Veuillez utiliser cette adresse pour citer ce document : https://rinacional.tecnm.mx/jspui/handle/TecNM/9114
Titre: Minería de referencias bibliográficas: Mejora en la generalización de la Segmentación
Auteur(s): Cuéllar Hidalgo, Rodrigo
metadata.dc.subject.other: Minería de Referencias, BiLSTM, transformadores, codificación Byte-Pair, campos aleatorios condicionales.
Date de publication: 2024-12-02
Editeur: Tecnológico Nacional de México
metadata.dc.publisher.tecnm: Centro Nacional de Investigación y Desarrollo Tecnológico
Description: La tesis se centra en mejorar la segmentación de referencias bibliográficas mediante el uso de aprendizaje automático y arquitecturas de redes neuronales. El objetivo principal es desarrollar y evaluar un modelo que realice la segmentación de referencias en múltiples idiomas y estilos bibliográficos. Se evaluaron varios enfoques, incluyendo arquitecturas como CRF, BiLSTM, Transformer y Ventanas Deslizantes, así como sus combinaciones, asegurando la resiliencia frente a errores y variaciones en los datos de entrada. Para lograr este objetivo, se desarrolló un corpus multilingüe de referencias bibliográficas, abarcando estilos diversos, lo cual representa un avance hacia la democratización del conocimiento científico. Este enfoque es especialmente relevante para bibliotecas digitales en países no angloparlantes, donde el acceso a herramientas robustas de procesamiento de referencias es limitado. El proceso de segmentación se abordó en varias fases, comenzando con la selección manual y automática de características, seguida de la captura de contexto mediante arquitecturas como BiLSTM y Transformer. Las predicciones se basaron en estas técnicas, priorizando la tolerancia a omisiones e inconsistencias en la segmentación. Los experimentos mostraron que las combinaciones de BiLSTM y Transformer lograron más del 98%de F-score en segmentación de referencias y más del 92%en entornos multilingües. Cabe destacar que Transformer + BiLSTM y Ventanas Deslizantes + BiLSTM se destacaron por su eficiencia y alto rendimiento en condiciones desafiantes. La tesis enfatiza la importancia crítica de la selección de características y la complejidad computacional. A pesar de la mayor eficiencia de los modelos combinados, requieren recursos computacionales significativos, lo cual presenta una limitación para su aplicación práctica. En conclusión, el estudio proporciona un marco sólido para la segmentación de referencias en múltiples idiomas y estilos. Destaca la efectividad de combinar BiLSTM y Transformer para lograr precisión y robustez frente a errores. Además, sienta las bases para futuras investigaciones que ampliarán la generalización a más idiomas y estilos y optimizarán la eficiencia computacional.
metadata.dc.type: info:eu-repo/semantics/doctoralThesis
Collection(s) :Tesis de Doctorado en Computación

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
DC_Rodrigo_Cuellar_Hidalgo_2024.pdfTesis2.43 MBAdobe PDFVoir/Ouvrir
DC_Rodrigo_Cuellar_Hidalgo_2024_c.pdf
  Accès limité
Cesión de derechos448.37 kBAdobe PDFVoir/Ouvrir    Demander une copie


Ce document est protégé par copyright



Ce document est autorisé sous une licence de type Licence Creative Commons Creative Commons