Veuillez utiliser cette adresse pour citer ce document : https://rinacional.tecnm.mx/jspui/handle/TecNM/6087
Titre: REDES NEURONALES CONVOLUCIONALES PARA LA CLASIFICACIÓN MULTICLASE DEL CUBREBOCAS
Auteur(s): Campos Lopez, Alexis%1106406
metadata.dc.subject.other: Redes neuronales convolucionales, clasificación multicalse del cubrebocas
Date de publication: 2023-01-31
Editeur: Tecnológico Nacional de México
metadata.dc.publisher.tecnm: Instituto Tecnológico de Tijuana
Description: En los últimos años, debido a la pandemia del COVID-19 se han producido gran cantidad de contagios entre los humanos, provocando que el virus se expanda alrededor del mundo. El uso de cubrebocas de acuerdo con estudios ha ayudado a evitar en gran parte su propagación, por eso es muy importante el uso correcto del mismo. Usar el cubrebocas en lugares públicos se ha vuelto una práctica común en estos días y si no es usado de manera correcta el virus se seguirá transmitiendo. Se propone el uso de redes neuronales convolucionales para detectar y clasificar el uso correcto de cubrebocas en combinación con un sistema tiempo real para el monitoreo del mismo. Los métodos de aprendizaje profundo son los más eficaces para detectar si una persona está utilizando correctamente el cubrebocas. El modelo fue entrenado utilizando el conjunto de datos de MaskedFace-Net y evaluado con diferentes imágenes del mismo. Se utiliza el modelo Caffe para la detección de rostro, posteriormente se hace un preprocesamiento de la imagen para extraer características. Estas imágenes son la entrada de la red neuronal convolucional, dónde se clasifica entre mask, no mask e incorrect mask. De igual manera se propone un sistema tiempo real para el monitoreo e identificación de las personas que no utilicen el cubrebocas, implementando el uso de sistemas programables como la raspberry pi 4, clasificando según la clase en color verde, amarillo o rojo para encender un LED según sea el caso. El modelo propuesto alcanza un porcentaje de precisión de 99.69% en el porcentaje de prueba, el cual es mayor comparado con otros autores.
metadata.dc.type: info:eu-repo/semantics/masterThesis
Collection(s) :MAESTRÍA EN CIENCIAS DE LA COMPUTACIÓN

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Tesis Alexis Campos Lopez.pdf5.15 MBAdobe PDFVoir/Ouvrir
Cesión de derechos Alexis Campos Lopez.pdf
  Accès limité
408.67 kBAdobe PDFVoir/Ouvrir    Demander une copie


Ce document est protégé par copyright



Ce document est autorisé sous une licence de type Licence Creative Commons Creative Commons