. The main function of the
code is to create an empty Gazebo world, find and charge the arrangements
made in the "model.world" file, start Gazebo in the debug mode, enable the
user’s interface, start with the simulation in pause, make the ROS "nodes"
to utilize the Gazebo simulation time, make the "State log" record the model
information, enable the Gazebo feedback, load the URDF into the ROS
"Parameter Server ", and run a python script to the send a service call to
"gazebo ros" to spawn the URDF robot of model, launching it to Gazebo.

Listing 3.15: Code to create a launcher.

<?xml version="1.0"7>
<launch>

<include file="$(find gazebo_ros)/launch/empty_world.launch">
<arg name="world_name" value="$(find mex_rb)/urdf/model.world"/>
<arg name="debug" value="false" />
<arg name="gui" value="true" />
<arg name="paused" value="false"/>
<arg name="use_sim_time" value="true"/>
<arg name="headless" value="false"/>
<arg name="verbose" value="true" />
</include>

<param name="robot_description"
command="$ (find xacro)/xacro --inorder ’$(find

mex_rb) /urdf/model .urdf .xacro?’" />

<node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model"
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respawn="false" output="screen"
args="-file $(find mex_rb)/urdf/model.urdf.xacro -urdf -x 0 -y 0
-z 0 -model model"/>

</launch>

The file named "model.urdf" must change its name to "model.urdf.xacro"

3.5 Add the controllers to de SDF.

To indicate to ROS and the model in Gazebo which joints have a motor, you
must create "transmissions" for each joint with a motor, the code for one
transmission that works under position commands is shown in the Listing
3.16. This code has to be included in the file "model.urdf.xacro" under the
Gazebo references. The transmission code gives a new name that must be
different for each transmission; it is stablished the simple interface transmis-
sion, which means that the joint is spin in one axis; the reference joint name;
the type of interface that will be used to control the joint, in this case, posi-
tion controllers; the name of the motor, that will change to the real name of
the motor given by the manufacturer of the motor and its data acquisition
card; the torque constant of the motor, also given by the manufacturer; and
the mechanical reduction, in case of have a gearbox in the joint.

Listing 3.16: Code to create a transmission.

<transmission name="trans_1">
<type>transmission_interface/SimpleTransmission</type>
<joint name="link_O_JOINT_2">
<hardwareInterface>hardware_interface/PositionJointInterface</hardwareInterface>
</joint>
<actuator name="kinect_motor0">
<motorTorqueConstant>1.0</motorTorqueConstant>
<mechanicalReduction>1.0</mechanicalReduction>
</actuator>
</transmission>

To complete the load of the controllers for the robot, it is necessary to cre-
ate a Yaml file that will call controllers for each joint and set a PID con-
troller with its gains easy to modify from this file. A file called "configu-
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ration.yaml" must be created in the "mex rb" folder with the code of the
Listing 3.17 written in it. The code set the namespace "model" to refer to
the robot, load a joint state controller, and create a controller for the first
joint called "kinect controller0", which has the "position" type of the con-
troller, to use in this case, the joint to whom it refers, and the PID gains. A
"kinect controller" must be created for each joint with a motor.

Listing 3.17: Code to create a Yaml file.

model:

joint_state_controller:
type: joint_state_controller/JointStateController
publish_rate: 50

kinect_controllerO:
type: position_controllers/JointPositionController
joint: link_O0_JOINT_0_O

pid:
p: 2.0
i: 0.5
d: 0.1

3.6 Create the control files.

The controller file can be created in Phyton or in C++, in the present in-
vestigation, the C++ language was preferred, due to is the most used for
the final users of the product of the investigation. You must create a file
with the extension ".cpp " in the subfolder "src" of the folder "mex rb".
The following code in the Listing 3.18 is an example of a control that will
make the first articulation to move ninety degrees forward and backward.
The firsts lines include the libraries necessaries for the code development,
the following lines call the node publishers of ROS and publishes under the
names of the controllers settled in the Yaml file. The last part of the code,
from intcount = 0; makes different positions for making the movement slow
and falling-risk free.
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Listing 3.18: Example control code.

#include "ros/ros.h"
#include "std_msgs/Float64.h"
#include <sstream>
ros::init(argc, argv, "talker");
ros: :NodeHandle n;
ros::Publisher joint_O_pub =
n.advertise<std_msgs::Float64>("/mex_rb/kinect_controller0/command",
1000) ;

int count = 0;
while (ros::ok())
{
std_msgs: :Float64 home,msg0;
while(count<= 20){
msg0.data = -0.07853b*count;
ROS_INFO("Publishing: %d",count);
joint_O_pub.publish(msg0) ;
ros: :spinOnce();
loop_rate.sleep();
++count;
+
while(count>= 0){
msg0.data = -0.078535*count;
ROS_INFO("Publishing: %d",count);
joint_O_pub.publish(msg0) ;
ros::spinOnce();
loop_rate.sleep();
--count;

by

3.7 Launch the control files in ROS.

To run the control created for the robot, the Cpp file, it is necessary to add
a few lines to the CmakeList.txt, a file that is automatically created in this
chapter section 3.4.1, the CmakeList that need a modification can be found
inside the project folder, the file with the same name in the src folder does
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not need a modification. The Listing 3.19 shows the lines that must be
added at the end of the file mentioned before.

Listing 3.19: Added lines in the CmakelList.

include_directories(include ${catkin_INCLUDE_DIRS})

add_executable(model_joints_publisher
src/model_joints_publisher.cpp)

target_link_libraries(model_joints_publisher ${catkin_LIBRARIES})

In addition, it must be created another file with the extension .launch that
will publish topics to the joints in the Gazebo model. The example code is
shown below in the Listing 3.20, the main function of it, is to load the Joint
controller configurations from Yaml file to the ROS parameter server, load
the controllers, run the Joints statements, and run the Joints publisher (the
Cpp file is already added in the project, in the lines added in the CmakeList
file).

Listing 3.20: Example of control.launch file.

<?xml version="1.0"7>
<launch>

<rosparam file="$(find mex_rb)/config/configuration.yaml"
command="1oad"/>

<node name="controller_spawner" pkg="controller_manager"
type="spawner" respawn="false"

output="screen" ns="/model" args="joint_state_controller
kinect_controller0 kinect_controller? ..."/>

<node name="robot_state_publisher" pkg="robot_state_publisher"
type="robot_state_publisher"
respawn="false" output="screen">
<remap from="/joint_states" to="/model/joint_states" />
</node>

<node name = "model_joints_publisher" pkg ="mex_rb" type =
"model_joints_publisher" output="screen"/>

</launch>
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Chapter 4

Results

4.1 Gazebo Model.

To prove the correct assembly of all the Links and Joints of the robot, made
in the previous chapter section 3.2, you can review in gazebo the following
features.

Figure 4.1: Center of mass. Figure 4.2: Inertial.

The information of the mass center can be verified by the activation of the
property Center of Mass, in the menu, View from Gazebo. All the centers
of mass must be inside the robot and in its correct center, the verification of
the current robot is shown in (Figure 4.1). The (Figure 4.2) shows another
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property of the same Gazebo menu, called Inertia, those are a graphical
representation of the inertial forces present in the model, caused by the mass
and the gravity, those inertia were set in the inertial components of the
URDF, and must be near to the real robot.

The position of the joints can be reviewed in the model by the activation of
the Joints propriety in the View menu tool, and in addition, the transparent
property, to be able to easily check the Joint position in the center of each
Link, the resultant robot, must show an appearance similar to the (Figure
4.3), that shows all the coordinate axis in the center of each joint. The
Collisions propriety, it is similar to the other properties mentioned after in
this section, the robot must have no collisions in the outlines of the model,
its collision parts must be similar to the original pieces and must be placed
in the same space; it can be reviewed by looking "Links" unconnected to the
robot, with this property activated, those "Links" will have a transparent
brown look. The (Figure 4.4) show the way a robot with all its collisions in
the right places must look like.

Figure 4.3: Joints position. Figure 4.4: Collision Links.

To finish the verification in Gazebo, the model charged in the simulator, once
the simulator is running, must fall and collide with itself while falling, and
must be able to move its joints in the right directions. The robot must look
like an assembled robot, its Links must not disassembly themselves of the
robot while falling, or seem like rotating in a joint in the outlines of the robot.
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4.2 ROS launched model.

This section enumerates some shortcuts to verify the files needed to launch
the robot from ROS to Gazebo and how to fix errors that arose during the
elaboration of the present investigation.

4.2.1 URDF verification.

To verify that the developed URDF file that describes the robot, actually
works, the easiest way founded during this investigation is to run the com-
mand "check urdf" in the terminal. This is a ROS tool that allows the user
to know if the relation parent-child is correctly formed in the zml structure
of the URDF file. To use that command, you need to execute the command
of the Listing 4.1 in the terminal, noticing that the names of the files and
directories must be changed according to the desired location and name of
the file to review. If the verification end successfully, the terminal will show
the structure of the robot and a message as in the (Figure 4.5).

Listing 4.1: Check URDF.
$ check_urdf ~/folder/subfloder/subsubfolder/model.urdf

miriam@miriam-Inspiron-5559:~/ws_catkin$ check_urdf src/mex_rb/urdf/model.urdf.xacro
robot name is: mex _rb
Successfully Parsed XML
root Link: world has 1 child(ren)
child(1): 1link @
child(1): 1link_ 1
child(2): 1link 13
child(1): 1link 14
child(1): T1link_15
child(1): 1link 16
child(5): 1link 3
child(1): 1link 4
child(1): 1link_ 5
child(6): 1link 6
child(1): 1link 7
child(1): 1link 8
child(1): 1ink 9
child(1): link_18
child(1): link 11
child(1): 1link_12
miriam@miriam-Inspiron-5559:~/ws_catkin$ |

Figure 4.5: Check urdf response.
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4.2.2 Assembly mistakes.

A common error during the URDF development is to put wrong positions in
the center of mass, misplace the joints or the collision. That can end up in
the destruction of the model, the models with some of the error mentioned
before may cause the model robot to explode, because of this, is advisable to
review the properties of the View menu, at the beginning of this chapter 4.1.
The (Figure 4.6) shows the head collision element of the model misplaced,
and the (Figure 4.7) the model exploding because of a misplaced center of
mass and overlarge inertias.

Figure 4.6: Head collision link mis-  Figure 4.7: Robot dysfunctional
placed. behaviour (first model).

4.2.3 Gravity and Self Collide.

Both in the gazebo robot and in the ROS launched robot, the model must
fall in a sequence analog to the real robot falling with the gravity effects, the
damping of the joints and the friction between the links and in the joints.

But before the verify of the gravity, it is important to assure that the Self
Collide characteristic is active, because, other ways, the falling robot will be
able to trespass itself while falling, and in the control exercises, the collisions
between the links will not have an effect. An example of the robot in the
simulator without self-collisions nor control it showed in the (Figure 4.8). An
appropriated charge of all the physical parameters, centers of mass, joints
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Figure 4.8: Model falling without Self collide.

and extra, resulting in the falling of the model without any control file,
and eventually, the model must stop moving after reaching the floor. The
simulation time must be cared of because it will show how much time is
supposed to take to the robot to fall and stop moving, and based in that
time, you should be able to determinate whether it was or not a logical fall.
The (Figure 4.9) show the robot falling in an acceptable timing.

Figure 4.9: Model with gravity.
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4.3 ROS control.

In order to review if the robot controllers were correctly charged, the Listing
3.15 enables in its line number thirteen the werbose tool, which let the ter-
minal display messages with information about the robot charge processes,
such as any kind of problem during the robot and features’ charge. In this
point, the information that will be useful, is a message, after launching the
robot with the transmission and ros_ control lines inside the URDF file and
the Yaml file, the terminal must show a message as the Figure 4.10, that let
the users know the processes status and if Gazebo was able to charge the
control plugin and enable the physical properties with the control.

9 S @ miriam@miriam-inspiron-5559: ~/ws_catkin

[INFO] [1539157458.158124, ©.000000]: Calling service /gazebo/spawn_urdf_model

[INFO] [1539157458.700227, 0.000000]: Spawn status: SpawnModel: Successfully spa

wned entity

[urdf_spawner-4] process has finished cleanly

log file: /home/miriam/.ros/log/49dd9dd8-cc68-11e8-a0bB-2c6eB85Fffd8id /urdf_spawne

r-4*.log

[ INFO] [1539157461.821788021]: Loading gazebo_ros_control plugin

[ INFO] [1539157461.821998685]: Starting gazebo_ros_control plugin in namespace:
[/mex_rb

[ INFO] [1539157461.822834966]: gazebo_ros_control plugin is waiting for model U

RDF in parameter [/robot_description] on the ROS param server.

[ INFO] [1539157461.989761680]: Loaded gazebo_ros_control.

[ INFO] [1539157533.725483803, 0.0210 Service [/gazebo/se

t_physics_properties] is now available.

Figure 4.10: Terminal after successfully load ROS Control.

4.3.1 Home position.

Without launch the control file, but with the controllers charged, the robot
must take the "Home" position, which means that all the joints must stay
put at the 0 degrees, regardless the effect of the gravity. This does not mean
that the gravity is nos affecting the robot, or that the joints are not correctly
working; in the action of activate the transmissions elements in the robot,
is like put all the motors in the zero position and giving them the energy
necessary to stay still even with the gravity and the robot mass.

This position was defined by the user at the moment of the robot develop-
ment, the positions of the links and joints given in the URDF file are the
ones that ROS is going to recognize as the robot’s "Home" position. The
terminal window must show no errors after play the simulation in Gazebo.
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Figure 4.11: Gazebo with the model in "Home" position.

The Figure 4.11 show the simulation after a couple of second of the simu-
lation time running, as you can see, the robot keeps the same position as
before running the simulator.

If at this point, when you play the simulator, the model misbehave as in the
Figure 4.7, review the PID values admitted in the Yaml file, sometimes a
very small derivative gain can introduce errors during the control processes,
and end up disassembling the robot and making the pieces to free "fly" in
the world.

4.3.2 Arms control.

As an example of a control routine, a simple file was made to check the arms
movements, and to verify its correct function. The example routine was de-
cided to be proved only in the arms due to the complex of a walking routine,
such routines are going to be developed and tested by the students of the
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investigation center.

Listing 4.2: Arms control example file.

#include "ros/ros.h"
#include "std_msgs/Float64.h"
#include <sstream>

int main(int argc, char **argv)
{
ros::init(argc, argv, "talker");
ros: :NodeHandle n;
ros: :Publisher transO_pub =
n.advertise<std_msgs: :Float64>("/mex_rb/trans0_controller/command",
1000) ;
while (ros::o0k())
{
std_msgs: :Float64 msg0;
for(int t=0; t<= 30; t++)
{
if ((£>0) && (t<=15))
{
msg0.data = 30;
ROS_INFO("Publishing: %d",msg0);
transO_pub.publish (msg0) ;
ros: :spinOnce();
loop_rate.sleep();
}
else ((t>15) && (t<=30))
{
msg0.data = O;
ROS_INFO("Publishing: %d",msg0);
transO_pub.publish(msg0) ;
ros: :spinOnce();
loop_rate.sleep();
}
}
+

return 0;}
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The code in the Listing 4.2 is the code for the head movements used as the
Cpp file, this file puts the head and arms in movement with slow movements
to avoid making the robot loss stability. The file only send instructions about
the positions, the control in the motors is developed in the Yaml file, with the
PID gain set for each motor, to have a better control routine, it is suggested
to prove with the torque controllers, that control the force applied in each
motor instead of the position that it wants to achieve.

In the Figure 4.12 a few captures of the routine are showed, in the simulator,
you must see slight movements of the robot at the beginning and end of the
motor routines, that is because of the force required to start any movement
of the links, and the robot does not loss its stability because to the slow of
the movements.

Figure 4.12: Arms control routine.

42



Conclusion

Finally, in the exposed work the objectives that were initially proposed have
been achieved. The modeling of the humanoid robot Mex-One in the Gazebo
simulator, have been created a controller for every joint of the robot, the
movement, and control of the joints have been successfully achieved. The
robot have been tested based in a cpp file, making able to send simple ex-
ample control routines.

The project has been developed in free access software, which implies that
is almost free cost, without taking account of the electrical energy, internet,
and a computer, that are necessary items to develop any model, for obvious
reasons. Some tips to improve the simulator development, such as use differ-
ent visual and collide elements to reach a real-time factor closest to one, and
some commands that will help anyone that thy to use the present document
as a guide to have an easier way to verify the different steps of the work are
also included.

The present work shows, it is important to have a complete knowledge of the
real model that you are trying to get inside the simulator, because you need
to be able to assemble the robot and create a model in the URDF file. A
basic knowledge of the more common commands of Ubuntu, is necessary to
have a simpler adaptation process to the ROS commands and to know how to
move between them. The installations necessaries are explained in different
tutorials of the software developers, from how to fragment a hard drive to
how to install ROS Indigo and the specifications required of the installation
machine. That was one of the best advantages founded during the elabo-
ration of the present document, the free software has a lot of information
to help to the installation and basic knowledge of it. On the other hand,
one of the difficulties of the present work was that the information was very
separately and the most of it was not useful or trustable, because of that,
the information used in this project, was very carefully selected, trying to
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show only concrete and useful facts. The present project en with a simple
example of a control routine given the time limitations.

To future projects, I suggest an application called Moveit, is a ROS appli-
cation to develop inverse kinematic functions, that can be employed in the
control of simulated and real robots, also to change the cpp files for Python
files, given that those are easier to make and, given the facilities that that
language offers against the cpp files, most of the developers nowadays use
Python instead of cpp.
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