Por favor, use este identificador para citar o enlazar este ítem:
https://rinacional.tecnm.mx/jspui/handle/TecNM/941
Título : | APLICACIÓN DE MÉTODOS DE PRONÓSTICOS HÍBRIDOS EN BASE A MÉTODOS CLÁSICOS Y DE OPTIMIZACIÓN INTELIGENTE EN PROBLEMAS EMERGENTES TIPO COVID 19 |
Autor : | Olvera Vazquez, Jose Enrique |
Fecha de publicación : | 2020-12-01 |
Editorial : | Tecnológico Nacional de México |
metadata.dc.publisher.tecnm: | Instituto Tecnológico de Ciudad Madero |
Descripción : | En la presente tesis muestra la teoría general de pronóstico de series de tiempo y métodos de pronóstico clásicos como la familia ARIMA y los diferentes modelos de Suavizamiento exponencial. Existen diferentes maneras de encontrar las constantes para los modelos, las cuales se muestran las principales en este trabajo. También se habla sobre los métodos de optimización inteligente como son las Maquinas de Soporte Vectorial y los diferentes formas de sintonizar sus parámetros. Se muestra una aplicación en problemas emergentes combinando métodos clásicos de pronóstico y de optimización inteligente. Se desarrolla la metodología propuesta SVR-ESAR explicando paso a paso los diferentes algoritmos utilizados, el cual incluye un método hibrido entre Maquinas de Soporte Vectorial sintonizada con un algoritmo genético como método base y posteriormente se realiza un ajuste en los residuales con el modelo de Suavizamiento Exponencial de Holt (HSE) y los modelos de Promedio Móvil Integrados Autorregresivos (ARIMA), con la finalidad de disminuir el Error Absoluto Porcentual Medio del pronóstico en series de tiempo. Finalmente aplica la metodología propuesta SVR-ESAR a las series de tiempo generadas por el número de casos infectados de la enfermedad del COVID-19 obteniendo buenos resultados en la experimentación. |
metadata.dc.type: | info:eu-repo/semantics/masterThesis |
Aparece en las colecciones: | Maestría en Ciencias de la Ingeniería |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
APLICACIÓN DE MÉTODOS DE PRONÓSTICOS HÍBRIDOS EN BASE A MÉTODOS CLÁSICOS Y DE OPTIMIZACIÓN INTELIGENTE EN PROBLEMAS EMERGENTES TIPO COVID 19.pdf | 2.26 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons