Utilize este identificador para referenciar este registo: https://rinacional.tecnm.mx/jspui/handle/TecNM/4481
Título: REINFORCEMENT LEARNING MODULE FOR PERSONALIZED ASSISTED PEDALING IN HUMAN-ELECTRIC HYBRID VEHICLES (PEDELEC)
Autor: GARCIA REYES, CARLOS RICARDO TONATIUH
Data: 2021-09-10
Editora: Tecnológico Nacional de México
metadata.dc.publisher.tecnm: Instituto Tecnológico de Chihuahua II
Descrição: This document contains the complete research for a Reinforcement (RL) Learning Artificial Intelligence (IA) for the automatic control of a PEDE LEC power assistance module. The RL IA will use trial and error methods to determine the best available assistance for the PEDELEC rider using as reference the Torque produced at the crankshaft and the rider’s heartbeat at one second intervals. This data w ill be transformed into an RL Environment where an agent will learn from no previous experience how to increase or decrease the assistance level to maintain the rider’s heartbeat at a comfortable level. The implementation of the RL will use the principles of TD(0) control and SARSA Prediction to achieve the goal.
metadata.dc.type: info:eu-repo/semantics/masterThesis
Aparece nas colecções:TESIS MAESTRIA EN SISTEMAS COMPUTACIONALES

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
REINFORCEMENT LEARNING MODULE FOR PERSONALIZED ASSISTED PEDALING IN HUMAN-ELECTRIC HYBRID VEHICLES (PEDELEC).pdfTEXTO COMPLETO3.94 MBAdobe PDFVer/Abrir


Este registo está protegido por copyright original.



Este registo está protegido por Licença Creative Commons Creative Commons