Veuillez utiliser cette adresse pour citer ce document : https://rinacional.tecnm.mx/jspui/handle/TecNM/5123
Titre: Modelo de aprendizaje automático para la detección de soledad y aislamiento social en adultos mayores
Auteur(s): Bello Valle, Amado Scott%1031184
Date de publication: 2023-01-13
Editeur: Tecnológico Nacional de México
metadata.dc.publisher.tecnm: Centro Nacional de Investigación y Desarrollo Tecnológico
Description: En México, actualmente los adultos mayores representan el 10% de la población y proyecciones del Consejo Nacional de Población (CONAPO) indican que ese sector de la población aumentará a 15.66% en 2030. El desarrollo de padecimientos emocionales y psicológicos en la edad avanzada a pesar de ser tratables no son diagnosticados ni tratados adecuadamente. Este problema motiva la preocupación por mejorar la calidad de vida y el bienestar de este segmento de la población. El aprendizaje automático permite obtener modelos mediante técnicas y algoritmos eficientes y efectivos que nos permiten descubrir patrones útiles para la detección de padecimientos psicológicos. El objetivo de esta tesis es desarrollar un modelo para detectar soledad y aislamiento social identificando características relevantes de estos padecimientos a partir de la información obtenida del monitoreo de las actividades diarias de un adulto mayor. Para cumplir el objetivo, el modelo se desarrolló usando una metodología que consta de cuatro procesos: análisis de datos, procesamiento de datos, construcción de modelos y combinación de modelos. El resultado de este proceso genera dos modelos. El modelo de soledad con el algoritmo AdaBoost con Random Forest logró un accuracy del 70% y el modelo de aislamiento social con el algoritmo k-Nearest-Neighbor logró un accuracy de 80%. Para evaluar estos modelos, se obtuvieron nuevos datos de participantes para la determinar el nivel de soledad y aislamiento social. Este proceso demuestra que modelo acierta en un 92% en la clasificación de soledad, 80% en la clasificación de aislamiento social y un 76% en la clasificación de los participantes combinando ambos padecimientos.
metadata.dc.type: info:eu-repo/semantics/masterThesis
Collection(s) :Tesis de Maestría en Computación

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
MC_Amado_Scott_Bello_Valle_2023.pdfTesis3.17 MBAdobe PDFVoir/Ouvrir
MC_Amado_Scott_Bello_Valle_2023_c.PDF
  Accès limité
Cesión de Derechos360.37 kBAdobe PDFVoir/Ouvrir    Demander une copie


Ce document est protégé par copyright



Ce document est autorisé sous une licence de type Licence Creative Commons Creative Commons