Por favor, use este identificador para citar o enlazar este ítem: https://rinacional.tecnm.mx/jspui/handle/TecNM/9114
Título : Minería de referencias bibliográficas: Mejora en la generalización de la Segmentación
Autor : Cuéllar Hidalgo, Rodrigo
metadata.dc.subject.other: Minería de Referencias, BiLSTM, transformadores, codificación Byte-Pair, campos aleatorios condicionales.
Fecha de publicación : 2024-12-02
Editorial : Tecnológico Nacional de México
metadata.dc.publisher.tecnm: Centro Nacional de Investigación y Desarrollo Tecnológico
Descripción : La tesis se centra en mejorar la segmentación de referencias bibliográficas mediante el uso de aprendizaje automático y arquitecturas de redes neuronales. El objetivo principal es desarrollar y evaluar un modelo que realice la segmentación de referencias en múltiples idiomas y estilos bibliográficos. Se evaluaron varios enfoques, incluyendo arquitecturas como CRF, BiLSTM, Transformer y Ventanas Deslizantes, así como sus combinaciones, asegurando la resiliencia frente a errores y variaciones en los datos de entrada. Para lograr este objetivo, se desarrolló un corpus multilingüe de referencias bibliográficas, abarcando estilos diversos, lo cual representa un avance hacia la democratización del conocimiento científico. Este enfoque es especialmente relevante para bibliotecas digitales en países no angloparlantes, donde el acceso a herramientas robustas de procesamiento de referencias es limitado. El proceso de segmentación se abordó en varias fases, comenzando con la selección manual y automática de características, seguida de la captura de contexto mediante arquitecturas como BiLSTM y Transformer. Las predicciones se basaron en estas técnicas, priorizando la tolerancia a omisiones e inconsistencias en la segmentación. Los experimentos mostraron que las combinaciones de BiLSTM y Transformer lograron más del 98%de F-score en segmentación de referencias y más del 92%en entornos multilingües. Cabe destacar que Transformer + BiLSTM y Ventanas Deslizantes + BiLSTM se destacaron por su eficiencia y alto rendimiento en condiciones desafiantes. La tesis enfatiza la importancia crítica de la selección de características y la complejidad computacional. A pesar de la mayor eficiencia de los modelos combinados, requieren recursos computacionales significativos, lo cual presenta una limitación para su aplicación práctica. En conclusión, el estudio proporciona un marco sólido para la segmentación de referencias en múltiples idiomas y estilos. Destaca la efectividad de combinar BiLSTM y Transformer para lograr precisión y robustez frente a errores. Además, sienta las bases para futuras investigaciones que ampliarán la generalización a más idiomas y estilos y optimizarán la eficiencia computacional.
metadata.dc.type: info:eu-repo/semantics/doctoralThesis
Aparece en las colecciones: Tesis de Doctorado en Computación

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
DC_Rodrigo_Cuellar_Hidalgo_2024.pdfTesis2.43 MBAdobe PDFVisualizar/Abrir
DC_Rodrigo_Cuellar_Hidalgo_2024_c.pdf
  Restricted Access
Cesión de derechos448.37 kBAdobe PDFVisualizar/Abrir  Request a copy


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons