
Utilize este identificador para referenciar este registo:
https://rinacional.tecnm.mx/jspui/handle/TecNM/941
Registo completo
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Olvera Vazquez, Jose Enrique | - |
dc.creator | Olvera Vazquez, Jose Enrique%932607 | - |
dc.date.accessioned | 2021-04-20T05:17:18Z | - |
dc.date.available | 2021-04-20T05:17:18Z | - |
dc.date.issued | 2020-12-01 | - |
dc.identifier.uri | https://rinacional.tecnm.mx/jspui/handle/TecNM/941 | - |
dc.description | En la presente tesis muestra la teoría general de pronóstico de series de tiempo y métodos de pronóstico clásicos como la familia ARIMA y los diferentes modelos de Suavizamiento exponencial. Existen diferentes maneras de encontrar las constantes para los modelos, las cuales se muestran las principales en este trabajo. También se habla sobre los métodos de optimización inteligente como son las Maquinas de Soporte Vectorial y los diferentes formas de sintonizar sus parámetros. Se muestra una aplicación en problemas emergentes combinando métodos clásicos de pronóstico y de optimización inteligente. Se desarrolla la metodología propuesta SVR-ESAR explicando paso a paso los diferentes algoritmos utilizados, el cual incluye un método hibrido entre Maquinas de Soporte Vectorial sintonizada con un algoritmo genético como método base y posteriormente se realiza un ajuste en los residuales con el modelo de Suavizamiento Exponencial de Holt (HSE) y los modelos de Promedio Móvil Integrados Autorregresivos (ARIMA), con la finalidad de disminuir el Error Absoluto Porcentual Medio del pronóstico en series de tiempo. Finalmente aplica la metodología propuesta SVR-ESAR a las series de tiempo generadas por el número de casos infectados de la enfermedad del COVID-19 obteniendo buenos resultados en la experimentación. | es_MX |
dc.language.iso | spa | es_MX |
dc.publisher | Tecnológico Nacional de México | es_MX |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0 | es_MX |
dc.subject | info:eu-repo/classification/cti/7 | es_MX |
dc.title | APLICACIÓN DE MÉTODOS DE PRONÓSTICOS HÍBRIDOS EN BASE A MÉTODOS CLÁSICOS Y DE OPTIMIZACIÓN INTELIGENTE EN PROBLEMAS EMERGENTES TIPO COVID 19 | es_MX |
dc.type | info:eu-repo/semantics/masterThesis | es_MX |
dc.contributor.director | Frausto Solis, Juan#FASJ500708HBCRLN04 | - |
dc.rights.access | info:eu-repo/semantics/openAccess | es_MX |
dc.publisher.tecnm | Instituto Tecnológico de Ciudad Madero | es_MX |
Aparece nas colecções: | Maestría en Ciencias de la Ingeniería |
Ficheiros deste registo:
Ficheiro | Descrição | Tamanho | Formato | |
---|---|---|---|---|
APLICACIÓN DE MÉTODOS DE PRONÓSTICOS HÍBRIDOS EN BASE A MÉTODOS CLÁSICOS Y DE OPTIMIZACIÓN INTELIGENTE EN PROBLEMAS EMERGENTES TIPO COVID 19.pdf | 2.26 MB | Adobe PDF | Ver/Abrir |
Este registo está protegido por copyright original. |
Este registo está protegido por Licença Creative Commons