Por favor, use este identificador para citar o enlazar este ítem: https://rinacional.tecnm.mx/jspui/handle/TecNM/4481
Título : REINFORCEMENT LEARNING MODULE FOR PERSONALIZED ASSISTED PEDALING IN HUMAN-ELECTRIC HYBRID VEHICLES (PEDELEC)
Autor : GARCIA REYES, CARLOS RICARDO TONATIUH
Fecha de publicación : 2021-09-10
Editorial : Tecnológico Nacional de México
metadata.dc.publisher.tecnm: Instituto Tecnológico de Chihuahua II
Descripción : This document contains the complete research for a Reinforcement (RL) Learning Artificial Intelligence (IA) for the automatic control of a PEDE LEC power assistance module. The RL IA will use trial and error methods to determine the best available assistance for the PEDELEC rider using as reference the Torque produced at the crankshaft and the rider’s heartbeat at one second intervals. This data w ill be transformed into an RL Environment where an agent will learn from no previous experience how to increase or decrease the assistance level to maintain the rider’s heartbeat at a comfortable level. The implementation of the RL will use the principles of TD(0) control and SARSA Prediction to achieve the goal.
metadata.dc.type: info:eu-repo/semantics/masterThesis
Aparece en las colecciones: TESIS MAESTRIA EN SISTEMAS COMPUTACIONALES

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
REINFORCEMENT LEARNING MODULE FOR PERSONALIZED ASSISTED PEDALING IN HUMAN-ELECTRIC HYBRID VEHICLES (PEDELEC).pdfTEXTO COMPLETO3.94 MBAdobe PDFVisualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons