Veuillez utiliser cette adresse pour citer ce document : https://rinacional.tecnm.mx/jspui/handle/TecNM/6914
Titre: APLICACIÓN DE TÉCNICAS DE MACHINE LEARNING PARA LA PREDICCIÓN DE GELIFICACIÓN DE ORGANOGELADOERES BENZOATO USADOS EN REMOCIÓN DE CONTAMINANTES EN SISTEMAS EFLUENTES
Auteur(s): Loredo Pong, Virginia
Date de publication: 2023-03-01
Editeur: Tecnológico Nacional de México
metadata.dc.publisher.tecnm: Instituto Tecnológico de Ciudad Madero
Description: Durante este trabajo se estudió una familia de moléculas derivadas de oxialquilbenzoatos (OABs) con respecto a su comportamiento durante pruebas de gelificación con un conjunto de solventes polares y no polares. Se evaluaron una serie de propiedades estructurales y fisicoquímicas de los OABs y los solventes con el fin de desarrollar una serie de corpus a partir de esta información. Para la designación de los atributos, los corpus diseñados fueron divididos en dos tipos: cualitativos y fisicoquímicos; dependiendo del tipo de características usadas como atributos. Los corpus fueron aplicados en algoritmos de inteligencia artificial para diseñar un modelo que prediga el estado de agregación producido a partir de la combinación de un OAB y solventes específicos. Los productos de cada OAB con cada solvente se designan como las clases a predecir. El algoritmo de machine learning seleccionado para la evaluación de los corpus fue kNN (k neirest neighbours). Se probaron diferentes configuraciones tanto de los corpus como del algoritmo. Las configuraciones evaluadas comprenden la cantidad de atributos, su tipo y valor numérico o alfanumérico, así como la cantidad de ejemplos en los conjuntos y subconjuntos formados. Por último, con el fin de evaluar la capacidad predictiva de los modelos y su configuración óptima, se diseñaron una serie de conjuntos de prueba basados en los datos provenientes de dos moléculas nuevas. Como producto, se obtuvieron una serie de modelos con la capacidad de clasificar correctamente hasta en un 100% moléculas nuevas de la misma familia derivada de OABs. Algunos parámetros presentaron mayor relevancia sobre otros, estos parámetros son; el valor de k vecinos en el algoritmo kNN, la configuración del algoritmo y la estructura y contenido del corpus de información. La caracterización fisicoquímica de las especies estudiadas mediante los parámetros de solubilidad de Hansen, contribuyó mediante sus valores a que el modelo fuese capaz de realizar una asociación con las clases de los ejemplos de entrenamiento y de prueba, tal es así que, los atributos con los que se obtuvo más alta clasificación fueron las interacciones dispersivas, las interacciones polares y las interacciones de puentes de H., tanto de solventes y OABs. La estructura molecular caracterizada por rasgos como la cantidad de carbonos en las cadenas Éter y Éster de los OABs complementa la definición de la capacidad de gelificar de estas moléculas.
metadata.dc.type: info:eu-repo/semantics/doctoralThesis
Collection(s) :Doctorado en Ciencias de la Ingeniería

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
D00070411_donacion_tesis_bib.pdfTesis5.38 MBAdobe PDFVoir/Ouvrir
D00070411_donacion_licencia_bib.pdf
  Jusqu'à 2050-01-01
licencia585.94 kBAdobe PDFVoir/Ouvrir    Demander une copie


Ce document est protégé par copyright



Ce document est autorisé sous une licence de type Licence Creative Commons Creative Commons