Veuillez utiliser cette adresse pour citer ce document : https://rinacional.tecnm.mx/jspui/handle/TecNM/4481
Titre: REINFORCEMENT LEARNING MODULE FOR PERSONALIZED ASSISTED PEDALING IN HUMAN-ELECTRIC HYBRID VEHICLES (PEDELEC)
Auteur(s): GARCIA REYES, CARLOS RICARDO TONATIUH
Date de publication: 2021-09-10
Editeur: Tecnológico Nacional de México
metadata.dc.publisher.tecnm: Instituto Tecnológico de Chihuahua II
Description: This document contains the complete research for a Reinforcement (RL) Learning Artificial Intelligence (IA) for the automatic control of a PEDE LEC power assistance module. The RL IA will use trial and error methods to determine the best available assistance for the PEDELEC rider using as reference the Torque produced at the crankshaft and the rider’s heartbeat at one second intervals. This data w ill be transformed into an RL Environment where an agent will learn from no previous experience how to increase or decrease the assistance level to maintain the rider’s heartbeat at a comfortable level. The implementation of the RL will use the principles of TD(0) control and SARSA Prediction to achieve the goal.
metadata.dc.type: info:eu-repo/semantics/masterThesis
Collection(s) :TESIS MAESTRIA EN SISTEMAS COMPUTACIONALES

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
REINFORCEMENT LEARNING MODULE FOR PERSONALIZED ASSISTED PEDALING IN HUMAN-ELECTRIC HYBRID VEHICLES (PEDELEC).pdfTEXTO COMPLETO3.94 MBAdobe PDFVoir/Ouvrir


Ce document est protégé par copyright



Ce document est autorisé sous une licence de type Licence Creative Commons Creative Commons