Por favor, use este identificador para citar o enlazar este ítem: https://rinacional.tecnm.mx/jspui/handle/TecNM/7945
Título : OPTIMIZACIÓN GENERALIZADA PARA PROBLEMAS DE AGRUPACIÓN: UN ENFOQUE COEVOLUTIVO AUTO-ADAPTATIVO
Autor : Aran Perez, Jordan Michelt
Fecha de publicación : 2024-02-01
Editorial : Tecnológico Nacional de México
metadata.dc.publisher.tecnm: Instituto Tecnológico de Ciudad Madero
Descripción : Este estudio introduce un Algoritmo Coevolutivo de Agrupación con Cooperación Auto-Adaptativa (GCA-AC), diseñado como una solución general a problemas de agrupación. En particular, se centra en dos problemas especí cos: el Problema de Empaquetado de Contenedores de una Dimensión (BPP-1D) y el Problema de Programaci ón de Máquinas Paralelas (PMS). Existe un vasto abanico de algoritmos genéticos y estrategias evolutivas que han sido propuestas como soluciones a la familia de los problemas de agrupación. Sin embargo, estos métodos pueden tener limitaciones en cuanto a adaptabilidad y rendimiento, lo cual motiva la búsqueda de nuevas estrategias que combinen y mejoren las existentes. El GCA-AC se presenta como una innovadora solución que combina diversas estrategias evolutivas para mejorar su adaptabilidad y rendimiento. Una de las principales contribuciones de este estudio es el mecanismo de auto-adaptación del GCAAC, que permite ajustar dinámicamente sus parámetros, ofreciendo una respuesta más e ciente a los cambios en el ambiente del problema. Los resultados de la investigación indican que el GCA-AC es competente en la búsqueda de soluciones de calidad para los problemas BPP-1D y PMS, comparables con las generadas por algoritmos especializados ya existentes. Este estudio propone que la combinación de algoritmos genéticos con estrategias de coevolución y autoadaptaci ón puede ser un enfoque fructífero para el desarrollo de algoritmos de agrupación universales. A pesar de los prometedores resultados que este estudio proporciona, se reconoce que aún hay mucho por descubrir. Por lo tanto, se sugieren múltiples oportunidades para futuras líneas de investigación.
metadata.dc.type: info:eu-repo/semantics/masterThesis
Aparece en las colecciones: Maestría en Ciencias de la Computación

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
G16070192_donacion_tesis_bib (5).pdfTesis1.29 MBAdobe PDFVisualizar/Abrir
G16070192_donacion_licencia_bib (5).pdf
  Until 2050-01-01
Licencia131.96 kBAdobe PDFVisualizar/Abrir  Request a copy


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons