Utilize este identificador para referenciar este registo: https://rinacional.tecnm.mx/jspui/handle/TecNM/3092
Título: METODOS EXACTOS PARA EL PROBLEMA DEL SUMCUT DE UN GRAFO CONEXO NO DIRIGIDO
Autor: Gomez Rojas, Yazmin
Data: 2014-10-01
Editora: Tecnológico Nacional de México
metadata.dc.publisher.tecnm: Instituto Tecnológico de Ciudad Madero
Descrição: En este trabajo de investigación aborda el problema de SUMCUT por medio de métodos exactos. El SUMCUT es un problema NP-Completo [Yuan, 1998], el cual consiste en minimizar la suma de los cortes de ancho de un grafo conexo; este problema tiene aplicaciones en la genética y en la arqueología [Karp, 1993] [Kendall, 1993]. La aportación de este trabajo consiste en el desarrollo de 4 modelos de programación lineal entera y 2 métodos exactos basados en ramificación y acotamiento, ya que hasta el momento no se han publicado ningún método exacto que lo resuelva. Además se realizó una heurística para crear una solución inicial, la cual permitiera trabajar con las instancias con un gran número de nodos. Para validar la eficiencia de la heurística se realizó una metaheurística GRASP.
metadata.dc.type: info:eu-repo/semantics/masterThesis
Aparece nas colecções:Maestría en Ciencias de la Computación

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
G07070938_donacion_tesis_bib.pdf2.26 MBAdobe PDFVer/Abrir


Este registo está protegido por copyright original.



Este registo está protegido por Licença Creative Commons Creative Commons